1
|
Lai KG, Chen CF, Ho CT, Liu JJ, Liu TZ, Chern CL. Novel roles of folic acid as redox regulator: Modulation of reactive oxygen species sinker protein expression and maintenance of mitochondrial redox homeostasis on hepatocellular carcinoma. Tumour Biol 2017. [DOI: 10.1177/1010428317702649] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Kun-Goung Lai
- Department of Radiation Oncology, Tungs’ Taichung Metroharbor Hospital, Taichung, Taiwan
| | - Chi-Fen Chen
- Clinical Laboratories, Yuan’s General Hospital, Kaohsiung, Taiwan
- Department of Medical Laboratory and Biotechnology Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Chun-Te Ho
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jun-Jen Liu
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan
| | - Tsan-Zon Liu
- Translational Research Laboratory, Cancer Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chi-Liang Chern
- Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Zheng M, Zou C, Li M, Huang G, Gao Y, Liu H. Folic Acid Reduces Tau Phosphorylation by Regulating PP2A Methylation in Streptozotocin-Induced Diabetic Mice. Int J Mol Sci 2017; 18:ijms18040861. [PMID: 28422052 PMCID: PMC5412442 DOI: 10.3390/ijms18040861] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/08/2017] [Accepted: 04/11/2017] [Indexed: 12/23/2022] Open
Abstract
High incidence rate of Alzheimer’s disease (AD) is observed in patients with type 2 diabetes. Aggregated β-amyloid (Aβ) and hyperphosphorylated tau are the hallmarks of AD. Hyperphosphorylated tau has been detected in diabetic animals as well as in diabetic patients. Folates mediate the transfer of one carbon unit, required in various biochemical reactions. The effect of folate on tau phosphorylation in diabetic models still remains unknown. In this study, we investigated the effect and mechanism of folic acid on hyperphosphorylation of tau in streptozotocin (STZ)-induced diabetic mice. Diabetic mice induced by STZ, at the age of 10 weeks, were administered with three levels of folic acid: folic acid-deficient diet, diet with normal folic acid content, and 120 μg/kg folic acid diet for 8 weeks. Levels of serum folate and blood glucose were monitored. Tau phosphorylation, protein phosphatase 2A (PP2A) methylation, and Glycogen synthase kinase 3β (GSK-3β) phosphorylation were detected using Western blot. The S-adenosyl methionine:S-adenosyl homocysteine ratio (SAM:SAH) in brain tissues was also determined. DNA methyltransferase (DNMT) mRNA expression levels were detected using real-time PCR. Folic acid reduced tau hyperphosphorylation at Ser396 in the brain of diabetes mellitus (DM) mice. In addition, PP2A methylation and DNMT1 mRNA expression were significantly increased in DM mice post folic acid treatment. GSK-3β phosphorylation was not regulated by folic acid administration. Folic acid can reduce tau phosphorylation by regulating PP2A methylation in diabetic mice. These results support that folic acid can serve as a multitarget neuronal therapeutic agent for treating diabetes-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Miaoyan Zheng
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China.
| | - Chen Zou
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China.
- Department of Nutrition, Tianjin Stomatological Hospital, Tianjin 300041, China.
| | - Mengyue Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China.
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China.
| | - Yuxia Gao
- Department of Cardiology, General Hospital of Tianjin Medical University, Tianjin 300052, China.
| | - Huan Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
3
|
Li K, Mo C, Gong D, Chen Y, Huang Z, Li Y, Zhang J, Huang L, Li Y, Fuller-Pace FV, Lin P, Wei Y. DDX17 nucleocytoplasmic shuttling promotes acquired gefitinib resistance in non-small cell lung cancer cells via activation of β-catenin. Cancer Lett 2017; 400:194-202. [PMID: 28259822 DOI: 10.1016/j.canlet.2017.02.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 02/05/2023]
Abstract
Although epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are effective for non-small cell lung cancer (NSCLC) patients with EGFR mutations, almost all these patients will eventually develop acquired resistance to EGFR-TKI. However, the molecular mechanisms responsible for gefitinib resistance remain still not fully understood. Here, we report that elevated DDX17 levels are observed in gefitinib-resistant NSCLC cells than gefitinib-sensitive cells. Upregulation of DDX17 enhances the gefitinib resistance, whereas DDX17-silenced cells partially restore gefitinib sensitivity. Mechanistically, we demonstrate that DDX17 disassociates the E-cadherin/β-catenin complex, resulting in β-catenin nuclear translocation and subsequently augmenting the transcription of β-catenin target genes. Moreover, we identify two nuclear localization signal (NLS) and four nuclear export signal (NES) sequences mediated DDX17 nucleocytoplasmic shuttling via an exportin/importin-dependent pathways. Interruption of dynamic nucleocytoplasmic shuttling of DDX17 impairs DDX17-mediating the activation of β-catenin and acquired resistance in NSCLC cells. In conclusion, our findings reveal a novel and important mechanism by which DDX17 contributes to acquired gefitinib resistance through exportin/importin-dependent cytoplasmic shuttling and followed by activation of β-catenin, and DDX17 inhibition may be a promising strategy to overcome acquired resistance of gefitinib in NSCLC patients.
Collapse
Affiliation(s)
- Kai Li
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Chunfen Mo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Di Gong
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Yan Chen
- Lab of Cancer Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Zhao Huang
- Lab of Cancer Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Yanyan Li
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Jie Zhang
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Lugang Huang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Li
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Frances V Fuller-Pace
- Division of Cancer Research, University of Dundee, Ninewells Hospital & Medical School, Dundee, UK
| | - Ping Lin
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China.
| | - Yuquan Wei
- Lab of Cancer Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| |
Collapse
|
4
|
Ding H, Gao QY, Chen HM, Fang JY. People with low serum folate levels have higher risk of colorectal adenoma/advanced colorectal adenoma occurrence and recurrence in China. J Int Med Res 2016; 44:767-78. [PMID: 27358263 PMCID: PMC5536616 DOI: 10.1177/0300060516650075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 04/25/2016] [Indexed: 12/20/2022] Open
Abstract
Objective To investigate the potential association between serum folate levels and colorectal adenoma (CRA) occurrence and recurrence. Methods This prospective study measured baseline serum folate levels in outpatients who were screened for CRA using colonoscopy. Participants were then randomly selected to produce one group with CRA and one without CRA. These two subgroups underwent further follow-up observations of colonoscopy to determine the occurrence of new and recurrent CRA. Results A total of 1310 participants were screened at baseline: 888 were healthy subjects without CRA; and 422 had CRA. Two subgroups were randomly selected (n = 200 per group) for follow-up. In the overall population, baseline serum folate levels were significantly lower in patients with CRA or advanced CRA (A-CRA) compared with healthy participants without CRA. Similar findings were shown for the follow-up study in terms of the association between CRA and A-CRA occurrence and recurrence and baseline serum folate levels. After controlling for confounders, increased serum folate was associated with a reduced risk of occurrence of CRA (odds ratio [OR] 0.993, 95% confidence interval [CI] 0.924, 1.066) and recurrence of CRA (OR 0.749, 95% CI 0.322, 1.742). Conclusions Higher serum folate levels may be protective against CRA and/or A-CRA.
Collapse
Affiliation(s)
- Hui Ding
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qin-Yan Gao
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Hui-Min Chen
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
5
|
Ashokkumar P, Sudhandiran G. Luteolin inhibits cell proliferation during Azoxymethane-induced experimental colon carcinogenesis via Wnt/ β-catenin pathway. Invest New Drugs 2009; 29:273-84. [PMID: 20013030 DOI: 10.1007/s10637-009-9359-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Accepted: 11/11/2009] [Indexed: 01/30/2023]
Abstract
The protective role of Luteolin (LUT) against Azoxymethane (AOM)-induced mouse colon carcinogenesis has been documented earlier. The aim of this study is to investigate on the mechanism of chemopreventive action exhibited by LUT employing AOM-induced colon carcinogenesis in mice as an experimental model. LUT inhibited AOM-induced colon tumorigenesis by decreasing tumor incidence and size. LUT reduced the cell proliferation by decreasing the number of Argyrophillic nucleolar organizer region (AgNOR)/nucleus and Proliferating Cell Nuclear Antigen (PCNA) index. It was known that β-catenin is a key effector in Wingless and Int (Wnt) signaling pathway and 90% of colon tumors arise from mutations in this pathway. In this study, we show evidence that LUT inhibited colon carcinogenesis by decreasing AOM-induced cell proliferation through the involvement of β-catenin, Glycogen synthase kinase (GSK)-3β and cyclin D1, the key components in Wnt signaling pathway. In conclusion, the protective effect of LUT could be attributed to inhibition of AOM-induced cellular proliferation probably through the involvement of β-catenin, GSK-3β and cyclin D1.
Collapse
Affiliation(s)
- Pandurangan Ashokkumar
- Department of Biochemistry, University of Madras, Guindy campus, Chennai, Tamil Nadu, India
| | | |
Collapse
|
6
|
Klinghoffer RA, Frazier J, Annis J, Berndt JD, Roberts BS, Arthur WT, Lacson R, Zhang XD, Ferrer M, Moon RT, Cleary MA. A lentivirus-mediated genetic screen identifies dihydrofolate reductase (DHFR) as a modulator of beta-catenin/GSK3 signaling. PLoS One 2009; 4:e6892. [PMID: 19727391 PMCID: PMC2731218 DOI: 10.1371/journal.pone.0006892] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 08/06/2009] [Indexed: 11/18/2022] Open
Abstract
The multi-protein beta-catenin destruction complex tightly regulates beta-catenin protein levels by shuttling beta-catenin to the proteasome. Glycogen synthase kinase 3beta (GSK3beta), a key serine/threonine kinase in the destruction complex, is responsible for several phosphorylation events that mark beta-catenin for ubiquitination and subsequent degradation. Because modulation of both beta-catenin and GSK3beta activity may have important implications for treating disease, a complete understanding of the mechanisms that regulate the beta-catenin/GSK3beta interaction is warranted. We screened an arrayed lentivirus library expressing small hairpin RNAs (shRNAs) targeting 5,201 human druggable genes for silencing events that activate a beta-catenin pathway reporter (BAR) in synergy with 6-bromoindirubin-3'oxime (BIO), a specific inhibitor of GSK3beta. Top screen hits included shRNAs targeting dihydrofolate reductase (DHFR), the target of the anti-inflammatory compound methotrexate. Exposure of cells to BIO plus methotrexate resulted in potent synergistic activation of BAR activity, reduction of beta-catenin phosphorylation at GSK3-specific sites, and accumulation of nuclear beta-catenin. Furthermore, the observed synergy correlated with inhibitory phosphorylation of GSK3beta and was neutralized upon inhibition of phosphatidyl inositol 3-kinase (PI3K). Linking these observations to inflammation, we also observed synergistic inhibition of lipopolysaccharide (LPS)-induced production of pro-inflammatory cytokines (TNFalpha, IL-6, and IL-12), and increased production of the anti-inflammatory cytokine IL-10 in peripheral blood mononuclear cells exposed to GSK3 inhibitors and methotrexate. Our data establish DHFR as a novel modulator of beta-catenin and GSK3 signaling and raise several implications for clinical use of combined methotrexate and GSK3 inhibitors as treatment for inflammatory disease.
Collapse
|
7
|
Jaszewski R, Misra S, Tobi M, Ullah N, Naumoff JA, Kucuk O, Levi E, Axelrod BN, Patel BB, Majumdar APN. Folic acid supplementation inhibits recurrence of colorectal adenomas: A randomized chemoprevention trial. World J Gastroenterol 2008; 14:4492-8. [PMID: 18680228 PMCID: PMC2731275 DOI: 10.3748/wjg.14.4492] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine whether folic acid supplementation will reduce the recurrence of colorectal adenomas, the precursors of colorectal cancer, we performed a double-blind placebo-controlled trial in patients with adenomatous polyps.
METHODS: In the current double-blind, placebo-controlled trial at this VA Medical Center, patients with colorectal adenomas were randomly assigned to receive either a daily 5 mg dose of folic acid or a matched identical placebo for 3 years. All polyps were removed at baseline colonoscopy and each patient had a follow up colonoscopy at 3 years. The primary endpoint was a reduction in the number of recurrent adenomas at 3 years.
RESULTS: Of 137 subjects, who were eligible after confirmation of polyp histology and run-in period to conform compliance, 94 completed the study; 49 in folic acid group and 45 in placebo group. Recurrence of adenomas at 3-year was compared between the two groups. The mean number of recurrent polyps at 3-year was 0.36 (SD, 0.69) for folic acid treated patients compared to 0.82 (SD, 1.17) for placebo treated subjects, resulting in a 3-fold increase in polyp recurrence in the placebo group. Patients below 70 years of age and those with left-sided colonic adenomas or advanced adenomas responded better to folic acid supplementation.
CONCLUSION: High dose folic acid supplementation is associated with a significant reduction in the recurrence of colonic adenomas suggesting that folic acid may be an effective chemopreventive agent for colorectal neoplasia.
Collapse
|
8
|
Abstract
Our current understanding of the Wnt-dependent signaling pathways is mainly based on studies performed in a number of model organisms including, Xenopus, Drosophila melanogaster, Caenorhabditis elegans and mammals. These studies clearly indicate that the Wnt-dependent signaling pathways are conserved through evolution and control many events during embryonic development. Wnt pathways have been shown to regulate cell proliferation, morphology, motility as well as cell fate. The increasing interest of the scientific community, over the last decade, in the Wnt-dependent signaling pathways is supported by the documented importance of these pathways in a broad range of physiological conditions and disease states. For instance, it has been shown that inappropriate regulation and activation of these pathways is associated with several pathological disorders including cancer, retinopathy, tetra-amelia and bone and cartilage disease such as arthritis. In addition, several components of the Wnt-dependent signaling pathways appear to play important roles in diseases such as Alzheimer’s disease, schizophrenia, bipolar disorder and in the emerging field of stem cell research. In this review, we wish to present a focused overview of the function of the Wnt-dependent signaling pathways and their role in oncogenesis and cancer development. We also want to provide information on a selection of potential drug targets within these pathways for oncology drug discovery, and summarize current data on approaches, including the development of small-molecule inhibitors, that have shown relevant effects on the Wnt-dependent signaling pathways.
Collapse
Affiliation(s)
- Nico Janssens
- Department of Biochemistry, University of Antwerp, Wilrijk, Belgium
| | - Michel Janicot
- Johnson & Johnson Pharmaceutical R & D, Oncology Discovery Research & Early Development, Beerse, Belgium
| | - Tim Perera
- Johnson & Johnson Pharmaceutical R & D, Oncology Discovery Research & Early Development, Beerse, Belgium
- Johnson & Johnson Pharmaceutical R & D, Oncology Discovery Research & Early Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| |
Collapse
|
9
|
Taira J, Ohmi N, Uechi K. Characteristics of Folic Acid and Polyphenol in Okinawan Sweet Potato (Ipomoea batatas L.) Foliage. J JPN SOC FOOD SCI 2007. [DOI: 10.3136/nskkk.54.215] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Abstract
The Wnt signalling pathway plays a role in the direction of embryological development and maintenance of stem cell populations. Heritable alterations in genes encoding molecules of the Wnt pathway, including mutation and epigenetic events, have been demonstrated in a variety of cancers. It has been proposed that disruption of this pathway is a significant step in the development of many tumours. Interactions between beta-catenin--the effector molecule of the Wnt pathway--and the androgen receptor highlight the pathway's relevance to urological malignancy. Mutation or altered expression of Wnt genes in tumours may give prognostic information and treatments are being developed which target this pathway.
Collapse
Affiliation(s)
- G W Yardy
- Cancer & Immunogenetics Laboratory, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK.
| | | |
Collapse
|
11
|
Roy HK, Karolski WJ, Wali RK, Ratashak A, Hart J, Smyrk TC. The nonsteroidal anti-inflammatory drug, nabumetone, differentially inhibits beta-catenin signaling in the MIN mouse and azoxymethane-treated rat models of colon carcinogenesis. Cancer Lett 2005; 217:161-9. [PMID: 15617833 DOI: 10.1016/j.canlet.2004.07.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Revised: 07/09/2004] [Accepted: 07/15/2004] [Indexed: 12/16/2022]
Abstract
The mechanisms through which beta-catenin signaling is inhibited during colorectal cancer chemoprevention by nonsteroidal anti-inflammatory agents is incompletely understood. We report that nabumetone decreased uninvolved intestinal mucosal beta-catenin levels in the MIN mouse with a concomitant increase in glycogen synthase kinase (GSK)-3beta levels, an enzyme that targets beta-catenin for destruction. However, in the azoxymethane-treated rat, where beta-catenin is frequently rendered GSK-3beta-insensitive, nabumetone failed to alter beta-catenin levels but did decrease beta-catenin nuclear localization and transcriptional activity as gauged by cyclin D1. In conclusion, we demonstrate that the differential mechanisms for beta-catenin suppression may be determined, at least partly, by GSK-3beta.
Collapse
Affiliation(s)
- Hemant K Roy
- Department of Internal Medicine, Evanston-Northwestern Healthcare Research Institute, 1001 University Place, Evanston, IL 60201, USA.
| | | | | | | | | | | |
Collapse
|