1
|
Kalampounias G, Gardeli C, Alexis S, Anagnostopoulou E, Androutsopoulou T, Dritsas P, Aggelis G, Papanikolaou S, Katsoris P. Poly-Unsaturated Fatty Acids (PUFAs) from Cunninghamella elegans Grown on Glycerol Induce Cell Death and Increase Intracellular Reactive Oxygen Species. J Fungi (Basel) 2024; 10:130. [PMID: 38392802 PMCID: PMC10890652 DOI: 10.3390/jof10020130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Cunninghamella elegans NRRL-1393 is an oleaginous fungus able to synthesize and accumulate unsaturated fatty acids, amongst which the bioactive gamma-linolenic acid (GLA) has potential anti-cancer activities. C. elegans was cultured in shake-flask nitrogen-limited media with either glycerol or glucose (both at ≈60 g/L) employed as the sole substrate. The assimilation rate of both substrates was similar, as the total biomass production reached 13.0-13.5 g/L, c. 350 h after inoculation (for both instances, c. 27-29 g/L of substrate were consumed). Lipid production was slightly higher on glycerol-based media, compared to the growth on glucose (≈8.4 g/L vs. ≈7.0 g/L). Lipids from C. elegans grown on glycerol, containing c. 9.5% w/w of GLA, were transformed into fatty acid lithium salts (FALS), and their effects were assessed on both human normal and cancerous cell lines. The FALS exhibited cytotoxic effects within a 48 h interval with an IC50 of about 60 μg/mL. Additionally, a suppression of migration was shown, as a significant elevation of oxidative stress levels, and the induction of cell death. Elementary differences between normal and cancer cells were not shown, indicating a generic mode of action; however, oxidative stress level augmentation may increase susceptibility to anticancer drugs, improving chemotherapy effectiveness.
Collapse
Affiliation(s)
- Georgios Kalampounias
- Laboratory of Cell Biology, Division of Genetics, Cell and Developmental Biology, Department of Biology, School of Natural Sciences, University of Patras, 26504 Patras, Greece
| | - Chrysavgi Gardeli
- Laboratory of Food Chemistry and Analysis, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Spyridon Alexis
- Hematology Division, Faculty of Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece
| | - Elena Anagnostopoulou
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Theodosia Androutsopoulou
- Laboratory of Cell Biology, Division of Genetics, Cell and Developmental Biology, Department of Biology, School of Natural Sciences, University of Patras, 26504 Patras, Greece
| | - Panagiotis Dritsas
- Unit of Microbiology, Division of Genetics, Cell and Developmental Biology, Department of Biology, School of Natural Sciences, University of Patras, 26504 Patras, Greece
| | - George Aggelis
- Unit of Microbiology, Division of Genetics, Cell and Developmental Biology, Department of Biology, School of Natural Sciences, University of Patras, 26504 Patras, Greece
| | - Seraphim Papanikolaou
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Panagiotis Katsoris
- Laboratory of Cell Biology, Division of Genetics, Cell and Developmental Biology, Department of Biology, School of Natural Sciences, University of Patras, 26504 Patras, Greece
| |
Collapse
|
2
|
Jayathilake AG, Luwor RB, Nurgali K, Su XQ. Molecular Mechanisms Associated with the Inhibitory Role of Long Chain n-3 PUFA in Colorectal Cancer. Integr Cancer Ther 2024; 23:15347354241243024. [PMID: 38708673 PMCID: PMC11072084 DOI: 10.1177/15347354241243024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/14/2024] [Accepted: 03/11/2024] [Indexed: 05/07/2024] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related death in the world. Multiple evidence suggests that there is an association between excess fat consumption and the risk of CRC. The long chain n-3 polyunsaturated fatty acids (LC n-3 PUFA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are essential for human health, and both in vitro and in vivo studies have shown that these fatty acids can prevent CRC development through various molecular mechanisms. These include the modulation of arachidonic acid (AA) derived prostaglandin synthesis, alteration of growth signaling pathways, arrest of the cell cycle, induction of cell apoptosis, suppression of angiogenesis and modulation of inflammatory response. Human clinical studies found that LC n-3 PUFA combined with chemotherapeutic agents can improve the efficacy of treatment and reduce the dosage of chemotherapy and associated side effects. In this review, we discuss comprehensively the anti-cancer effects of LC n-3 PUFA on CRC, with a main focus on the underlying molecular mechanisms.
Collapse
Affiliation(s)
| | - Rodney Brain Luwor
- The University of Melbourne, Melbourne, VIC, Australia
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- The University of Melbourne, Melbourne, VIC, Australia
- Australian Institute for Muscular Skeletal Science (AIMSS), Melbourne, VIC, Australia
| | - Xiao Qun Su
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Montecillo-Aguado M, Tirado-Rodriguez B, Huerta-Yepez S. The Involvement of Polyunsaturated Fatty Acids in Apoptosis Mechanisms and Their Implications in Cancer. Int J Mol Sci 2023; 24:11691. [PMID: 37511450 PMCID: PMC10380946 DOI: 10.3390/ijms241411691] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer is a significant global public health issue and, despite advancements in detection and treatment, the prognosis remains poor. Cancer is a complex disease characterized by various hallmarks, including dysregulation in apoptotic cell death pathways. Apoptosis is a programmed cell death process that efficiently eliminates damaged cells. Several studies have indicated the involvement of polyunsaturated fatty acids (PUFAs) in apoptosis, including omega-3 PUFAs such as alpha-linolenic acid, docosahexaenoic acid, and eicosapentaenoic acid. However, the role of omega-6 PUFAs, such as linoleic acid, gamma-linolenic acid, and arachidonic acid, in apoptosis is controversial, with some studies supporting their activation of apoptosis and others suggesting inhibition. These PUFAs are essential fatty acids, and Western populations today have a high consumption rate of omega-6 to omega-3 PUFAs. This review focuses on presenting the diverse molecular mechanisms evidence in both in vitro and in vivo models, to help clarify the controversial involvement of omega-3 and omega-6 PUFAs in apoptosis mechanisms in cancer.
Collapse
Affiliation(s)
- Mayra Montecillo-Aguado
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City 06720, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de Mexico (UNAM), Mexico City 04510, Mexico
| | - Belen Tirado-Rodriguez
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City 06720, Mexico
| | - Sara Huerta-Yepez
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City 06720, Mexico
| |
Collapse
|
4
|
Ma J, Zhang C, Liang W, Li L, Du J, Pan C, Chen B, Chen Y, Wang Y. ω-3 and ω-6 Polyunsaturated Fatty Acids Regulate the Proliferation, Invasion and Angiogenesis of Gastric Cancer Through COX/PGE Signaling Pathway. Front Oncol 2022; 12:802009. [PMID: 35251974 PMCID: PMC8891167 DOI: 10.3389/fonc.2022.802009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background This study aims to investigate the effects of ω-3, ω-6 polyunsaturated fatty acids (PUFAs), and their middle metabolites prostaglandin (PGE)2 and PGE3 on proliferation, invasion, and angiogenesis formation of gastric cancer cells and to explore associated mechanism. Methods RT-PCR and ELISA were used to detect the expression of cyclooxygenase (COX)-1 and COX-2 in gastric cancer cell lines. The effect of ω-3, ω-6, PGE2, and PGE3 on the proliferation, invasion, and angiogenesis of gastric cancer cells were measured by cell proliferation, invasion, and angiogenesis assay in vitro. COX-2 small interfering RNA (siRNA) was transfected into gastric cancer cells, and the expression of COX-2 protein was detected by Western blot. COX-2 gene silencing influencing proliferation, invasion, and angiogenesis potential of gastric cancer cells was detected by WST-1, transwell chamber, and angiogenesis assay, respectively. Results COX-2 was only expressed in MKN74 and MKN45 cells. In gastric cancer cell lines with positive COX-2 expression, ω-6 and PGE2 could significantly enhance the proliferation, invasion, and angiogenesis of gastric cancer cells, and after transfection with COX-2 siRNA, the effects of ω-6 and PGE2 on enhancing the proliferation, invasion, and angiogenesis of gastric cancer cells were significantly attenuated; ω-3 and PEG3 could inhibit the proliferation, invasion, and angiogenesis of gastric cancer cells. In gastric cancer cell lines with negative COX-2 expression, ω-6 and PGE2 had no significant effect on the proliferation, invasion, and angiogenesis of gastric cancer; ω-3 and PGE3 could significantly inhibit the proliferation, invasion, and angiogenesis of gastric cancer. Conclusion ω-6 PUFAs reinforce the metastatic potential of gastric cancer cells via COX-2/PGE2; ω-3 PUFAs inhibit the metastatic potential of gastric cancer via COX-1/PGE3 signaling axis.
Collapse
Affiliation(s)
- Jiachi Ma
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- *Correspondence: Jiachi Ma,
| | - Chensong Zhang
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wanqing Liang
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lei Li
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jun Du
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Chengwu Pan
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Bangling Chen
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yuzhong Chen
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yuanpeng Wang
- Department of General Surgery, The Second Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
5
|
Durkin LA, Childs CE, Calder PC. Omega-3 Polyunsaturated Fatty Acids and the Intestinal Epithelium-A Review. Foods 2021; 10:foods10010199. [PMID: 33478161 PMCID: PMC7835870 DOI: 10.3390/foods10010199] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
Epithelial cells (enterocytes) form part of the intestinal barrier, the largest human interface between the internal and external environments, and responsible for maintaining regulated intestinal absorption and immunological control. Under inflammatory conditions, the intestinal barrier and its component enterocytes become inflamed, leading to changes in barrier histology, permeability, and chemical mediator production. Omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) can influence the inflammatory state of a range of cell types, including endothelial cells, monocytes, and macrophages. This review aims to assess the current literature detailing the effects of ω-3 PUFAs on epithelial cells. Marine-derived ω-3 PUFAs, eicosapentaenoic acid and docosahexaenoic acid, as well as plant-derived alpha-linolenic acid, are incorporated into intestinal epithelial cell membranes, prevent changes to epithelial permeability, inhibit the production of pro-inflammatory cytokines and eicosanoids and induce the production of anti-inflammatory eicosanoids and docosanoids. Altered inflammatory markers have been attributed to changes in activity and/or expression of proteins involved in inflammatory signalling including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), peroxisome proliferator activated receptor (PPAR) α and γ, G-protein coupled receptor (GPR) 120 and cyclooxygenase (COX)-2. Effective doses for each ω-3 PUFA are difficult to determine due to inconsistencies in dose and time of exposure between different in vitro models and between in vivo and in vitro models. Further research is needed to determine the anti-inflammatory potential of less-studied ω-3 PUFAs, including docosapentaenoic acid and stearidonic acid.
Collapse
Affiliation(s)
- Luke A. Durkin
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (C.E.C.); (P.C.C.)
- Correspondence:
| | - Caroline E. Childs
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (C.E.C.); (P.C.C.)
- Institute of Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (C.E.C.); (P.C.C.)
- Institute of Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
6
|
Teng H, Fan X, Lv Q, Zhang Q, Xiao J, Qian Y, Zheng B, Gao H, Gao S, Chen L. Folium nelumbinis (Lotus leaf) volatile-rich fraction and its mechanisms of action against melanogenesis in B16 cells. Food Chem 2020; 330:127030. [PMID: 32535311 DOI: 10.1016/j.foodchem.2020.127030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 05/09/2020] [Accepted: 05/09/2020] [Indexed: 02/08/2023]
Abstract
This study was aimed at determining the influence of Folium nelumbinis (Lotus leaf) extracts on melanogenesis in vitro models of melanoma cell line. The anticancer activity of four fractions, including petroleum ether (PEE), n-hexane (HE), ethanol (EE), and ethyl acetate (EAE) from F. nelumbinis on B16 cell lines (C57BL/6J melanoma cell), were evaluated after 24 and 48 h treatment. Results showed that PEE as well as volatile-rich fractions of linolenic acid and linolenic acid ethyl ester significantly (p < 0.05) reduced tyrosinase activity and melanin content in B16 melanoma cells model. Meanwhile, PEE and its primarily contained compound triggered apoptosis of B16 cells in a dose-dependent way. These results demonstrated that PEE possessed effective activities against melanin and tyrosinase generations through the induction of apoptosis. Moreover, a relation between the volatile-rich fractions of F. nelumbinis and the anticancer effects was demonstrated as well.
Collapse
Affiliation(s)
- Hui Teng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaoyun Fan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qiyan Lv
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qin Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jianbo Xiao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yuewei Qian
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hui Gao
- Department of Pharmacolgoy, Medical College of Shaoxing University, Shaoxing 312000, Zhejiang Province, China.
| | - Sihai Gao
- Department of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Lei Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
7
|
Sergeant S, Hallmark B, Mathias RA, Mustin TL, Ivester P, Bohannon ML, Ruczinski I, Johnstone L, Seeds MC, Chilton FH. Prospective clinical trial examining the impact of genetic variation in FADS1 on the metabolism of linoleic acid- and ɣ-linolenic acid-containing botanical oils. Am J Clin Nutr 2020; 111:1068-1078. [PMID: 32167131 PMCID: PMC7198310 DOI: 10.1093/ajcn/nqaa023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/30/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Unexplained heterogeneity in clinical trials has resulted in questions regarding the effectiveness of ɣ-linolenic acid (GLA)-containing botanical oil supplements. This heterogeneity may be explained by genetic variation within the fatty acid desaturase (FADS) gene cluster that is associated with circulating and tissue concentrations of arachidonic acid (ARA) and dihomo-ɣ-linolenic acid (DGLA), both of which may be synthesized from GLA and result in proinflammatory and anti-inflammatory metabolites, respectively. OBJECTIVES The objective of this study was to prospectively compare the capacity of a non-Hispanic white cohort, stratified by FADS genotype at the key single-nucleotide polymorphism (SNP) rs174537, to metabolize 18-carbon omega-6 (n-6) PUFAs in borage oil (BO) and soybean oil (SO) to GLA, DGLA, and ARA. METHODS Healthy adults (n = 64) participated in a randomized, double-blind, crossover intervention. Individuals received encapsulated BO (Borago officinalis L.; 37% LA and 23% GLA) or SO [Glycine max (L.) Merr.; 50% LA and 0% GLA] for 4 wk, followed by an 8-wk washout period, before consuming the opposite oil for 4 wk. Serum lipids and markers of inflammation (C-reactive protein) were assessed for both oil types at baseline and during weeks 2 and 4 of the intervention. RESULTS SO supplementation failed to alter circulating concentrations of any n-6 long-chain PUFAs. In contrast, a modest daily dose of BO elevated serum concentrations of GLA and DGLA in an rs174537 genotype-dependent manner. In particular, DGLA increased by 57% (95% CI: 0.38, 0.79) in GG genotype individuals, but by 141% (95% CI: 1.03, 2.85) in TT individuals. For ARA, baseline concentrations varied substantially by genotype and increased modestly with BO supplementation, suggesting a key role for FADS variation in the balance of DGLA and ARA. CONCLUSIONS The results of this study clearly suggest that personalized and population-based approaches considering FADS genetic variation may be necessary to optimize the design of future clinical studies with GLA-containing oils. This trial was registered at clinicaltrials.gov as NCT02337231.
Collapse
Affiliation(s)
- Susan Sergeant
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA,Center for Botanical Lipids and Inflammatory Disease Prevention, Wake Forest School of Medicine,Winston-Salem, NC, USA
| | | | - Rasika A Mathias
- Center for Botanical Lipids and Inflammatory Disease Prevention, Wake Forest School of Medicine,Winston-Salem, NC, USA,Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Tammy L Mustin
- Center for Botanical Lipids and Inflammatory Disease Prevention, Wake Forest School of Medicine,Winston-Salem, NC, USA,Department of Physiology/Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Priscilla Ivester
- Center for Botanical Lipids and Inflammatory Disease Prevention, Wake Forest School of Medicine,Winston-Salem, NC, USA,Department of Physiology/Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Maggie L Bohannon
- Center for Botanical Lipids and Inflammatory Disease Prevention, Wake Forest School of Medicine,Winston-Salem, NC, USA,Department of Physiology/Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ingo Ruczinski
- Center for Botanical Lipids and Inflammatory Disease Prevention, Wake Forest School of Medicine,Winston-Salem, NC, USA,Johns HopkinsBloomberg School of Public Health, Department of Biostatistics, Baltimore, MD, USA
| | | | - Michael C Seeds
- Center for Botanical Lipids and Inflammatory Disease Prevention, Wake Forest School of Medicine,Winston-Salem, NC, USA,Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Floyd H Chilton
- Center for Botanical Lipids and Inflammatory Disease Prevention, Wake Forest School of Medicine,Winston-Salem, NC, USA,BIO5 Institute, University of Arizona, Tucson, AZ, USA,Address correspondence to FHC (e-mail: )
| |
Collapse
|
8
|
Mariniello K, Min Y, Ghebremeskel K. Phosphorylation of protein kinase B, the key enzyme in insulin-signaling cascade, is enhanced in linoleic and arachidonic acid–treated HT29 and HepG2 cells. Nutrition 2019; 57:52-58. [DOI: 10.1016/j.nut.2018.05.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 05/24/2018] [Accepted: 05/29/2018] [Indexed: 11/30/2022]
|
9
|
Hosseini F, Sam MR, Jabbari N, Mozdarani H. Modulating Survivin as a Radioresistant Factor, Caspase-3, and Apoptosis by Omega-3 Docosahexaenoic Acid Sensitizes Mutant-p53 Colorectal Cancer Cells to γ-Irradiation. Cancer Biother Radiopharm 2018; 33:387-395. [DOI: 10.1089/cbr.2018.2445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Farideh Hosseini
- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran
- Department of Radiology Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Sam
- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran
| | - Nasrollah Jabbari
- Department of Medical Physics and Imaging, Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Hossein Mozdarani
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
10
|
Sam MR, Tavakoli-Mehr M, Safaralizadeh R. Omega-3 fatty acid DHA modulates p53, survivin, and microRNA-16-1 expression in KRAS-mutant colorectal cancer stem-like cells. GENES AND NUTRITION 2018; 13:8. [PMID: 29619114 PMCID: PMC5879572 DOI: 10.1186/s12263-018-0596-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/05/2018] [Indexed: 01/05/2023]
Abstract
Background The presence of chemotherapy-resistant colorectal cancer stem cells (CCSCs) with KRAS mutation is thought to be one of the primary causes for treatment failure in colorectal cancer (CRC). P53, survivin, and microRNA-16-1 are challenging targets for anticancer drugs which are associated with chemoresistance in CRC. Yet, no p53-, survivin-, and microRNA-16-1-modulating drug with low toxicity but high efficacy against KRAS-mutant CCSCs have been approved for clinical application in CRC. Here, we investigated whether in vitro concentrations of DHA equal to human plasma levels, are able to modulate, Wt-p53, survivin, and microRNA-16-1 in CRC cells with stem cell-like properties. Methods Wt-p53/KRAS-mutant CRC cells (HCT-116) with stem cell-like properties were treated with 100-, 150- and 200-μM/L DHA, after which cell number, viability, growth inhibition, Wt-p53, survivin and microRNA-16-1 expression, caspase-3 activation and apoptotic-rate were evaluated by different cellular and molecular techniques. Results After 24-, 48-, and 72-h treatments with 100- to 200-μM/L DHA, growth inhibition- rates were measured to be 54.7% to 59.7%, 73.% to 75.8%, and 63.3% to 97.7%, respectively. Treatment for 48 h with indicated DHA concentrations decreased cell number and viability. In addition, we observed a decrease in both the transcript and protein levels of survivin followed by 1.3- to 1.7- and 1.1- to 4.7-fold increases in the Wt-p53 accumulation and caspase-3 activation levels respectively. Treatment with 100 and 150 μM/L DHA increased microRNA-16-1 expression levels by 1.3- to 1.7-fold and enhanced the microRNA-16-1/survivin mRNA, p53/survivin, and caspase-3/survivin protein ratios by 1.7- to 1.8-, 1.3- to 2.6-, and 1.3- to 2-fold increases respectively. A decrease in the number of live cells and an increase in the number of apoptotic cells were also observed with increasing DHA concentrations. Conclusion Wt-p53, survivin, and microRNA-16-1 appear to be promising molecular targets of DHA. Thus, DHA might represent an attractive anti-tumor agent directed against KRAS-mutant CCSCs.
Collapse
Affiliation(s)
- Mohammad Reza Sam
- 1Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran
| | - Mohammad Tavakoli-Mehr
- 1Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran
| | - Reza Safaralizadeh
- 2Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| |
Collapse
|
11
|
de Oliveira MR, Nabavi SF, Nabavi SM, Jardim FR. Omega-3 polyunsaturated fatty acids and mitochondria, back to the future. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Rani I, Sharma B, Kumar S, Kaur S, Agnihotri N. Apoptosis mediated chemosensitization of tumor cells to 5-fluorouracil on supplementation of fish oil in experimental colon carcinoma. Tumour Biol 2017; 39:1010428317695019. [PMID: 28349837 DOI: 10.1177/1010428317695019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
5-Fluorouracil has been considered as a cornerstone therapy for colorectal cancer; however, it suffers from low therapeutic response rate and severe side effects. Therefore, there is an urgent need to increase the clinical efficacy of 5-fluorouracil. Recently, fish oil rich in n-3 polyunsaturated fatty acids has been reported to chemosensitize tumor cells to anti-cancer drugs. This study is designed to understand the underlying mechanisms of synergistic effect of fish oil and 5-fluorouracil by evaluation of tumor cell-associated markers such as apoptosis and DNA damage. The colon cancer was developed by administration of N,N-dimethylhydrazine dihydrochloride and dextran sulfate sodium salt. Further these animals were treated with 5-fluorouracil, fish oil, or a combination of both. In carcinogen-treated animals, a decrease in DNA damage and apoptotic index was observed. There was also a decrease in the expression of Fas, FasL, caspase 8, and Bax, and an increase in Bcl-2. In contrast, administration of 5-fluorouracil and fish oil as an adjuvant increased both DNA damage and apoptotic index by activation of both extrinsic and intrinsic apoptotic pathways as compared to the other groups. The increased pro-apoptotic effect by synergism of 5-fluorouracil and fish oil may be attributed to the incorporation of n-3 polyunsaturated fatty acids in membrane, which alters membrane fluidity in cancer cells. In conclusion, this study highlights that the induction of apoptotic pathway by fish oil may increase the susceptibility of tumors to chemotherapeutic regimens.
Collapse
Affiliation(s)
- Isha Rani
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Bhoomika Sharma
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Sandeep Kumar
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Satinder Kaur
- Department of Biochemistry, Panjab University, Chandigarh, India
| | | |
Collapse
|
13
|
Sharma G, Rani I, Bhatnagar A, Agnihotri N. Apoptosis-Mediated Chemoprevention by Different Ratios of Fish Oil in Experimental Colon Carcinogenesis. Cancer Invest 2016; 34:220-30. [PMID: 27191482 DOI: 10.1080/07357907.2016.1183023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Apoptosis plays an important role in prevention of colon cancer. In the present study, different ratios of fish oil and corn oil increased Fas expression in both phases and a decrease in FasL expression only in post initiation phase. Treatment with fish oil activated the intrinsic apoptotic pathway by increasing Bax expression and Cyt c release and decreasing Bcl-2 levels in both phases. This suggests that intrinsic pathway is upregulated by fish oil; however, Fas-FasL activity may be involved in inhibition of reversal of immune surveillance in tumor cells.
Collapse
Affiliation(s)
- Gayatri Sharma
- a Department of Biochemistry , Panjab University , Chandigarh , India
| | - Isha Rani
- a Department of Biochemistry , Panjab University , Chandigarh , India
| | - Archana Bhatnagar
- a Department of Biochemistry , Panjab University , Chandigarh , India
| | - Navneet Agnihotri
- a Department of Biochemistry , Panjab University , Chandigarh , India
| |
Collapse
|
14
|
Sam MR, Ahangar P, Nejati V, Habibian R. Treatment of LS174T colorectal cancer stem-like cells with n-3 PUFAs induces growth suppression through inhibition of survivin expression and induction of caspase-3 activation. Cell Oncol (Dordr) 2015; 39:69-77. [PMID: 26671842 DOI: 10.1007/s13402-015-0254-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2015] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Colorectal cancer stem cells (CCSCs) are thought to contribute to tumor initiation, progression, metastasis, chemo-resistance and therapy failure. Therefore, assessment of the effectiveness of agents with anti-proliferative activities against CCSCs is warranted. Several studies have shown that different tumorigenic steps, ranging from initiation to metastasis, can be affected by n-3 polyunsaturated fatty acids (PUFAs). Here, we evaluated the effects of the PUFA components docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), alone or in combination, on LS174T cells that serve as a model for colorectal cancer initiating cells with stem cell-like properties. METHODS LS174T cells were treated with 50, 100 and 150 μM DHA and EPA, or equal mixtures of DHA/EPA (i.e., 25/25, 50/50 and 75/75 μM), after which cell number, viability, growth inhibition, survivin expression, caspase-3 activation and apoptotic rate were evaluated. RESULTS We found that treatment of LS174T cells with increasing PUFA concentrations significantly increased growth inhibition in a dose- and time-dependent manner. After a 72 h treatment with 150 μM DHA and EPA, or their combination (75/75 μM), growth rates were inhibited by 80.3 ± 5.5%, 79.3 ± 5% and 71.1 ± 1%, respectively, compared to untreated cells. We also found that treatment for 48 h with 100 μM DHA and EPA, or their combination (50/50 μM), resulted in 2.9-, 3- and 2.6-fold increases in caspase-3 activation, as well as 54, 62.4 and 100% decreases in survivin mRNA expression levels, respectively, compared to untreated cells. Low survivin mRNA levels combined with high caspase-3 activity levels were found to correlate with a higher growth inhibition in PUFA-treated cells. DHA appears to be a more potent growth inhibitor than EPA and the DHA/EPA combination. An increase in the number of apoptotic cells (early + late), ranging from 12.9 to 44.7%, was observed with increasing DHA doses. CONCLUSION From our data we conclude that PUFAs induce growth inhibition via targeting survivin expression in LS174T cells, which serve as a model for CCSCs.
Collapse
Affiliation(s)
- Mohammad Reza Sam
- Department of Histology and Embryology, Faculty of Science, Urmia University, Urmia, Iran. .,Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran, P.O. Box: 165. .,Royan Stem Cell Technology Company, West Azerbaijan Cord Blood Bank, Urmia, Iran.
| | - Parinaz Ahangar
- Department of Histology and Embryology, Faculty of Science, Urmia University, Urmia, Iran.,Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran, P.O. Box: 165
| | - Vahid Nejati
- Department of Histology and Embryology, Faculty of Science, Urmia University, Urmia, Iran
| | - Reza Habibian
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
15
|
Skender B, Hofmanová J, Slavík J, Jelínková I, Machala M, Moyer MP, Kozubík A, Hyršlová Vaculová A. DHA-mediated enhancement of TRAIL-induced apoptosis in colon cancer cells is associated with engagement of mitochondria and specific alterations in sphingolipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1308-17. [PMID: 24953781 DOI: 10.1016/j.bbalip.2014.06.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/01/2014] [Accepted: 06/09/2014] [Indexed: 12/25/2022]
Abstract
Docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid present in fish oil, may exert cytotoxic and/or cytostatic effects on colon cancer cells when applied individually or in combination with some anticancer drugs. Here we demonstrate a selective ability of subtoxic doses of DHA to enhance antiproliferative and apoptotic effects of clinically useful cytokine TRAIL (tumor necrosis factor-related apoptosis inducing ligand) in cancer but not normal human colon cells. DHA-mediated stimulation of TRAIL-induced apoptosis was associated with extensive engagement of mitochondrial pathway (Bax/Bak activation, drop of mitochondrial membrane potential, cytochrome c release), activation of endoplasmic reticulum stress response (CHOP upregulation, changes in PERK level), decrease of cellular inhibitor of apoptosis protein (XIAP, cIAP1) levels and significant changes in sphingolipid metabolism (intracellular levels of ceramides, hexosyl ceramides, sphingomyelines, sphingosines; HPLC/MS/MS). Interestingly, we found significant differences in representation of various classes of ceramides (especially C16:0, C24:1) between the cancer and normal colon cells treated with DHA and TRAIL, and suggested their potential role in the regulation of the cell response to the drug combination. These study outcomes highlight the potential of DHA for a new combination therapy with TRAIL for selective elimination of colon cancer cells via simultaneous targeting of multiple steps in apoptotic pathways.
Collapse
Affiliation(s)
- Belma Skender
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic; Department of Animal Physiology and Immunology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jiřina Hofmanová
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic; Department of Animal Physiology and Immunology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Josef Slavík
- Department of Toxicology, Pharmacology and Immunotherapy, Veterinary Research Institute, Brno, Czech Republic
| | - Iva Jelínková
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic; Department of Animal Physiology and Immunology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Miroslav Machala
- Department of Toxicology, Pharmacology and Immunotherapy, Veterinary Research Institute, Brno, Czech Republic
| | | | - Alois Kozubík
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic; Department of Animal Physiology and Immunology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Alena Hyršlová Vaculová
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic.
| |
Collapse
|
16
|
Hofmanová J, Straková N, Vaculová AH, Tylichová Z, Šafaříková B, Skender B, Kozubík A. Interaction of dietary fatty acids with tumour necrosis factor family cytokines during colon inflammation and cancer. Mediators Inflamm 2014; 2014:848632. [PMID: 24876678 PMCID: PMC4021685 DOI: 10.1155/2014/848632] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/29/2014] [Indexed: 12/14/2022] Open
Abstract
Intestinal homeostasis is precisely regulated by a number of endogenous regulatory molecules but significantly influenced by dietary compounds. Malfunction of this system may result in chronic inflammation and cancer. Dietary essential n-3 polyunsaturated fatty acids (PUFAs) and short-chain fatty acid butyrate produced from fibre display anti-inflammatory and anticancer activities. Both compounds were shown to modulate the production and activities of TNF family cytokines. Cytokines from the TNF family (TNF- α, TRAIL, and FasL) have potent inflammatory activities and can also regulate apoptosis, which plays an important role in cancer development. The results of our own research showed enhancement of apoptosis in colon cancer cells by a combination of either docosahexaenoic acid (DHA) or butyrate with TNF family cytokines, especially by promotion of the mitochondrial apoptotic pathway and modulation of NF κ B activity. This review is focused mainly on the interaction of dietary PUFAs and butyrate with these cytokines during colon inflammation and cancer development. We summarised recent knowledge about the cellular and molecular mechanisms involved in such effects and outcomes for intestinal cell behaviour and pathologies. Finally, the possible application for the prevention and therapy of colon inflammation and cancer is also outlined.
Collapse
Affiliation(s)
- Jiřina Hofmanová
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | - Nicol Straková
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | - Alena Hyršlová Vaculová
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | - Zuzana Tylichová
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
- Institute of Experimental Biology, Department of Animal Physiology and Immunology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Barbora Šafaříková
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
- Institute of Experimental Biology, Department of Animal Physiology and Immunology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Belma Skender
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | - Alois Kozubík
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
- Institute of Experimental Biology, Department of Animal Physiology and Immunology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| |
Collapse
|
17
|
Gelsomino G, Corsetto PA, Campia I, Montorfano G, Kopecka J, Castella B, Gazzano E, Ghigo D, Rizzo AM, Riganti C. Omega 3 fatty acids chemosensitize multidrug resistant colon cancer cells by down-regulating cholesterol synthesis and altering detergent resistant membranes composition. Mol Cancer 2013; 12:137. [PMID: 24225025 PMCID: PMC4225767 DOI: 10.1186/1476-4598-12-137] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/11/2013] [Indexed: 01/17/2023] Open
Abstract
Background The activity of P-glycoprotein (Pgp) and multidrug resistance related protein 1 (MRP1), two membrane transporters involved in multidrug resistance of colon cancer, is increased by high amounts of cholesterol in plasma membrane and detergent resistant membranes (DRMs). It has never been investigated whether omega 3 polyunsatured fatty acids (PUFAs), which modulate cholesterol homeostasis in dyslipidemic syndromes and have chemopreventive effects in colon cancer, may affect the response to chemotherapy in multidrug resistant (MDR) tumors. Methods We studied the effect of omega 3 PUFAs docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in human chemosensitive colon cancer HT29 cells and in their MDR counterpart, HT29-dx cells. Results MDR cells, which overexpressed Pgp and MRP1, had a dysregulated cholesterol metabolism, due to the lower expression of ubiquitin E3 ligase Trc8: this produced lower ubiquitination rate of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCoAR), higher cholesterol synthesis, higher cholesterol content in MDR cells. We found that DHA and EPA re-activated Trc8 E3 ligase in MDR cells, restored the ubiquitination rate of HMGCoAR to levels comparable with chemosensitive cells, reduced the cholesterol synthesis and incorporation in DRMs. Omega 3 PUFAs were incorporated in whole lipids as well as in DRMs of MDR cells, and altered the lipid composition of these compartments. They reduced the amount of Pgp and MRP1 contained in DRMs, decreased the transporters activity, restored the antitumor effects of different chemotherapeutic drugs, restored a proper tumor-immune system recognition in response to chemotherapy in MDR cells. Conclusions Our work describes a new biochemical effect of omega 3 PUFAs, which can be useful to overcome chemoresistance in MDR colon cancer cells.
Collapse
Affiliation(s)
- Giada Gelsomino
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Skender B, Vaculova AH, Hofmanova J. Docosahexaenoic fatty acid (DHA) in the regulation of colon cell growth and cell death: a review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2012; 156:186-99. [PMID: 23069883 DOI: 10.5507/bp.2012.093] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/24/2012] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Experimental, epidemiological and clinical data substantiate the beneficial role of n-3 polyunsaturated fatty acids (PUFAs) in preventing inflammation and cancer of the colon. This review covers the unsaturated docosahexaenoic fatty acid (DHA), describes some of its important cellular and molecular mechanisms, its interaction with another dietary lipid, butyrate and with endogenous apoptotic regulators of the tumour necrosis factor (TNF) family. We also discuss the clinical impact of this knowledge and the use of these lipids in colon cancer prevention and treatment. RESULTS From the literature, DHA has been shown to suppress the growth, induce apoptosis in colon cancer cells in vitro and decrease the incidence and growth of experimental tumours in vivo. Based on these data and our own experimental results, we describe and discuss the possible mechanisms of DHA anticancer effects at various levels of cell organization. We show that DHA can sensitize colon cancer cells to other chemotherapeutic/chemopreventive agents and affect the action of physiological apoptotic regulators of the TNF family. CONCLUSION Use of n-3 PUFAs could be a relatively non-toxic form of supportive therapy for improving colon cancer treatment and slowing down or preventing its recurrence. However, it is necessary to use them with caution, based on solid scientific evidence of their mechanisms of action from the molecular to the cellular and organism levels.
Collapse
Affiliation(s)
- Belma Skender
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i. Brno, Czech Republic
| | | | | |
Collapse
|
19
|
Hofmanová J, Ciganek M, Slavík J, Kozubík A, Stixová L, Vaculová A, Dušek L, Machala M. Lipid alterations in human colon epithelial cells induced to differentiation and/or apoptosis by butyrate and polyunsaturated fatty acids. J Nutr Biochem 2012; 23:539-48. [DOI: 10.1016/j.jnutbio.2011.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 11/24/2010] [Accepted: 02/21/2011] [Indexed: 01/15/2023]
|
20
|
Wang X, Lin H, Gu Y. Multiple roles of dihomo-γ-linolenic acid against proliferation diseases. Lipids Health Dis 2012; 11:25. [PMID: 22333072 PMCID: PMC3295719 DOI: 10.1186/1476-511x-11-25] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 02/14/2012] [Indexed: 11/10/2022] Open
Abstract
Considerable arguments remain regarding the diverse biological activities of polyunsaturated fatty acids (PUFA). One of the most interesting but controversial dietary approaches focused on the diverse function of dihomo-dietary γ-linolenic acid (DGLA) in anti-inflammation and anti-proliferation diseases, especially for cancers. This strategy is based on the ability of DGLA to interfere in cellular lipid metabolism and eicosanoid (cyclooxygenase and lipoxygenase) biosynthesis. Subsequently, DGLA can be further converted by inflammatory cells to 15-(S)-hydroxy-8,11,13-eicosatrienoic acid and prostaglandin E1 (PGE1). This is noteworthy because these compounds possess both anti-inflammatory and anti-proliferative properties. PGE1 could also induce growth inhibition and differentiation of cancer cells. Although the mechanism of DGLA has not yet been elucidated, it is significant to anticipate the antitumor potential benefits from DGLA.
Collapse
Affiliation(s)
- Xiaoping Wang
- Laboratory of Molecular Pathology, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi, China.
| | | | | |
Collapse
|
21
|
Novel Anticancer Platinum(IV) Complexes with Adamantylamine: Their Efficiency and Innovative Chemotherapy Strategies Modifying Lipid Metabolism. Met Based Drugs 2011; 2008:417897. [PMID: 18414587 PMCID: PMC2291354 DOI: 10.1155/2008/417897] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 10/08/2007] [Accepted: 10/18/2007] [Indexed: 11/18/2022] Open
Abstract
The impressive impact of cisplatin on cancer on one side and severe side effects, as well as the development of drug resistance during treatment on the other side, were the factors motivating scientists to design and synthesize new more potent analogues lacking disadvantages of cisplatin. Platinum(IV) complexes represent one of the perspective groups of platinum-based drugs. In this review, we summarize recent findings on both in vitro and in vivo effects of platinum(IV) complexes with adamantylamine. Based on a literary overview of the mechanisms of activity of platinum-based cytostatics, we discuss opportunities for modulating the effects of novel platinum complexes through interactions with apoptotic signaling pathways and with cellular lipids, including modulations of the mitochondrial cell death pathway, oxidative stress, signaling of death ligands, lipid metabolism/signaling, or intercellular communication. These approaches might significantly enhance the efficacy of both novel and established platinum-based cytostatics.
Collapse
|
22
|
Ji C, Ren F, Xu M. Caspase-8 and p38MAPK in DATS-induced apoptosis of human CNE2 cells. Braz J Med Biol Res 2010; 43:821-7. [PMID: 20802973 DOI: 10.1590/s0100-879x2010007500084] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 08/05/2010] [Indexed: 11/21/2022] Open
Abstract
Nasopharyngeal carcinoma is a common malignancy in Southern China of uncertain etiologic origin. Diallyl trisulfide (DATS), one of the major components of garlic (Allium sativum), is highly bactericidal and fungicidal. In this study, we investigated the function of p38 mitogen-activated protein kinase (MAPK) and caspase-8 in DATS-induced apoptosis of human CNE2 cells using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide], flow cytometry assay, and Western blotting. After CNE2 cells were treated with DATS (50, 100, or 150 μM) for 24 h, cell viability rates were 75.9, 63.4 and 39.6%, and apoptosis rates were 24.5, 36.9, and 62.4%, respectively. The data showed that DATS induced CNE2 cell death in a dose-dependent manner. After human CNE2 cells were treated with 100 μM DATS and inhibitors (10 μM SB203580 and Z-LETD-FMK for p38MAPK and caspase-8, respectively), changes in cell viability and apoptosis and in p38MAPK and caspase-8 activity were detected. Cell viability rates were 66.5 and 68.1% and decreased 9.9 and 11.5% compared with inhibitor treatment alone. Apoptosis rates were 31.53 and 29.98% and increased 9.1 and 10% compared with inhibitor treatment alone. The results indicated that DATS activates p38MAPK and caspase-8, but both inhibitors have an effect on P38MAPK and caspase-8 activity. In conclusion, our data indicate that p38MAPK and caspase-8 are involved in the process of DATS-induced apoptosis in human CNE2 cells and interact with each other.
Collapse
Affiliation(s)
- C Ji
- Central South University, Changsha, Hunan, China
| | | | | |
Collapse
|
23
|
Ji C, Ren F, Ma H, Xu M. The roles of p38MAPK and caspase-3 in DADS-induced apoptosis in human HepG2 cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:50. [PMID: 20478073 PMCID: PMC2890544 DOI: 10.1186/1756-9966-29-50] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Accepted: 05/18/2010] [Indexed: 11/28/2022]
Abstract
Objectives To explore the function of p38MAPK and caspase-3 in DADS-induced apoptosis in human HepG2 cells, and discuss the signal transduetion mechanism of HepG2 cells in the apoptosis process induced by DADS by using the inhibitors of p38MAPK (SB203580) and caspase-3 (Z-DEVD-FMK). Methods After the human HepG2 cells had been treated with the DADS and inhibitors for 24 h, cell viability was determined by the MTT method, apoptosis was evaluated by flow cytometry (FCM) and the expressions of p38MAPK and caspase-3 were measured by western-blot. Results Our results indicated that DADS activities the p38MAPK and caspase-3, but the inhibitors, SB203580 and Z-DEVD-FMK (for p38MAPKand for caspase-3, respectively), both have the effect of inhibitory activity on P38MAPK and caspase-3. Furthermore, a combination treatment with both DADS and inhibitor (SB203580 or Z-DEVD-FMK) decreases the inhibitory and apoptotic activity of HepG2 cells increased compared with DADS-treated. Conclusions Our data indicate that p38MAPK and caspase-3 are involved in the process of DADS-induced apoptosis in human HepG2 cells and interact with each other.
Collapse
Affiliation(s)
- Chunxiao Ji
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | | | | | | |
Collapse
|
24
|
Decreased polyunsaturated Fatty Acid content contributes to increased survival in human colon cancer. JOURNAL OF ONCOLOGY 2009; 2009:867915. [PMID: 19841681 PMCID: PMC2762309 DOI: 10.1155/2009/867915] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 07/24/2009] [Accepted: 07/27/2009] [Indexed: 12/14/2022]
Abstract
Among diet
components, some fatty acids are known to affect
several stages of colon carcinogenesis, whereas
others are probably helpful in preventing
tumors. In light of this, our aim was to
determine the composition of fatty acids and the
possible correlation with apoptosis in human
colon carcinoma specimens at different
Duke's stages and to evaluate the effect of
enriching human colon cancer cell line with the
possible reduced fatty acid(s). Specimens of
carcinoma were compared with the corresponding
non-neoplastic mucosa: a significant decrease of
arachidonic acid, PPARα, Bad, and Bax and a significant increase of COX-2,
Bcl-2, and pBad were found. The importance of arachidonic acid in
apoptosis was demonstrated by enriching a Caco-2 cell line with
this fatty acid. It induced apoptosis in a dose- and
time-dependent manner via induction of PPARα that, in turn, decreased COX-2. In conclusion, the
reduced content of arachidonic acid is likely related to
carcinogenic process decreasing the susceptibility of cancer cells
to apoptosis.
Collapse
|
25
|
Habbel P, Weylandt KH, Lichopoj K, Nowak J, Purschke M, Wang JD, He CW, Baumgart DC, Kang JX. Docosahexaenoic acid suppresses arachidonic acid-induced proliferation of LS-174T human colon carcinoma cells. World J Gastroenterol 2009; 15:1079-84. [PMID: 19266600 PMCID: PMC2655186 DOI: 10.3748/wjg.15.1079] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the impact of arachidonic acid (AA) and docosahexaenoic acid (DHA) and their combination on colon cancer cell growth.
METHODS: The LS-174T colon cancer cell line was used to study the role of the prostaglandin precursor AA and the omega-3 polyunsaturated fatty acid DHA on cell growth. Cell viability was assessed in XTT assays. For analysis of cell cycle and cell death, flow cytometry and DAPI staining were applied. Expression of cyclooxygenase-2 (COX-2), p21 and bcl-2 in cells incubated with AA or DHA was examined by real-time RT-PCR. Prostaglandin E2 (PGE2) generation in the presence of AA and DHA was measured using a PGE2-ELISA.
RESULTS: AA increased cell growth, whereas DHA reduced viability of LS 174T cells in a time- and dose-dependent manner. Furthermore, DHA down- regulated mRNA of bcl-2 and up-regulated p21. Interestingly, DHA was able to suppress AA-induced cell proliferation and significantly lowered AA-derived PGE2 formation. DHA also down-regulated COX-2 expression. In addition to the effect on PGE2 formation, DHA directly reduced PGE2-induced cell proliferation in a dose-dependent manner.
CONCLUSION: These results suggest that DHA can inhibit the pro-proliferative effect of abundant AA or PGE2.
Collapse
|
26
|
Patten GS, Augustin MA, Sanguansri L, Head RJ, Abeywardena MY. Site specific delivery of microencapsulated fish oil to the gastrointestinal tract of the rat. Dig Dis Sci 2009; 54:511-21. [PMID: 18618251 DOI: 10.1007/s10620-008-0379-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 06/03/2008] [Indexed: 12/09/2022]
Abstract
The aim of this study was to design food grade matrices to deliver microencapsulated fish oil to the large bowel of the rat where the potential exists to retard inflammation and cancer development. Digestion in simulated gastric fluid and intestinal fluid demonstrated that only 4-6% of oil was released from the following dried emulsion formulations: 50% fish oil encapsulated in heated casein-glucose-dried glucose syrup (1:1:1) (Cas-Glu-DGS-50); 25% fish oil in casein-modified resistant starch (Hylon VII) (1:1) (Cas-Hylon-25); or 25% fish oil in Cas-Glu-Hylon (1:1:1) (Cas-Glu-Hylon-25). A short-term gavage study (0-12 h) with fish oil and Cas-Glu-DGS-50 demonstrated the appearance of fish oil long chain (LC) n-3 polyunsaturated fatty acids (PUFA) into the plasma indicating specific small intestinal absorption with little LC n-3 PUFA reaching the large bowel. In a 2-week-long term, daily gavage study, the bioavailability of fish oil and fish oil in Cas-Glu-DGS-50 or Cas-Hylon-25 demonstrated that fish oil and Cas-Glu-DGS-50 LC n-3 PUFA were incorporated into the tissue of the small intestine and colon, whereas Cas-Hylon-25 was resistant to degradation in the small intestine. The use of modified Hylon VII for targeted colonic delivery was confirmed in the final short-term gavage study (0-14 h) using Cas-Glu-Hylon-25 with [(14)C]-trilinolenin as a marker incorporated into the microcapsules, where up to 60% of the labeled oil reached the large bowel. Depending on the microencapsulating matrix employed, fish oil can be delivered selectively to the small intestine or to a high degree to the large bowel.
Collapse
Affiliation(s)
- Glen S Patten
- CSIRO Human Nutrition, P.O. Box 10041, Adelaide BC, SA, 5000, Australia.
| | | | | | | | | |
Collapse
|
27
|
Schwartz B, Algamas-Dimantov A, Hertz R, Nataf J, Kerman A, Peri I, Bar-Tana J. Inhibition of colorectal cancer by targeting hepatocyte nuclear factor-4alpha. Int J Cancer 2009; 124:1081-9. [PMID: 19048623 DOI: 10.1002/ijc.24041] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hepatocyte nuclear factor-4alpha (HNF-4alpha) serves as target for fatty acid nutrients and xenobiotic amphipathic carboxylates and may account for the differential effects of dietary fatty acids on colorectal cancer (CRC). The putative role played by HNF-4alpha in CRC has been verified here by evaluating the effect of HNF-4alpha antagonists and HNF-4alpha siRNA on CRC growth and proliferation in cultured CRC cells and xenotransplanted nude mice in vivo. HNF-4alpha ligand antagonists of the MEDICA series, namely, beta,beta'-tetramethylhexadecanedioic acid (M16betabeta) and gamma,gamma'-tetramethyloctadocanedioic acid (M18gammagamma) as well as HNF-4alpha siRNA are shown here to inhibit growth and proliferation of HT29 and Caco2 CRC cells, accompanied by increased subG1 cell population, downregulated PCNA, activation of caspase-3, upregulation of Bak and cytoplasmic cytochrome-c, and downregulation of Bcl-2 resulting in apoptotic death. Inhibition of CRC growth with concomitant apoptosis was further confirmed in nude mice xenotransplanted with HT29 CRC cells. CRC suppression by HNF-4alpha ligand antagonists and by HNF-4alpha siRNA was accounted for by suppression of HNF-4alpha transcription and protein expression. alpha,alpha'-tetrachlorotetradecanedioic acid (Cl-DICA), a MEDICA analogue that fails to suppress HNF-4alpha, was ineffective in suppressing growth of cultured or xenotransplanted HT29 CRC cells. Hence, increased transcriptional activity of HNF-4alpha converging onto genes coding for antiapoptotic oncogenes and cytokines may promote CRC development. Suppression of HNF-4alpha activity by natural or xenobiotic HNF-4alpha ligand antagonists or by HNF-4alpha siRNA may offer a treatment mode for CRC.
Collapse
Affiliation(s)
- Betty Schwartz
- The Institute of Biochemistry, Food Science and Nutrition, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | | | | | | | | | | | | |
Collapse
|
28
|
Hofmanová J, Vaculová A, Koubková Z, Hýžd'alová M, Kozubík A. Human fetal colon cells and colon cancer cells respond differently to butyrate and PUFAs. Mol Nutr Food Res 2009; 53 Suppl 1:S102-13. [DOI: 10.1002/mnfr.200800175] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
29
|
Serini S, Piccioni E, Merendino N, Calviello G. Dietary polyunsaturated fatty acids as inducers of apoptosis: implications for cancer. Apoptosis 2009; 14:135-52. [DOI: 10.1007/s10495-008-0298-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
30
|
Dupertuis YM, Meguid MM, Pichard C. Colon cancer therapy: new perspectives of nutritional manipulations using polyunsaturated fatty acids. Curr Opin Clin Nutr Metab Care 2007; 10:427-32. [PMID: 17563460 DOI: 10.1097/mco.0b013e3281e2c9d4] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Recent advances in the development of new therapeutic strategies combining conventional adjuvant radio/chemotherapy with nutritional manipulations with n-3 polyunsaturated fatty acids (PUFAs) are presented. RECENT FINDINGS Studies in cell culture and tumour-bearing animals have reported the ability of long-chain n-3 PUFAs to enhance the cytotoxicity of several anticancer drugs. In colon cancer, combination of n-3 PUFAs with 5-fluorouracil resulted in an additive growth inhibitory effect on different cell lines. Moreover, recent findings suggest that eicosapentaenoic or docosahexaenoic acid may be used to enhance tumour radiosensitivity while reducing mucosal/epidermal radiotoxicity similar to radioprotective agents. The underlying mechanism is probably mediated through lipid peroxidation because the antitumour effect of n-3 PUFAs is shared with the n-6 PUFA, arachidonic acid, and abolished by vitamin E. In vivo, the use of n-3 PUFAs may provide an additional advantage compared with n-6 PUFAs. Downregulation of eicosanoid synthesis from cyclooxygenase II may reduce angiogenesis, inflammation and metastasis induction. SUMMARY New insights suggest that n-3 PUFAs may play an important role not only in cancer prevention but also in cancer management. They may act synergistically with radio/chemotherapy to kill tumour cells by increasing oxidative stress while reducing angiogenesis, inflammation and metastasis induction.
Collapse
|
31
|
Mund RC, Pizato N, Bonatto S, Nunes EA, Vicenzi T, Tanhoffer R, de Oliveira HHP, Curi R, Calder PC, Fernandes LC. Decreased tumor growth in Walker 256 tumor-bearing rats chronically supplemented with fish oil involves COX-2 and PGE2 reduction associated with apoptosis and increased peroxidation. Prostaglandins Leukot Essent Fatty Acids 2007; 76:113-20. [PMID: 17234396 DOI: 10.1016/j.plefa.2006.11.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Accepted: 11/29/2006] [Indexed: 11/26/2022]
Abstract
Many studies have shown that addition of fish oil (FO) to the diet reduces tumor growth but the mechanism(s) of action involved is (are) still unknown. In this study, we examine some possible mechanisms in tumor-bearing rats chronically supplemented with FO. Male Wistar rats (21 days old) were fed with regular chow and supplemented with coconut or FO (1g/kg body weight) until they reached 70 days of age. Then, they were inoculated with a suspension of Walker 256 ascitic tumor cells (2 x 10(7)ml) and after 14 days they were killed. Supplementation with FO resulted in significantly lower tumor weight, greater tumor cell apoptosis, lower ex vivo tumor cell proliferation, a higher tumor content of lipid peroxides, lower expression of cyclooxygenase-2 (COX-2) in tumor tissue and a lower plasma concentration of prostaglandin E2 than observed in rats fed regular chow or supplemented with coconut oil. These results suggest that reduction of tumor growth by FO involves an increase in apoptosis and of lipid peroxidation in tumor tissue, with a reduction in tumor cell proliferation ex vivo, COX-2 expression and PGE2 production. Thus, FO may act simultaneously through multiple effects to reduce tumor growth. Whether these effects are connected through a single underlying mechanism remains to be seen.
Collapse
Affiliation(s)
- Rogéria C Mund
- Department of Physiology, University Federal of Paraná, Biological Science Building, 81530-990, Curitiba, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Gout S, Morin C, Houle F, Huot J. Death receptor-3, a new E-Selectin counter-receptor that confers migration and survival advantages to colon carcinoma cells by triggering p38 and ERK MAPK activation. Cancer Res 2006; 66:9117-24. [PMID: 16982754 DOI: 10.1158/0008-5472.can-05-4605] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
E-selectin-mediated adhesion of colon cancer cells to endothelial cells is a key event in metastasis. However, the signaling mechanisms that confer metastatic advantages to cancer cells adhering to E-selectin are ill defined. By using affinity column chromatography and pull-down assays on purified membrane extracts of HT29 and LoVo cells coupled to mass spectrometry analysis, we obtained the first evidence indicating that E-selectin binds to death receptor-3 (DR3) expressed by the cancer cells. Thereafter, we accumulated several results, suggesting that DR3 is an E-selectin receptor on colon cancer cells and that its activation by E-selectin triggers the activation of p38 and extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) and confers migration and survival advantages. First, by Western blotting, we found that the E-selectin-binding protein, identified as DR3, is recognized by two anti-DR3 antibodies. Second, the neutralization of DR3 with an antibody and its knockdown by small interfering RNA decrease the adhesion of colon cancer cells to E-selectin and E-selectin-expressing human umbilical vein endothelial cells. Third, inhibiting DR3 and knocking down its expression impair transendothelial migration of HT29 cells and block the activation of p38 and ERK by E-selectin. Fourth, high molecular weight isoforms of DR3 are expressed in samples of primary human colon carcinoma but not in samples from normal colon tissue. Intriguingly, DR3 is a death receptor but its activation by E-selectin does not induce apoptosis in colon cancer cells, except when ERK is inhibited. Our findings identify novel signaling and functional roles of DR3 activated in response to E-selectin and highlight the potential link between DR3 and metastasis.
Collapse
Affiliation(s)
- Stéphanie Gout
- Le Centre de Recherche en Cancérologie de l'Université Laval, Québec PQ, Canada
| | | | | | | |
Collapse
|
33
|
Kong X, Ge H, Hou L, Shi L, Liu Z. Induction of apoptosis in K562/ADM cells by gamma-linolenic acid involves lipid peroxidation and activation of caspase-3. Chem Biol Interact 2006; 162:140-8. [PMID: 16857180 DOI: 10.1016/j.cbi.2006.05.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 05/24/2006] [Accepted: 05/30/2006] [Indexed: 11/22/2022]
Abstract
Numerous studies have revealed that gamma-linolenic acid (GLA) possesses effective tumoricidal properties while not inducing damage to normal cells or creating harmful systemic side effects. It can exert anti-tumor efficacy against a variety of cancers including leukemia. However, little is known about the effects of GLA on leukemia resistant to chemotherapy, emerging as a serious clinical problem. The present study tested GLA-induced apoptosis in K562/ADM multidrug-resistant (MDR) leukemic cells and investigated its possible mechanisms. Using cell viability, fluorescent staining of nuclei, flow cytometric Annexin V/PI double staining and lactate dehydrogenase (LDH) release, we found that GLA could inhibit cell growth and induce apoptosis and secondary necrosis. The results showed that incubation with GLA concentrations of 10-60 microg/ml caused a dose- and time-dependent decrease of K562/ADM cell viability, and the IC50 value was 50.5 microg/ml at 24 h and 31.5 microg/ml at 48 h. Flow cytometry using Annexin V/PI double staining assessed apoptosis, necrosis and viability. Typical apoptotic nuclei were shown by staining of K562/ADM cells with DNA-binding fluorochrome Hoechst 33342, characterized by chromatin condensation and nuclear fragmentation. On the other hand, after treated K562/ADM cells with 20 microg/ml GLA for 48 h and with 40 microg/ml GLA for 12 h, the LDH release significantly increased, indicated losses of plasma membrane integrity and presence of necrosis. Further, the inhibition of GLA-induced apoptosis by a pan-caspase inhibitor (z-VAD-fmk) suggested the involvement of caspases. The increase of caspase-3 activity with GLA concentration confirmed its role in the process. The results also showed that the malondialdehyde (MDA) content was also significantly elevated, and antioxidant BHT could block GLA cytotoxity, indicating the cytotoxity induced by GLA may be due to lipid peroxidation.
Collapse
Affiliation(s)
- Xiuqin Kong
- Department of Biology, College of Life Science, Nanjing University, Nanjing, Jiangsu, China
| | | | | | | | | |
Collapse
|
34
|
Yokoyama K, Nakajima N, Ito Y, Iwasaki A, Arakawa Y. Histoimmunological Evaluation for the Efficacy of Entero Nutrient Containing n-3 Fatty Acids in TNBS Rat Colitis Model. J Clin Biochem Nutr 2006. [DOI: 10.3164/jcbn.39.88] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
35
|
Vávrová J, Řezáčová M, Osterreicher J. Inhibitors of histone-deacetylase. J Appl Biomed 2005. [DOI: 10.32725/jab.2005.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
36
|
Moyad MA. An introduction to dietary/supplemental omega-3 fatty acids for general health and prevention: Part II. Urol Oncol 2005; 23:36-48. [PMID: 15885582 DOI: 10.1016/j.urolonc.2005.03.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The correction of a subtle nutritional deficiency that may reduce the risk of a future chronic disease is indeed a challenge. However, some specific examples in the past, such as the addition of folic acid to prevent neural tube defects and calcium and vitamin D to prevent osteoporosis, should provide some encouragement that some conditions can be prevented with the appropriate addition of a deficient compound. One of the most intriguing current and future impacts on public health may come from a higher intake of omega-3 fatty acids, such as alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). The omega-3 fatty acids continue to accumulate research that suggests that they may prevent a variety of diverse chronic diseases and potentially some acute clinical scenarios. In the first part of this article, the potential for these compounds to prevent certain cardiovascular conditions are discussed. In the second part, the potential for an impact in arthritis, numerous areas of cancer research, depression, maternal and child health, neurologic diseases, osteoporosis, and other medical disciplines are also briefly covered. The future appears bright for these agents, but specifically which conditions, who qualifies, testing, frequency, adequate sources, future trials, and numerous other questions need to be addressed and answered before the potential impact can catch up to the recent hype.
Collapse
Affiliation(s)
- Mark A Moyad
- Phil F. Jenkins Director of Complementary & Alternative Medicine, Department of Urology, University of Michigan Medical Center, Ann Arbor, 48109-0330, USA.
| |
Collapse
|