1
|
Zhen T, Sun T, Xiong B, Liu H, Wang L, Chen Y, Sun H. New insight into targeting the DNA damage response in the treatment of glioblastoma. Chin J Nat Med 2024; 22:869-886. [PMID: 39428180 DOI: 10.1016/s1875-5364(24)60694-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Indexed: 10/22/2024]
Abstract
Glioblastoma (GBM) is the most common invasive malignant tumor in human brain tumors, representing the most severe grade of gliomas. Despite existing therapeutic approaches, patient prognosis remains dismal, necessitating the exploration of novel strategies to enhance treatment efficacy and extend survival. Due to the restrictive nature of the blood-brain barrier (BBB), small-molecule inhibitors are prioritized in the treatment of central nervous system tumors. Among these, DNA damage response (DDR) inhibitors have garnered significant attention due to their potent therapeutic potential across various malignancies. This review provides a detailed analysis of DDR pathways as therapeutic targets in GBM, summarizes recent advancements, therapeutic strategies, and ongoing clinical trials, and offers perspectives on future directions in this rapidly evolving field. The goal is to present a comprehensive outlook on the potential of DDR inhibitors in improving GBM management and outcomes.
Collapse
Affiliation(s)
- Tengfei Zhen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Tianyu Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Baichen Xiong
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hui Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lei Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
2
|
Serio VB, Rosati D, Maffeo D, Rina A, Ghisalberti M, Bellan C, Spiga O, Mari F, Palmieri M, Frullanti E. The Personalized Inherited Signature Predisposing to Non-Small-Cell Lung Cancer in Non-Smokers. Cancers (Basel) 2024; 16:2887. [PMID: 39199663 PMCID: PMC11352340 DOI: 10.3390/cancers16162887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
Lung cancer (LC) continues to be an important public health problem, being the most common form of cancer and a major cause of cancer deaths worldwide. Despite the great bulk of research to identify genetic susceptibility genes by genome-wide association studies, only few loci associated to nicotine dependence have been consistently replicated. Our previously published study in few phenotypically discordant sib-pairs identified a combination of germline truncating mutations in known cancer susceptibility genes in never-smoker early-onset LC patients, which does not present in their healthy sib. These results firstly demonstrated the presence of an oligogenic combination of disrupted cancer-predisposing genes in non-smokers patients, giving experimental support to a model of a "private genetic epidemiology". Here, we used a combination of whole-exome and RNA sequencing coupled with a discordant sib's model in a novel cohort of pairs of never-smokers early-onset LC patients and in their healthy sibs used as controls. We selected rare germline variants predicted as deleterious by CADD and SVM bioinformatics tools and absent in the healthy sib. Overall, we identified an average of 200 variants per patient, about 10 of which in cancer-predisposing genes. In most of them, RNA sequencing data reinforced the pathogenic role of the identified variants showing: (i) downregulation in LC tissue (indicating a "second hit" in tumor suppressor genes); (ii) upregulation in cancer tissue (likely oncogene); and (iii) downregulation in both normal and cancer tissue (indicating transcript instability). The combination of the two techniques demonstrates that each patient has an average of six (with a range from four to eight) private mutations with a functional effect in tumor-predisposing genes. The presence of a unique combination of disrupting events in the affected subjects may explain the absence of the familial clustering of non-small-cell lung cancer. In conclusion, these findings indicate that each patient has his/her own "predisposing signature" to cancer development and suggest the use of personalized therapeutic strategies in lung cancer.
Collapse
Affiliation(s)
- Viola Bianca Serio
- Cancer Genomics & Systems Biology Laboratory, University of Siena, 53100 Siena, Italy; (V.B.S.); (D.R.); (D.M.); (M.P.)
- Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (F.M.)
| | - Diletta Rosati
- Cancer Genomics & Systems Biology Laboratory, University of Siena, 53100 Siena, Italy; (V.B.S.); (D.R.); (D.M.); (M.P.)
- Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (F.M.)
| | - Debora Maffeo
- Cancer Genomics & Systems Biology Laboratory, University of Siena, 53100 Siena, Italy; (V.B.S.); (D.R.); (D.M.); (M.P.)
- Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (F.M.)
| | - Angela Rina
- Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (F.M.)
| | - Marco Ghisalberti
- Thoracic Surgery Unit, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy;
| | - Cristiana Bellan
- Department of Medical Biotechnology, Section of Pathology, University of Siena, 53100 Siena, Italy;
| | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Francesca Mari
- Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (F.M.)
- UOC Laboratorio di Assistenza e Ricerca Traslazionale, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Maria Palmieri
- Cancer Genomics & Systems Biology Laboratory, University of Siena, 53100 Siena, Italy; (V.B.S.); (D.R.); (D.M.); (M.P.)
- Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (F.M.)
| | - Elisa Frullanti
- Cancer Genomics & Systems Biology Laboratory, University of Siena, 53100 Siena, Italy; (V.B.S.); (D.R.); (D.M.); (M.P.)
- Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (F.M.)
| |
Collapse
|
3
|
Tsai YF, Chan LP, Chen YK, Su CW, Hsu CW, Wang YY, Yuan SSF. RAD51 is a poor prognostic marker and a potential therapeutic target for oral squamous cell carcinoma. Cancer Cell Int 2023; 23:231. [PMID: 37798649 PMCID: PMC10552296 DOI: 10.1186/s12935-023-03071-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 09/17/2023] [Indexed: 10/07/2023] Open
Abstract
OBJECTIVES RAD51 overexpression has been reported to serve as a marker of poor prognosis in several cancer types. This study aimed to survey the role of RAD51 in oral squamous cell carcinoma and whether RAD51 could be a potential therapeutic target. MATERIALS AND METHODS RAD51 protein expression, assessed by immunohistochemical staining, was used to examine associations with survival and clinicopathological profiles of patients with oral squamous cell carcinoma. Lentiviral infection was used to knock down or overexpress RAD51. The influence of RAD51 on the biological profile of oral cancer cells was evaluated. Cell viability and apoptosis after treatment with chemotherapeutic agents and irradiation were analyzed. Co-treatment with chemotherapeutic agents and B02, a RAD51 inhibitor, was used to examine additional cytotoxic effects. RESULTS Oral squamous cell carcinoma patients with higher RAD51 expression exhibited worse survival, especially those treated with adjuvant chemotherapy and radiotherapy. RAD51 overexpression promotes resistance to chemotherapy and radiotherapy in oral cancer cells in vitro. Higher tumorsphere formation ability was observed in RAD51 overexpressing oral cancer cells. However, the expression of oral cancer stem cell markers did not change in immunoblotting analysis. Co-treatment with RAD51 inhibitor B02 and cisplatin, compared with cisplatin alone, significantly enhanced cytotoxicity in oral cancer cells. CONCLUSION RAD51 is a poor prognostic marker for oral squamous cell carcinoma. High RAD51 protein expression associates with resistance to chemotherapy and radiotherapy. Addition of B02 significantly increased the cytotoxicity of cisplatin. These findings suggest that RAD51 protein may function as a treatment target for oral cancer. TRIAL REGISTRATION Number: KMUHIRB-E(I)-20190009 Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, approved on 20190130, Retrospective registration.
Collapse
Affiliation(s)
- Yu-Fen Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Hematology and Oncology, E-Da Cancer Hospital, I-Shou University, Kaohsiung, 824, Taiwan
- School of Chinese Medicine for Post Baccalaureate, College of Medicine, I-Shou University, Kaohsiung, 824, Taiwan
| | - Leong-Perng Chan
- Cohort Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Otorhinolaryngology-Head and Neck Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Yuk-Kwan Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Division of Oral Pathology & Maxillofacial Radiology, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Chang-Wei Su
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Ching-Wei Hsu
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Division of Oral Pathology & Maxillofacial Radiology, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Yen-Yun Wang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
| | - Shyng-Shiou F Yuan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsinchu, 300, Taiwan.
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
| |
Collapse
|
4
|
Wei Y, Lan C, Wang X, Zhou X, Liao X, Huang H, Wei Z, Li T, Peng T, Zhu G. RAD51AP1 as an Immune-Related Prognostic Biomarker and Therapeutic Response Predictor in Hepatocellular Carcinoma. Int J Gen Med 2023; 16:4377-4392. [PMID: 37789880 PMCID: PMC10543100 DOI: 10.2147/ijgm.s431206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
Background RAD51 associated protein 1 (RAD51AP1) is shown to regulate cell proliferation and cancer progression. However, the immune-infiltrating correlation and the therapeutics guidance of RAD51AP1 in hepatocellular carcinoma (HCC) still need further investigation. Methods In this study, comprehensive bioinformatic analysis of RAD51AP1 on differential expression, clinicopathologic correlation, prognostic value, and function enrichment were performed in The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO; GSE14520 and GSE76427), and International Cancer Genome Consortium (ICGC) datasets. Besides, the Guangxi cohort containing 50 pairs HCC and adjacent non-cancerous samples from First Affiliated Hospital of Guangxi Medical University was served as validation cohort. Moreover, we explored the predictive value of RAD51AP1 to therapeutics response and its underlying correlation with HCC immunoinfiltration. Results RAD51AP1 was significantly overexpressed in HCC tissues and had a high diagnostic value of HCC. The shorter survival time and poorer clinical features were showed when RAD51AP1 upregulated, and then a nomogram featuring RAD51AP1 expression and other clinicopathologic factors was established to predict prognosis. In CIBERSORT analysis, higher T cells follicular helper but lower T cells CD4+ memory resting infiltration levels were exhibited when RAD51AP1 upregulated. The ssGSEA analysis demonstrated that high-RAD51AP1 expression subgroup had higher macrophages, Th2 and Treg cells infiltration levels, but lower type II IFN response function. Furthermore, high-RAD51AP1 expression subgroup exhibited the upregulated expression levels of immune-related checkpoint genes, but lower IPS and TIDE scores which suggested a possibly better immunotherapy response. The drug sensitivity analysis showed the high-expression subgroup may be more susceptible to Bexarotene, Doxorubicin, Gemcitabine and Tipifarnib. Conclusion Taken together, RAD51AP1 is a potential diagnostic and prognostic biomarker. It may be related to the immunosuppressive microenvironment and could be an underlying HCC treatment strategy. However, the conclusions still require further validation studies.
Collapse
Affiliation(s)
- Yongguang Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, 530021, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Chenlu Lan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, 530021, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Xiangkun Wang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, 530021, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, 530021, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Huasheng Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, 530021, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Zhongliu Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, 530021, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Tianman Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, 530021, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, 530021, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, 530021, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| |
Collapse
|
5
|
Hernández-Suárez B, Gillespie DA, Dejnaka E, Kupczyk P, Obmińska-Mrukowicz B, Pawlak A. Studying the DNA damage response pathway in hematopoietic canine cancer cell lines, a necessary step for finding targets to generate new therapies to treat cancer in dogs. Front Vet Sci 2023; 10:1227683. [PMID: 37655260 PMCID: PMC10467447 DOI: 10.3389/fvets.2023.1227683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/31/2023] [Indexed: 09/02/2023] Open
Abstract
Background Dogs present a significant opportunity for studies in comparative oncology. However, the study of cancer biology phenomena in canine cells is currently limited by restricted availability of validated antibody reagents and techniques. Here, we provide an initial characterization of the expression and activity of key components of the DNA Damage Response (DDR) in a panel of hematopoietic canine cancer cell lines, with the use of commercially available antibody reagents. Materials and methods The techniques used for this validation analysis were western blot, qPCR, and DNA combing assay. Results Substantial variations in both the basal expression (ATR, Claspin, Chk1, and Rad51) and agonist-induced activation (p-Chk1) of DDR components were observed in canine cancer cell lines. The expression was stronger in the CLBL-1 (B-cell lymphoma) and CLB70 (B-cell chronic lymphocytic leukemia) cell lines than in the GL-1 (B-cell leukemia) cell line, but the biological significance of these differences requires further investigation. We also validated methodologies for quantifying DNA replication dynamics in hematopoietic canine cancer cell lines, and found that the GL-1 cell line presented a higher replication fork speed than the CLBL-1 cell line, but that both showed a tendency to replication fork asymmetry. Conclusion These findings will inform future studies on cancer biology, which will facilitate progress in developing novel anticancer therapies for canine patients. They can also provide new knowledge in human oncology.
Collapse
Affiliation(s)
- Beatriz Hernández-Suárez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - David A. Gillespie
- Facultad de Medicina, Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Tenerife, Spain
| | - Ewa Dejnaka
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Piotr Kupczyk
- Division of General and Experimental Pathology, Department of Clinical and Experimental Pathology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Bożena Obmińska-Mrukowicz
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
6
|
Yu J, Wang CG. Relationship between polymorphisms in homologous recombination repair genes RAD51 G172T、XRCC2 & XRCC3 and risk of breast cancer: A meta-analysis. Front Oncol 2023; 13:1047336. [PMID: 36761956 PMCID: PMC9903134 DOI: 10.3389/fonc.2023.1047336] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Background Genetic variability in DNA double-strand break repair genes such as RAD51 gene and its paralogs XRCC2、XRCC3 may contribute to the occurrence and progression of breast cancer. To obtain a complete evaluation of the above association, we performed a meta-analysis of published studies. Methods Electronic databases, including PubMed, EMBASE, Web of Science, and Cochrane Library, were comprehensively searched from inception to September 2022. The Newcastle-Ottawa Scale (NOS) checklist was used to assess all included non-randomized studies. Odds ratios (OR) with 95% confidence intervals (CI) were calculated by STATA 16.0 to assess the strength of the association between single nucleotide polymorphisms (SNPs) in these genes and breast cancer risk. Subsequently, the heterogeneity between studies, sensitivity, and publication bias were performed. We downloaded data from The Cancer Genome Atlas (TCGA) and used univariate and multivariate Cox proportional hazard regression (CPH) models to validate the prognostic value of these related genes in the R software. Results The combined results showed that there was a significant correlation between the G172T polymorphism and the susceptibility to breast cancer in the homozygote model (OR= 1.841, 95% CI=1.06-3.21, P=0.03). Furthermore, ethnic analysis showed that SNP was associated with the risk of breast cancer in Arab populations in homozygous models (OR=3.52, 95% CI=1.13-11.0, P= 0.003). For the XRCC2 R188H polymorphism, no significant association was observed. Regarding polymorphism in XRCC3 T241M, a significantly increased cancer risk was only observed in the allelic genetic model (OR=1.05, 95% CI= 1.00-1.11, P=0.04). Conclusions In conclusion, this meta-analysis suggests that Rad51 G172T polymorphism is likely associated with an increased risk of breast cancer, significantly in the Arab population. The relationship between the XRCC2 R188H polymorphism and breast cancer was not obvious. And T241M in XRCC3 may be associated with breast cancer risk, especially in the Asian population.
Collapse
|
7
|
A functional variant in the RAD51 3′ UTR is associated with survival of hepatocellular carcinoma patients. Gene X 2023; 851:146964. [DOI: 10.1016/j.gene.2022.146964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 09/13/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
|
8
|
Shimakawa K, Ochiai K, Hirose S, Tanabe E, Michishita M, Sakaue M, Yoshikawa Y, Morimatsu M, Tajima T, Watanabe M, Tanaka Y. Canine Mammary Tumor Cell Lines Derived from Metastatic Foci Show Increased RAD51 Expression but Diminished Radioresistance via p21 Inhibition. Vet Sci 2022; 9:vetsci9120703. [PMID: 36548864 PMCID: PMC9784702 DOI: 10.3390/vetsci9120703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Due to the high incidence of mammary tumors in dogs, it is important to elucidate the pathogenesis of these tumors in veterinary medicine. Radiation therapy is often used to treat mammary tumors that target DNA lesions. RAD51 is a key molecule that repairs DNA damage via homologous recombination. We examined the relationship between RAD51 expression and radiosensitivity in mammary tumor cell lines. CHMp and CHMm from the same individual were selected based on the differences in RAD51 expression. The radiosensitivity of both cell lines was examined using MTT and scratch assays; CHMm, which has high RAD51 expression, showed higher sensitivity to radiation than CHMp. However, the nuclear focus of RAD51 during DNA repair was formed normally in CHMp, but not in most of CHMm. Since irradiation resulted in the suppression of cell cycle progression in CHMp, the expression of p21, a cell cycle regulatory factor, was detected in CHMp after 15 Gy irradiation but not in CHMm. These results indicate that functional expression is more important than the quantitative expression of RAD51 in canine mammary tumor cells in response to DNA damage.
Collapse
Affiliation(s)
- Kei Shimakawa
- Laboratory of Veterinary Hygiene, School of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Kazuhiko Ochiai
- Laboratory of Veterinary Hygiene, School of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
- Research Center for Animal Life Science, School of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
- Correspondence: ; Tel.: +81-422-31-4151
| | - Sachi Hirose
- Laboratory of Veterinary Hygiene, School of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Eri Tanabe
- Laboratory of Veterinary Hygiene, School of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Masaki Michishita
- Research Center for Animal Life Science, School of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
- Laboratory of Veterinary Pathology, School of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Motoharu Sakaue
- Laboratory of Anatomy II, Department of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
| | - Yasunaga Yoshikawa
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Kitasato University, Aomori 034-8628, Japan
| | - Masami Morimatsu
- Laboratory of Laboratory Animal Science and Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Tsuyoshi Tajima
- Department of Veterinary Pharmacology, School of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Masami Watanabe
- Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Yoshikazu Tanaka
- Laboratory of Veterinary Hygiene, School of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
- Research Center for Animal Life Science, School of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| |
Collapse
|
9
|
Liu R, Zhu G, Li M, Cao P, Li X, Zhang X, Huang H, Song Z, Chen J. Systematic pan-cancer analysis showed that RAD51AP1 was associated with immune microenvironment, tumor stemness, and prognosis. Front Genet 2022; 13:971033. [PMID: 36468013 PMCID: PMC9708706 DOI: 10.3389/fgene.2022.971033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/01/2022] [Indexed: 12/02/2023] Open
Abstract
Although RAD51 associated protein 1 (RAD51AP1) is crucial in genome stability maintenance, it also promotes cancer development with an unclear mechanism. In this study, we collected intact expression data of RAD51AP1 from the public database, and verified it was significantly over-expressed in 33 cancer types and correlated with poor prognosis in 13 cancer types, including glioma, adrenocortical carcinoma, lung adenocarcinoma. We further authenticated that RAD51AP1 is up-regulated in several typical cancer cell lines and promotes cancer cell proliferation in vitro. Moreover, we also demonstrated that RAD51AP1 was significantly positively related to cancer stemness score mRNAsi in 27 cancer types and broadly correlated to tumor-infiltrating immune cells in various cancers in a diverse manner. It was also negatively associated with immunophenoscore (IPS) and Estimation of STromal and Immune cells in MAlignant Tumours using Expression data (ESTIMATE) scores and positively correlated with mutant-allele tumor heterogeneity (MATH), tumor mutational burden (TMB), microsatellite instability (MSI), and PD-L1 expression in multiple cancers. The tumor stemness enhancing and tumor immune microenvironment affecting functions of RAD51AP1 might compose its carcinogenesis mechanism. Further investigations beyond the bioinformatics level should confirm these findings in each specific cancer.
Collapse
Affiliation(s)
- Renwang Liu
- Department of Lung Cancer Surgery, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumour Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Guangsheng Zhu
- Department of Lung Cancer Surgery, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumour Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Mingbiao Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumour Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Peijun Cao
- Department of Lung Cancer Surgery, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumour Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xuanguang Li
- Department of Lung Cancer Surgery, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumour Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiuwen Zhang
- Department of Lung Cancer Surgery, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumour Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hua Huang
- Department of Lung Cancer Surgery, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumour Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zuoqing Song
- Department of Lung Cancer Surgery, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumour Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jun Chen
- Department of Lung Cancer Surgery, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumour Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
10
|
Deng Y, Huang H, Shi J, Jin H. Identification of Candidate Genes in Breast Cancer Induced by Estrogen Plus Progestogens Using Bioinformatic Analysis. Int J Mol Sci 2022; 23:ijms231911892. [PMID: 36233194 PMCID: PMC9569986 DOI: 10.3390/ijms231911892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Menopausal hormone therapy (MHT) was widely used to treat menopause-related symptoms in menopausal women. However, MHT therapies were controversial with the increased risk of breast cancer because of different estrogen and progestogen combinations, and the molecular basis behind this phenomenon is currently not understood. To address this issue, we identified differentially expressed genes (DEGs) between the estrogen plus progestogens treatment (EPT) and estrogen treatment (ET) using the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) data. As a result, a total of 96 upregulated DEGs were first identified. Seven DEGs related to the cell cycle (CCNE2, CDCA5, RAD51, TCF19, KNTC1, MCM10, and NEIL3) were validated by RT-qPCR. Specifically, these seven DEGs were increased in EPT compared to ET (p < 0.05) and had higher expression levels in breast cancer than adjacent normal tissues (p < 0.05). Next, we found that estrogen receptor (ER)-positive breast cancer patients with a higher CNNE2 expression have a shorter overall survival time (p < 0.05), while this effect was not observed in the other six DEGs (p > 0.05). Interestingly, the molecular docking results showed that CCNE2 might bind to 17β-estradiol (−6.791 kcal/mol), progesterone (−6.847 kcal/mol), and medroxyprogesterone acetate (−6.314 kcal/mol) with a relatively strong binding affinity, respectively. Importantly, CNNE2 protein level could be upregulated with EPT and attenuated by estrogen receptor antagonist, acolbifene and had interactions with cancer driver genes (AKT1 and KRAS) and high mutation frequency gene (TP53 and PTEN) in breast cancer patients. In conclusion, the current study showed that CCNE2, CDCA5, RAD51, TCF19, KNTC1, MCM10, and NEIL3 might contribute to EPT-related tumorigenesis in breast cancer, with CCNE2 might be a sensitive risk indicator of breast cancer risk in women using MHT.
Collapse
Affiliation(s)
- Yu Deng
- Department of Obstetrics and Gynecology, Peking University First Hospital, No. 8 Xishiku Street, Beijing 100034, China
| | - He Huang
- Department of Obstetrics and Gynecology, Peking University First Hospital, No. 8 Xishiku Street, Beijing 100034, China
| | - Jiangcheng Shi
- School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Hongyan Jin
- Department of Obstetrics and Gynecology, Peking University First Hospital, No. 8 Xishiku Street, Beijing 100034, China
- Correspondence:
| |
Collapse
|
11
|
Wu R, Patel A, Tokumaru Y, Asaoka M, Oshi M, Yan L, Ishikawa T, Takabe K. High RAD51 gene expression is associated with aggressive biology and with poor survival in breast cancer. Breast Cancer Res Treat 2022; 193:49-63. [PMID: 35249172 PMCID: PMC8995390 DOI: 10.1007/s10549-022-06552-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/18/2022] [Indexed: 01/06/2023]
Abstract
PURPOSE Although the DNA repair mechanism is important in preventing carcinogenesis, its activation in established cancer cells may support their proliferation and aggravate cancer progression. RAD51 cooperates with BRCA2 and is essential in the homologous recombination of DNA repair. To this end, we hypothesized that RAD51 gene expression is associated with cancer cell proliferation and poor prognosis of breast cancer (BC) patients. METHODS A total of 8515 primary BC patients with transcriptome and clinical data from 17 independent cohorts were analyzed. The median value was used to divide each cohort into high and low RAD51 expression groups. RESULTS High RAD51 expression enriched the DNA repair gene set and was correlated with DNA repair-related genes. Nottingham histological grade, Ki67 expression and cell proliferation-related gene sets (E2F Targets, G2M Checkpoint and Myc Targets) were all significantly associated with the high RAD51 BC group. RAD51 expression was positively correlated with Homologous Recombination Deficiency, as well as both mutational burden and neoantigens that accompanied a higher infiltration of immune cells. Primary BC with lymph node metastases was associated with high expression of RAD51 in two cohorts. There was no strong correlation between RAD51 expression and drug sensitivity in cell lines, and RAD51 expression was lower after the neoadjuvant chemotherapy compared to before the treatment. High RAD51 BC was associated with poor prognosis consistently in three independent cohorts. CONCLUSION RAD51 gene expression is associated with aggressive cancer biology, cancer cell proliferation, and poor survival in breast cancer.
Collapse
|
12
|
Hernández-Suárez B, Gillespie DA, Pawlak A. DNA Damage Response (DDR) proteins in canine cancer as potential research targets in comparative oncology. Vet Comp Oncol 2021; 20:347-361. [PMID: 34923737 PMCID: PMC9304296 DOI: 10.1111/vco.12795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
The DNA damage response (DDR) is a complex signal transduction network that is activated when endogenous or exogenous genotoxins damage or interfere with the replication of genomic DNA. Under such conditions, the DDR promotes DNA repair and ensures accurate replication and division of the genome. High levels of genomic instability are frequently observed in cancers and can stem from germline loss‐of‐function mutations in certain DDR genes, such as BRCA1, BRCA2, and p53, that form the basis of human cancer predisposition syndromes. In addition, mutation and/or aberrant expression of multiple DDR genes are frequently observed in sporadic human cancers. As a result, the DDR is considered to represent a viable target for cancer therapy in humans and a variety of strategies are under investigation. Cancer is also a significant cause of mortality in dogs, a species that offers certain advantages for experimental oncology. Domestic dogs present numerous inbred lines, many of which display predisposition to specific forms of cancer and the study of which may provide insight into the biological basis of this susceptibility. In addition, clinical trials are possible in dogs and may lead to therapeutic insights that could ultimately be extended to humans. Here we review what is known specifically about the DDR in dogs and discuss how this knowledge could be extended and exploited to advance experimental oncology in this species.
Collapse
Affiliation(s)
- Beatriz Hernández-Suárez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Poland
| | - David A Gillespie
- Instituto de Tecnologías Biomédicas, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, La Laguna 38071, Tenerife, Spain
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Poland
| |
Collapse
|
13
|
Inhibiting homologous recombination by targeting RAD51 protein. Biochim Biophys Acta Rev Cancer 2021; 1876:188597. [PMID: 34332021 DOI: 10.1016/j.bbcan.2021.188597] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/09/2021] [Accepted: 07/24/2021] [Indexed: 02/06/2023]
Abstract
Homologous recombination (HR) is involved in repairing DNA double-strand breaks (DSB), the most harmful for the cell. Regulating HR is essential for maintaining genomic stability. In many forms of cancer, overactivation of HR increases tumor resistance to DNA-damaging treatments. RAD51, HR's core protein, is very often over-expressed in these cancers and plays a critical role in cancer cell development and survival. Targeting RAD51 directly to reduce its activity and its expression is therefore one strategy to sensitize and overcome resistance cancer cells to existing DNA-damaging therapies which remains the limiting factor for the success of targeted therapy. This review describes the structure and biological roles of RAD51, summarizes the different targeted sites of RAD51 and its inhibitory compounds discovered and described in the last decade.
Collapse
|
14
|
Li L, Kumar AK, Hu Z, Guo Z. Small Molecule Inhibitors Targeting Key Proteins in the DNA Damage Response for Cancer Therapy. Curr Med Chem 2021; 28:963-985. [PMID: 32091326 DOI: 10.2174/0929867327666200224102309] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/17/2020] [Accepted: 01/29/2020] [Indexed: 11/22/2022]
Abstract
DNA damage response (DDR) is a complicated interactional pathway. Defects that occur in subordinate pathways of the DDR pathway can lead to genomic instability and cancer susceptibility. Abnormal expression of some proteins in DDR, especially in the DNA repair pathway, are associated with the subsistence and resistance of cancer cells. Therefore, the development of small molecule inhibitors targeting the chief proteins in the DDR pathway is an effective strategy for cancer therapy. In this review, we summarize the development of small molecule inhibitors targeting chief proteins in the DDR pathway, particularly focusing on their implications for cancer therapy. We present the action mode of DDR molecule inhibitors in preclinical studies and clinical cancer therapy, including monotherapy and combination therapy with chemotherapeutic drugs or checkpoint suppression therapy.
Collapse
Affiliation(s)
- Lulu Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Alagamuthu Karthick Kumar
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| |
Collapse
|
15
|
Grundy MK, Buckanovich RJ, Bernstein KA. Regulation and pharmacological targeting of RAD51 in cancer. NAR Cancer 2020; 2:zcaa024. [PMID: 33015624 PMCID: PMC7520849 DOI: 10.1093/narcan/zcaa024] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/25/2020] [Accepted: 09/03/2020] [Indexed: 01/06/2023] Open
Abstract
Regulation of homologous recombination (HR) is central for cancer prevention. However, too little HR can increase cancer incidence, whereas too much HR can drive cancer resistance to therapy. Importantly, therapeutics targeting HR deficiency have demonstrated a profound efficacy in the clinic improving patient outcomes, particularly for breast and ovarian cancer. RAD51 is central to DNA damage repair in the HR pathway. As such, understanding the function and regulation of RAD51 is essential for cancer biology. This review will focus on the role of RAD51 in cancer and beyond and how modulation of its function can be exploited as a cancer therapeutic.
Collapse
Affiliation(s)
- McKenzie K Grundy
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ronald J Buckanovich
- Division of Hematology Oncology, Department of Internal Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kara A Bernstein
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
16
|
Hazan I, Monin J, Bouwman BAM, Crosetto N, Aqeilan RI. Activation of Oncogenic Super-Enhancers Is Coupled with DNA Repair by RAD51. Cell Rep 2020; 29:560-572.e4. [PMID: 31618627 PMCID: PMC6899447 DOI: 10.1016/j.celrep.2019.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 08/03/2019] [Accepted: 08/30/2019] [Indexed: 11/17/2022] Open
Abstract
DNA double-strand breaks (DSBs) are deleterious and tumorigenic but could also be essential for DNA-based processes. Yet the landscape of physiological DSBs and their role and repair are still elusive. Here, we mapped DSBs at high resolution in cancer and non-tumorigenic cells and found a transcription-coupled repair mechanism at oncogenic super-enhancers. At these super-enhancers the transcription factor TEAD4, together with various transcription factors and co-factors, co-localizes with the repair factor RAD51 of the homologous recombination pathway. Depletion of TEAD4 or RAD51 increases DSBs at RAD51/TEAD4 common binding sites within super-enhancers and decreases expression of related genes, which are mostly oncogenes. Co-localization of RAD51 with transcription factors at super-enhancers occurs in various cell types, suggesting a broad phenomenon. Together, our findings uncover a coupling between transcription and repair mechanisms at oncogenic super-enhancers, to control the hyper-transcription of multiple cancer drivers. Physiological DSBs are enriched at highly active oncogenic super-enhancers (SEs) RAD51 co-localizes with transcription factors at SE in various cells TOP1 mediates DSBs at SEs that are repaired by a RAD51-dependent mechanism Depletion of RAD51 increases DSBs at SEs and decreases expression of related oncogenes.
Collapse
Affiliation(s)
- Idit Hazan
- Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Jonathan Monin
- Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Britta A M Bouwman
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nicola Crosetto
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Rami I Aqeilan
- Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel; Department of Cancer Biology and Genetics, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
17
|
Howlader NR, Rahman MM, Hossain MA, Sultana R, Hossain SM, Mazid MA, Rahman MM. Genetic polymorphisms in DNA repair genes XRCC1 and 3 are associated with increased risk of breast cancer in Bangladeshi population. Breast Cancer Res Treat 2020; 182:739-750. [PMID: 32562117 DOI: 10.1007/s10549-020-05738-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Genetic polymorphisms in DNA repair genes, XRCC1 (Arg399Gln) and XRCC3 (Thr241Met), may affect their DNA repair capacity leading to individual variation in breast cancer susceptibility among Bangladeshi females. METHODS The case-control study comprised 121 breast cancer patients and 133 healthy controls. Genomic DNA isolated from peripheral blood was genotyped for target SNPs using PCR-RFLP method. RESULTS For XRCC1, heterozygous Arg/Gln and homozygous Gln/Gln genotypes showed 1.78-fold (95% CI 1.0084 to 3.1442, p = 0.0467) and 2.41-fold (95% CI 1.0354 to 5.5914, p = 0.0413) increased risk of breast cancer, respectively, when compared with Arg/Arg genotype. The presence of any XRCC1 Gln showed association with 1.93-fold increased risk. The variant Gln allele was associated with increased risk of breast cancer (95% CI 1.1885 to 2.6805, p = 0.0052). For XRCC3, Thr/Met heterozygous and combined Thr/Met + Met/Met genotypes were associated with 1.85-fold (95% CI 1.0815 to 3.1834, p = 0.0248) and 1.89-fold (95% CI 1.1199 to 3.1908, p = 0.0171) higher risk, respectively, compared to Thr/Thr genotypes. The variant Met allele showed significant association with increased breast cancer susceptibility. Among cases genotype frequencies were significantly different in patients with age 55 or above, and with menopause and diabetes. CONCLUSION XRCC1 (Arg399Gln) and XRCC3 (Thr241Met) polymorphisms may be associated with increased breast cancer risk in Bangladeshi females.
Collapse
Affiliation(s)
- Nupur Rani Howlader
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | - Md Mostafizur Rahman
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | - Md Amir Hossain
- Department of Pharmacy, ASA University Bangladesh, Dhaka, Bangladesh
| | | | | | - Md Abdul Mazid
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - Md Mustafizur Rahman
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh.
| |
Collapse
|
18
|
Yang M, Tian X, Fan Z, Yu W, Li Z, Zhou J, Zhang W, Liang A. Targeting RAD51 enhances chemosensitivity of adult T‑cell leukemia‑lymphoma cells by reducing DNA double‑strand break repair. Oncol Rep 2019; 42:2426-2434. [PMID: 31638261 PMCID: PMC6859462 DOI: 10.3892/or.2019.7384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 01/09/2019] [Indexed: 12/19/2022] Open
Abstract
RAD51, is a key homologous recombination protein that repairs DNA damage and maintains gene diversity and stability. Previous studies have demonstrated that the over‑expression of RAD51 is associated with chemotherapy resistance of tumor cells to chemotherapy, and enhanced activity of DNA damage repair (DDR) systems contributes to resistance of adult T‑cell leukemia‑lymphoma (ATL) resistance to chemotherapy. Thus, targeting RAD51 is a potential strategy for the sensitization of ATL cells to chemotherapeutic drugs by inducing DNA damage. In general, cells can repair minor DNA damage through DDR; however, serious DNA damage may cause cell toxicity in cells which cannot be restored. In the present, down regulation of RAD51 by shRNA and imatinib sensitized Jurkat cells to etoposide by decreasing the activity of homologous recombination (HR). We found that the suppression of RAD51 by shRNA inhibited tumor cells proliferation and enhanced apoptosis of Jurkat cells after etoposide treatment. Importantly, downregulation of RAD51 by imatinib obviously increased the apoptosis of Jurkat cell after etoposide treatment. These results demonstrated that RAD51 may be of great value to as a novel target for the clinical treatment of adult T‑cell leukemia‑lymphoma (ATL), and it may improve the survival of leukemia patients.
Collapse
Affiliation(s)
- Meng Yang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R China
| | - Xiaoxue Tian
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R China
| | - Zhuoyi Fan
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R China
| | - Wenlei Yu
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R China
| | - Zheng Li
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R China
| | - Jie Zhou
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R China
| | - Wenjun Zhang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R China
| | - Aibin Liang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R China
| |
Collapse
|
19
|
Uemura M, Ochiai K, Morimatsu M, Michishita M, Onozawa E, Azakami D, Uno Y, Yoshikawa Y, Sasaki T, Watanabe M, Omi T. The canine RAD51 mutation leads to the attenuation of interaction with PALB2. Vet Comp Oncol 2019; 18:247-255. [PMID: 31518051 DOI: 10.1111/vco.12542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 12/19/2022]
Abstract
RAD51 forms a complex with BRCA2 and plays a central role in the DNA damage response pathway that is associated with homologous recombination. The structures of RAD51 and its homologues are highly conserved from prokaryotes to higher eukaryotes. Although a large number of BRCA2 mutations have been reported, there are only a few reports on the mutations of RAD51, which have been shown in humans and dogs. However, several mutations of canine RAD51 were identified from mammary gland tumour tissues in a recent study. Some of these mutations seem to have an influence on the homo-oligomerization or interaction with "Partner and localizer of BRCA2" (PALB2). In this study, we cloned the canine PALB2 homologue and investigated the effect on its interaction with the RAD51 mutants to evaluate the alteration in the function of RAD51 mutants. The A209S and T225S mutants of RAD51 show an attenuation of the interaction between RAD51 and PALB2. These results indicate that the canine RAD51 mutations can potentially alter the homologous recombination pathways in response to DNA damage in dogs.
Collapse
Affiliation(s)
- Mitsuki Uemura
- School of Veterinary Nursing and Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Kazuhiko Ochiai
- School of Veterinary Nursing and Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Masami Morimatsu
- Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Masaki Michishita
- Department of Veterinary Pathology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Eri Onozawa
- School of Veterinary Nursing and Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Daigo Azakami
- Laboratory of Veterinary Clinical Oncology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yumiko Uno
- School of Veterinary Nursing and Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Yasunaga Yoshikawa
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Takanori Sasaki
- Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masami Watanabe
- Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Toshinori Omi
- School of Veterinary Nursing and Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| |
Collapse
|
20
|
Shi Y, Jin J, Wang X, Ji W, Guan X. DAXX, as a Tumor Suppressor, Impacts DNA Damage Repair and Sensitizes BRCA-Proficient TNBC Cells to PARP Inhibitors. Neoplasia 2019; 21:533-544. [PMID: 31029033 PMCID: PMC6484230 DOI: 10.1016/j.neo.2019.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/31/2019] [Accepted: 04/03/2019] [Indexed: 12/20/2022] Open
Abstract
Treatment options are limited for patients with triple negative breast cancer (TNBC). Understanding genes that participate in cancer progression and DNA damage response (DDR) may improve therapeutic strategies for TNBC. DAXX, a death domain-associated protein, has been reported to be critically involved in cancer progression and drug sensitivity in multiple cancer types. However, its role in breast cancer, especially for TNBC, remains unclear. Here, we demonstrated a tumor suppressor function of DAXX in TNBC proliferation, colony formation, and migration. In Mouse Xenograft Models, DAXX remarkably inhibited tumorigenicity of TNBC cells. Mechanistically, DAXX could directly bind to the promoter region of RAD51 and impede DNA damage repair, which impacted the protection mechanism of tumor cells that much depended on remaining DDR pathways for cell growth. Furthermore, DAXX-mediated inefficient DNA damage repair could sensitize BRCA-proficient TNBC cells to PARP inhibitors. Additionally, we identified that dual RAD51 and PARP inhibition with RI-1 and ABT888 significantly reduced TNBC growth both in vitro and in vivo, which provided the first evidence of combining RAD51 and PARP inhibition in BRCA-proficient TNBC. In conclusion, our data support DAXX as a modulator of DNA damage repair and suppressor of TNBC progression to sensitize tumors to the PARP inhibitor by repressing RAD51 functions. These provide an effective strategy for a better application of PARP inhibition in the treatment of TNBC.
Collapse
Affiliation(s)
- Yaqin Shi
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.
| | - Juan Jin
- Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
| | - Xin Wang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.
| | - Wenfei Ji
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing 210002, China.
| | - Xiaoxiang Guan
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China; Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing 210002, China; Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
21
|
Jiang S, Lin T, Xie Q, Wang L. Network Analysis of RAD51 Proteins in Metazoa and the Evolutionary Relationships With Their Archaeal Homologs. Front Genet 2018; 9:383. [PMID: 30319685 PMCID: PMC6168637 DOI: 10.3389/fgene.2018.00383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/27/2018] [Indexed: 12/18/2022] Open
Abstract
The RAD51 (DNA repair protein RAD51) recombinases are essential for homologous recombination, DNA repair, and genome stability. Overexpression of RAD51 proteins has been observed in many cancer cells, such as thyroid carcinoma, breast cancer, pancreatic cancer, and others. In Metazoa, there are multiple members of RAD51 (RAD51, RAD51B, RAD51C, RAD51D, DMC1) (DNA meiotic recombinase 1), XRCC2 (X-ray repair cross-complementing 2), and XRCC3. In this study, we used a protein sequence similarity network (SSN) to analyze the evolutionary relationship within this protein family. The SSN based on the RAD51 proteins from Metazoa indicated that there are several proteins that have yet to be functionally defined. The SSN based on the distribution of the proteins supports the hypothesis that horizontal gene transfer plays an important role in the evolution of RAD51 proteins. Multiple sequence alignments with structural information revealed that the amino acid residues for ATP and Mg2+ are highly conserved. The seven RAD51 proteins in humans are under different selective pressure: RAD51 and DMC1 are under stringent negative selection, while other proteins are subject to relatively relaxed negative selection. Furthermore, the expression levels of the seven genes in different tissues showed that the genes in the same cluster in the phylogenetic tree showed similar expression profiles. Finally, the SSN based on the RAD51 proteins from both eukaryotes and prokaryotes suggested that the eukaryotic RAD51 recombinases share a common ancestor with the archaeal homologs, but XRCC2 may have a different origin. These findings expand the understanding of the evolution and diversity of RAD51 recombinases in Metazoa.
Collapse
Affiliation(s)
- Shan Jiang
- Affiliated Union Hospital, Fujian Medical University, Fuzhou, China
| | - Ting Lin
- Affiliated Union Hospital, Fujian Medical University, Fuzhou, China
| | - Qingji Xie
- Affiliated Union Hospital, Fujian Medical University, Fuzhou, China
| | - Lijing Wang
- Affiliated Union Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
22
|
Nonstructural Protein 5A Impairs DNA Damage Repair: Implications for Hepatitis C Virus-Mediated Hepatocarcinogenesis. J Virol 2018; 92:JVI.00178-18. [PMID: 29563287 DOI: 10.1128/jvi.00178-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/11/2018] [Indexed: 01/01/2023] Open
Abstract
RAD51-associated protein 1 (RAD51AP1) is a member of the multiprotein complexes postulated to carry out RAD51-mediated homologous recombination and DNA repair in mammalian cells. In the present study, we showed that hepatitis C virus (HCV) NS5A directly bound RAD51AP1 and increased the protein level of RAD51AP1 through modulation of the ubiquitin-proteasome pathway. We also demonstrated that RAD51AP1 protein levels were increased in the liver tissues of HCV-infected patients and NS5A-transgenic mice. Importantly, NS5A impaired DNA repair by disrupting the RAD51/RAD51AP1/UAF1 complex and rendered HCV-infected cells more sensitive to DNA damage. Silencing of RAD51AP1 expression resulted in a decrease of viral propagation. We further demonstrated that RAD51AP1 was involved in the assembly step of the HCV life cycle by protecting viral RNA. These data suggest that HCV exploits RAD51AP1 to promote viral propagation and thus that host DNA repair is compromised in HCV-infected cells. Overall, our findings provide mechanistic insight into the pathogenesis of HCV infection.IMPORTANCE Chronic infection with HCV is the leading cause of hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying HCV-induced HCC are not fully understood. Here we demonstrate that the HCV NS5A protein physically interacts with RAD51AP1 and increases the RAD51AP1 protein level through modulation of the ubiquitin-proteasome pathway. HCV coopts host RAD51AP1 to protect viral RNA at an assembly step of the HCV life cycle. Note that the RAD51 protein accumulates in the cytoplasm of HCV-infected cells, and thus the RAD51/RAD51AP1/UAF1-mediated DNA damage repair system in the nucleus is compromised in HCV-infected cells. Our data may provide new insight into the molecular mechanisms of HCV-induced pathogenesis.
Collapse
|
23
|
Yang Q, Wu J, Luo Y, Huang N, Zhen N, Zhou Y, Sun F, Li Z, Pan Q, Li Y. (-)-Guaiol regulates RAD51 stability via autophagy to induce cell apoptosis in non-small cell lung cancer. Oncotarget 2018; 7:62585-62597. [PMID: 27566579 PMCID: PMC5308748 DOI: 10.18632/oncotarget.11540] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/11/2016] [Indexed: 12/21/2022] Open
Abstract
(-)-Guaiol, generally known as an antibacterial compound, has been found in many medicinal plants. Its roles in tumor suppression are still under investigation. In the study, we mainly focused on exploring its applications in dealing with non-small cell lung cancer (NSCLC) and the underlying mechanisms. Here, we show that (-)-Guaiol significantly inhibits cell growth of NSCLC cells both in vitro and in vivo. Further high throughput analysis reveals that RAD51, a pivotal factor in homologous recombination repair, is a potential target for it. The following mechanism studies show that (-)-Guaiol is involved in cell autophagy to regulate the expression of RAD51, leading to double-strand breaks triggered cell apoptosis. Moreover, targeting RAD51, which is highly overexpressed in the lung adenocarcinoma tissues, can significantly increase the chemosensitivity of NSCLC cells to (-)-Guaiol both in vitro and in vivo. All in all, our studies provide an attractive insight in applying (-)-Guaiol into NSCLC treatments and further suggest that knockdown of oncogenic RAD51 will greatly enhance the chemosensitivity of patients with NSCLC.
Collapse
Affiliation(s)
- Qingyuan Yang
- Department of Clinical Laboratory Medicine, Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Jianchun Wu
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yingbin Luo
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Nan Huang
- Department of Clinical Laboratory Medicine, Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Ni Zhen
- Department of Clinical Laboratory Medicine, Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Yun Zhou
- Department of Clinical Laboratory Medicine, Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Fenyong Sun
- Department of Clinical Laboratory Medicine, Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Zhi Li
- Department of Clinical Laboratory Medicine, Yangpu Hospital of Tongji University, Shanghai, 200090, China
| | - Qiuhui Pan
- Central Laboratory, Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Yan Li
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| |
Collapse
|
24
|
Ginsenosides synergize with mitomycin C in combating human non-small cell lung cancer by repressing Rad51-mediated DNA repair. Acta Pharmacol Sin 2018; 39:449-458. [PMID: 28836581 DOI: 10.1038/aps.2017.53] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/05/2017] [Indexed: 02/06/2023] Open
Abstract
The use of ginseng extract as an adjuvant for cancer treatment has been reported in both animal models and clinical applications, but its molecular mechanisms have not been fully elucidated. Mitomycin C (MMC), an anticancer antibiotic used as a first- or second-line regimen in the treatment for non-small cell lung carcinoma (NSCLC), causes serious adverse reactions when used alone. Here, by using both in vitro and in vivo experiments, we provide evidence for an optimal therapy for NSCLC with total ginsenosides extract (TGS), which significantly enhanced the MMC-induced cytotoxicity against NSCLC A549 and PC-9 cells in vitro when used in combination with relatively low concentrations of MMC. A NSCLC xenograft mouse model was used to confirm the in vivo synergistic effects of the combination of TGS with MMC. Further investigation revealed that TGS could significantly reverse MMC-induced S-phase cell cycle arrest and inhibit Rad51-mediated DNA damage repair, which was evidenced by the inhibitory effects of TGS on the levels of phospho-MEK1/2, phospho-ERK1/2 and Rad51 protein and the translocation of Rad51 from the cytoplasm to the nucleus in response to MMC. In summary, our results demonstrate that TGS could effectively enhance the cytotoxicity of MMC against NSCLC cells in vitro and in vivo, thereby revealing a novel adjuvant anticancer mechanism of TGS. Combined treatment with TGS and MMC can significantly lower the required concentration of MMC and can further reduce the risk of side effects, suggesting a better treatment option for NSCLC patients.
Collapse
|
25
|
Inhibition of RAD51 by siRNA and Resveratrol Sensitizes Cancer Stem Cells Derived from HeLa Cell Cultures to Apoptosis. Stem Cells Int 2018; 2018:2493869. [PMID: 29681946 PMCID: PMC5846439 DOI: 10.1155/2018/2493869] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 07/13/2017] [Accepted: 07/27/2017] [Indexed: 12/28/2022] Open
Abstract
Cervical cancer is the second most frequent tumor type in women worldwide with cases developing clinical recurrence, metastasis, and chemoresistance. The cancer stem cells (CSC) may be implicated in tumor resistance to therapy. RESveratrol (RES), a natural compound, is an antioxidant with multiple beneficial activities. We previously determined that the expression of RAD51 is decreased by RES. The aim of our study was to examine molecular mechanism by which CSC from HeLa cultures exhibit chemoresistance. We hypothesized CSC repair more efficiently DNA breaks and that RAD51 plays an important role in this mechanism. We found that CSC, derived from cervical cancer cell lines, overexpress RAD51 and are less sensitive to Etoposide (VP16). We inhibited RAD51 in CSC-enriched cultures using RES or siRNA against RAD51 messenger RNA and observed a decrease in cell viability and induction of apoptosis when treated simultaneously with VP16. In addition, we found that inhibition of RAD51 expression using RES also sensitizes CSC to VP16 treatment. Our results suggest that resveratrol is effective to sensitize cervical CSC because of RAD51 inhibition, targeting high RAD51 expressing CD49f-positive cells, which supports the possible therapeutic application of RES as a novel agent to treat cancer.
Collapse
|
26
|
He X, Chen Z, Dong Y, Tong D. A primitive neuroectodermal tumor in an adult: Case report of a unique location and MRI characteristics. Medicine (Baltimore) 2018; 97:e9933. [PMID: 29443778 PMCID: PMC5839835 DOI: 10.1097/md.0000000000009933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
RATIONALE Central nervous system primitive neuroectodermal tumors (CNS PNETs) mostly occur in children and present as cerebellar medulloblastoma. A few cases of PNETs occur in the cerebral hemisphere. The presence of a PNET in ventricles is extremely rare. The prognosis of CNS PNET is extremely poor, and the 5-year survival rate does not exceed 35%. In the present study, we describe the first case of a PNET in the ventricles with good prognosis. PATIENT CONCERNS The case of a 36-year-old man is reported, who presented with a progressively worsening headache for 2 months. DIAGNOSES Magnetic resonance imaging (MRI) revealed multiple tubercula on the walls of the lateral and third ventricles. Histopathologic analysis revealed a hypercellular tumor with small round cells containing hyperchromatic nuclei and a high nucleus:cytoplasm ratio. The analysis was consistent with PNET. INTERVENTIONS Radiation therapy covering the entire craniospinal axis was administered, with Temozolomide for synchronous auxiliary treatment. OUTCOMES The patient was follow-up for a year and showed no signs of recurrence. LESSONS We present the first CNS PNET located in the ventricles with good prognosis. In this case, radiotherapy with Temozolomide auxiliary treatment presented good efficacy and safety to treat PNET. Additional studies on biomarkers may be useful in predicting personalized therapeutic response.
Collapse
Affiliation(s)
| | | | - Yutong Dong
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin, China
| | | |
Collapse
|
27
|
Pires E, Sung P, Wiese C. Role of RAD51AP1 in homologous recombination DNA repair and carcinogenesis. DNA Repair (Amst) 2017; 59:76-81. [PMID: 28963981 PMCID: PMC5643253 DOI: 10.1016/j.dnarep.2017.09.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/01/2017] [Accepted: 09/21/2017] [Indexed: 12/11/2022]
Abstract
Homologous recombination (HR) serves to repair DNA double-strand breaks and damaged replication forks and is essential for maintaining genome stability and tumor suppression. HR capacity also determines the efficacy of anticancer therapy. Hence, there is an urgent need to better understand all HR proteins and sub-pathways. An emerging protein that is critical for RAD51-mediated HR is RAD51-associated protein 1 (RAD51AP1). Although much has been learned about its biochemical attributes, the precise molecular role of RAD51AP1 in the HR reaction is not yet fully understood. The available literature also suggests that RAD51AP1 expression may be relevant for cancer development and progression. Here, we review the efforts that led to the discovery of RAD51AP1 and elaborate on our current understanding of its biochemical profile and biological function. We also discuss how RAD51AP1 may help to promote cancer development and why it could potentially represent a promising new target for therapeutic intervention.
Collapse
Affiliation(s)
- Elena Pires
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA; Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
28
|
Silva MC, Bryan KE, Morrical MD, Averill AM, Dragon J, Wiegmans AP, Morrical SW. Defects in recombination activity caused by somatic and germline mutations in the multimerization/BRCA2 binding region of human RAD51 protein. DNA Repair (Amst) 2017; 60:64-76. [PMID: 29100040 DOI: 10.1016/j.dnarep.2017.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/10/2017] [Accepted: 10/19/2017] [Indexed: 10/18/2022]
Abstract
The human RAD51 recombinase possesses DNA pairing and strand exchange activities that are essential for the error-free, homology-directed repair of DNA double-strand breaks. The recombination activities of RAD51 are activated upon its assembly into presynaptic filaments on single-stranded DNA at resected DSB ends. Defects in filament assembly caused by mutations in RAD51 or its regulators such as BRCA2 are associated with human cancer. Here we describe two novel RAD51 missense variants located in the multimerization/BRCA2 binding region of RAD51. F86L is a breast tumor-derived somatic variant that affects the interface between adjacent RAD51 protomers in the presynaptic filament. E258A is a germline variant that maps to the interface region between the N-terminal and RecA homology domains of RAD51. Both variants exhibit abnormal biochemistry including altered DNA strand exchange activity. Both variants inhibit the DNA strand exchange activity of wild-type RAD51, suggesting a mechanism for negative dominance. The inhibitory effect of F86L on wild-type RAD51 is surprising since F86L alone exhibits robust DNA strand exchange activity. Our findings indicate that even DNA strand exchange-proficient variants can have negative functional interactions with wild-type RAD51. Thus heterozygous F86L or E258 mutations in RAD51 could promote genomic instability, and thereby contribute to tumor progression.
Collapse
Affiliation(s)
- Michelle C Silva
- Department of Biochemistry, Larner College of Medicine at the University of Vermont, Burlington, VT 05405, United States
| | - Katie E Bryan
- Department of Biochemistry, Larner College of Medicine at the University of Vermont, Burlington, VT 05405, United States
| | - Milagros D Morrical
- Department of Biochemistry, Larner College of Medicine at the University of Vermont, Burlington, VT 05405, United States
| | - April M Averill
- Department of Microbiology & Molecular Genetics, Larner College of Medicine at the University of Vermont, Burlington, VT 05405, United States
| | - Julie Dragon
- Department of Microbiology & Molecular Genetics, Larner College of Medicine at the University of Vermont, Burlington, VT 05405, United States; University of Vermont Cancer Center, Burlington, VT 05405, United States
| | - Adrian P Wiegmans
- Tumor Microenvironment Laboratory, QIMR Berghofer, Herston Rd., Herston, QLD 4006, Australia
| | - Scott W Morrical
- Department of Biochemistry, Larner College of Medicine at the University of Vermont, Burlington, VT 05405, United States; Department of Microbiology & Molecular Genetics, Larner College of Medicine at the University of Vermont, Burlington, VT 05405, United States; University of Vermont Cancer Center, Burlington, VT 05405, United States.
| |
Collapse
|
29
|
Zhang X, Huang Q, Wang X, Xu Y, Xu R, Han M, Huang B, Chen A, Qiu C, Sun T, Wang F, Li X, Wang J, Zhao P, Wang X. Bufalin enhances radiosensitivity of glioblastoma by suppressing mitochondrial function and DNA damage repair. Biomed Pharmacother 2017; 94:627-635. [DOI: 10.1016/j.biopha.2017.07.136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 10/19/2022] Open
|
30
|
Zhang X, Xu R, Zhang C, Xu Y, Han M, Huang B, Chen A, Qiu C, Thorsen F, Prestegarden L, Bjerkvig R, Wang J, Li X. Trifluoperazine, a novel autophagy inhibitor, increases radiosensitivity in glioblastoma by impairing homologous recombination. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:118. [PMID: 28870216 PMCID: PMC5584019 DOI: 10.1186/s13046-017-0588-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 08/28/2017] [Indexed: 01/16/2023]
Abstract
BACKGROUND Resistance to adjuvant radiotherapy is a major cause of treatment failure in patients with glioblastoma (GBM). Autophagy inhibitors have been shown to enhance the efficacy of radiotherapy for certain solid tumors. However, current inhibitors do not penetrate the blood-brain-barrier (BBB). Here, we assessed the radiosensitivity effects of the antipsychotic drug trifluoperazine (TFP) on GBM in vitro and in vivo. METHODS U251 and U87 GBM cell lines as well as GBM cells from a primary human biopsy (P3), were used in vitro and in vivo to evaluate the efficacy of TFP treatment. Viability and cytotoxicity was evaluated by CCK-8 and clonogenic formation assays. Molecular studies using immunohistochemistry, western blots, immunofluorescence and qPCR were used to gain mechanistic insight into the biological activity of TFP. Preclinical therapeutic efficacy was evaluated in orthotopic xenograft mouse models. RESULTS IC50 values of U251, U87 and P3 cells treated with TFP were 16, 15 and 15.5 μM, respectively. TFP increased the expression of LC3B-II and p62, indicating a potential disruption of autophagy flux. These results were further substantiated by a decreased Lysotracker Red uptake, indicating impaired acidification of the lysosomes. We show that TFP and radiation had an additive effect when combined. This effect was in part due to impaired TFP-induced homologous recombination. Mechanistically we show that down-regulation of cathepsin L might explain the radiosensitivity effect of TFP. Finally, combining TFP and radiation resulted in a significant antitumor effect in orthotopic GBM xenograft models. CONCLUSIONS This study provides a strong rationale for further clinical studies exploring the combination therapy of TFP and radiation to treat GBM patients.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Ran Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Chao Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Yangyang Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Mingzhi Han
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Chen Qiu
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Frits Thorsen
- Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, 5009, Bergen, Norway.,The Molecular Imaging Center, Department of Biomedicine, University of Bergen, 5009, Bergen, Norway
| | - Lars Prestegarden
- Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, 5009, Bergen, Norway.,Department of Dermatology, Haukeland University Hospital, 5009, Bergen, Norway
| | - Rolf Bjerkvig
- Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, 5009, Bergen, Norway.,Department of Oncology, Luxembourg Institute of Health, L-1526, Strassen, Luxembourg
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China. .,Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, 5009, Bergen, Norway.
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China.
| |
Collapse
|
31
|
Sarwar R, Sheikh AK, Mahjabeen I, Bashir K, Saeed S, Kayani MA. Upregulation of RAD51 expression is associated with progression of thyroid carcinoma. Exp Mol Pathol 2017; 102:446-454. [PMID: 28502582 DOI: 10.1016/j.yexmp.2017.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 04/21/2017] [Accepted: 05/08/2017] [Indexed: 01/21/2023]
Abstract
AIMS RAD51 participates in homologous recombination repair (HRR) of double-stranded DNA breaks (DSBs) which may cause genomic instability and cancer. The aim of this study was to investigate RAD51 gene expression at transcriptional and translational levels to measure mRNA and protein level and to correlate its relationship with proliferation marker, Ki67 in thyroid cancer patients. This study also explored correlation of these genes with different clinicopathological parameters of the study cohort by Spearman's rank correlation coefficient. METHODS Quantitative real time polymerase chain reaction (qRT-PCR) and immunohistochemistry were used to detect mRNA transcript levels and protein expression of RAD51 and Ki67 in 102 cases of thyroid cancer tissues and equal number of uninvolved healthy thyroid tissue controls. RESULTS Data showed that expression for both RAD51 and Ki67 was significantly increased in thyroid cancer (p<0.001). High RAD51 and Ki67 expression was associated with later stages, poor tissue differentiation, large tumor size, positive lymph node metastasis and distant metastasis. The correlation analysis demonstrated a strong positive correlation (r=0.461) between RAD51 and Ki67 on mRNA level and on protein level (r=0.866). Strong correlation was observed between clinicopathological characteristics and selected molecules. CONCLUSION The present study concluded that upregulation of RAD51 and overexpression of Ki67 may be associated with the progression of thyroid cancer.
Collapse
Affiliation(s)
- R Sarwar
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS Institute of Information Technology Islamabad, Pakistan
| | - A K Sheikh
- Pathology Department, Pakistan Institute of Medical Sciences Islamabad (PIMS), Pakistan
| | - I Mahjabeen
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS Institute of Information Technology Islamabad, Pakistan
| | - K Bashir
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS Institute of Information Technology Islamabad, Pakistan
| | - S Saeed
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS Institute of Information Technology Islamabad, Pakistan
| | - M A Kayani
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS Institute of Information Technology Islamabad, Pakistan.
| |
Collapse
|
32
|
The effects of methionine on TCE-induced DNA methylation and mRNA expression changes in mouse liver. Mol Cell Toxicol 2017. [DOI: 10.1007/s13273-017-0006-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Zhang J, Wang JC, Li YH, Wang RX, Fan XM. Expression of PH Domain Leucine-rich Repeat Protein Phosphatase, Forkhead Homeobox Type O 3a and RAD51, and their Relationships with Clinicopathologic Features and Prognosis in Ovarian Serous Adenocarcinoma. Chin Med J (Engl) 2017; 130:280-287. [PMID: 28139510 PMCID: PMC5308009 DOI: 10.4103/0366-6999.198932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Ovarian serous adenocarcinoma can be divided into low- and high-grade tumors, which exhibit substantial differences in pathogenesis, clinicopathology, and prognosis. This study aimed to investigate the differences in the PH domain leucine-rich repeat protein phosphatase (PHLPP), forkhead homeobox type O 3a (FoxO3a), and RAD51 protein expressions, and their associations with prognosis in patients with low- and high-grade ovarian serous adenocarcinomas. Methods: The PHLPP, FoxO3a, and RAD51 protein expressions were examined in 94 high- and 26 low-grade ovarian serous adenocarcinomas by immunohistochemistry. The differences in expression and their relationships with pathological features and prognosis were analyzed. Results: In high-grade serous adenocarcinomas, the positive rates of PHLPP and FoxO3a were 24.5% and 26.6%, while in low-grade tumors, they were 23.1% and 26.9%, respectively (P < 0.05 vs. the control specimens; low- vs. high-grade: P > 0.05). The positive rates of RAD51 were 70.2% and 65.4% in high- and low-grade serous adenocarcinomas, respectively (P < 0.05 vs. the control specimens; low- vs. high-grade: P > 0.05). Meanwhile, in high-grade tumors, Stage III/IV tumors and lymph node and omental metastases were significantly associated with lower PHLPP and FoxO3a and higher RAD51 expression. The 5-year survival rates of patients with PHLPP- and FoxO3a-positive high-grade tumors (43.5% and 36.0%) were significantly higher than in patients with PHLPP-negative tumors (5.6% and 7.2%, respectively; P < 0.05). Similarly, the 5-year survival rate of RAD51-positive patients (3.0%) was significantly lower than in negative patients (42.9%; P < 0.05). In low-grade tumors, the PHLPP, FoxO3a, and RAD51 expressions were not significantly correlated with lymph node metastasis, omental metastasis, Federation of Gynecology and Obstetrics stage, or prognosis. Conclusions: Abnormal PHLPP, FoxO3a, and RAD51 protein expressions may be involved in the development of high- and low-grade ovarian serous adenocarcinomas, suggesting common molecular pathways. Decreased PHLPP and FoxO3a and increased RAD51 protein expression may be important molecular markers for poor prognosis, and RAD51 may be an independent prognosis factor, of high-grade, but not low-grade, ovarian serous adenocarcinomas.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Jun-Chao Wang
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Yue-Hong Li
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Rui-Xue Wang
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Xiao-Mei Fan
- Department of Gynecologic Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| |
Collapse
|
34
|
Xu Y, Wang X, Chen SM, Chen C, Wang Y, Xiao BK, Tao ZZ. Effect of silencing key proteins in telomerase mechanism and alternative lengthening of telomeres mechanism in laryngeal cancer cells. Am J Otolaryngol 2016; 37:552-558. [PMID: 27726944 DOI: 10.1016/j.amjoto.2016.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 07/18/2016] [Indexed: 11/29/2022]
Abstract
PURPOSE To explore the influences of telomerase and alternative lengthening of telomeres mechanism on telomere length and laryngeal squamous cell carcinoma in vitro and in vivo. MATERIALS AND METHODS Short hairpin RNA expression vectors targeting the messenger TERT, TRF2, RAD51 and NBS1 were constructed. The mRNA and protein expression of targeted genes in human laryngeal squamous carcinoma cell line HEp-2 was evaluated by reverse transcription polymerase chain reaction and Western blotting separately. The length of telomere was analyzed by fluorescent in-situ hybridization. Cell viability was examined by cell counting Kit-8. Effects on tumor growth were also investigated in vivo. RESULTS The transfection of multiple short hairpin RNAs expression plasmid significantly inhibited the mRNA and protein expression of related genes. Silence of alternative lengthening of telomeres mechanism and telomerase mechanism related genes resulted in the shortening of telomere length in HEp-2 cell. However, silence of alternative lengthening of telomeres mechanism related genes could shorten the telomere length but had no significant difference. Both simultaneously and separately blocking telomerase mechanism and alternative lengthening of telomeres mechanism resulted in reduction of tumor cell viability. Silence of alternative lengthening of telomeres mechanism and telomerase mechanism related genes inhibited the tumor growth in vivo. CONCLUSIONS The inhibition of telomere related gene may be a promising strategy for the treatment of laryngeal squamous cell carcinoma.
Collapse
Affiliation(s)
- Yong Xu
- Department of Otolaryngology - Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiao Wang
- Department of Ultrasonography, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shi-Ming Chen
- Department of Otolaryngology - Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chen Chen
- Department of Otolaryngology - Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Wang
- Department of Otolaryngology - Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo-Kui Xiao
- Department of Otolaryngology - Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ze-Zhang Tao
- Department of Otolaryngology - Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
35
|
Cao J, Luo C, Peng R, Guo Q, Wang K, Wang P, Ye H, Song C. MiRNA-binding site functional polymorphisms in DNA repair genes RAD51, RAD52, and XRCC2 and breast cancer risk in Chinese population. Tumour Biol 2016; 37:10.1007/s13277-016-5459-2. [PMID: 27726100 DOI: 10.1007/s13277-016-5459-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/23/2016] [Indexed: 01/14/2023] Open
Abstract
RAD51, RAD52, and XRCC2 are all involved in DNA homologous recombinational repair, and there are interactions among those genes. Polymorphisms in 3'-UTR of DNA repair genes may change DNA repair capacity by regulating gene expression. However, potential regulatory variants affecting their expression remain largely unexplored. Five miRNA-binding site SNPs (rs7180135 and rs45549040 in RAD51, rs1051669 and rs7963551 in RAD52 and rs3218550 in XRCC2) selected by bioinformatics method were genotyped in 498 breast cancer (BC) patients and 498 matched controls in Chinese population. Association between SNPs and BC risk was analyzed by adjusted odds ratios (ORs) and 95 % confidence intervals (CIs) in unconditional logistic regression model. Quantitative real-time (qRT) PCR and Western Blot assays were used to calculate the relative expression of RAD52 in recombinant plasmid-pGenesil-1-let-7b group and let-7b-inhibitor group. Gene-reproductive factors interactions were evaluated by multifactor dimensionality reduction (MDR) method. We found that individuals with AC (OR 0.684, 95%CI 0.492-0.951) and CC (OR 0.317, 95%CI 0.200-0.503) genotypes of rs7963551 had a significantly lower risk of breast cancer and qRT-PCR and Western Blot revealed that let-7b might downregulate the expression of RAD52 in MCF-7 and SKBR-3 cells. A significant interaction between the number of pregnancy (≥2) and rs7963551 (Ars7963551) was found to increase breast cancer risk by 2.63-fold (OR 2.63; 95%CI 2.03-3.42). In summary, the miRNA-binding SNPs in DNA repair genes RAD51, RAD52, and XRCC2 and their interaction with reproductive factors might play important roles in the development of BC, and let-7b might downregulate RAD52 expression in MCF-7 and SKBR-3 cells.
Collapse
Affiliation(s)
- Jingjing Cao
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Chenglin Luo
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Rui Peng
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Qiaoyun Guo
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Kaijuan Wang
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou, 450001, Henan, People's Republic of China
| | - Peng Wang
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou, 450001, Henan, People's Republic of China
| | - Hua Ye
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou, 450001, Henan, People's Republic of China
| | - Chunhua Song
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou, 450001, Henan, People's Republic of China.
| |
Collapse
|
36
|
Polymorphisms in Cancer Susceptibility Genes XRCC1, RAD51 and TP53 and the Risk of Breast Cancer in Serbian Women. Int J Biol Markers 2016; 31:e258-63. [DOI: 10.5301/jbm.5000201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2016] [Indexed: 01/11/2023]
Abstract
Background Thanks to immense improvements in technology over the past few decades, we have witnessed a major shift towards the idea that breast cancer results from a combined effect of multiple common alleles conferring low risk. This study investigates the role of 3 nonsynonymous SNPs in the DNA repair genes XRCC1 (R399Q), RAD51 (G135C) and TP53 (Arg72Pro) in breast cancer in Serbian women. Patients and Methods Cases of BRCA1/2-negative hereditary breast cancer (n = 52), sporadic breast cancer (n = 106) and age-matched cancer-free female controls (n = 104) were obtained from the Institute for Oncology and Radiology of Serbia's blood bank. Restriction fragment length polymorphism analysis was used for genotyping. Descriptive analyses included genotype and allelic frequencies; the odds ratio and 95% confidence interval were calculated as an estimate of the relative risk. Results A significant difference in QQ+RQ versus RR genotype distribution of XRCC1 was observed between hereditary breast cancer patients and cancer-free controls. The association was confirmed among young breast cancer patients from these high-risk families. The existence of 3 recessive alleles in the RAD51 and XRCC1 genotype combination showed an association with hereditary breast cancer. Odds ratio analysis indicated a strong protective role of the RAD51 GG + TP53 ArgArg + XRCC1 RR combined genotype against hereditary breast cancer negative for BRCA1/2 mutations. Conclusions The XRCC1 R399Q polymorphism showed an association with increased breast cancer risk in Serbia, especially in the hereditary form of the disease and in young breast cancer patients. Dominant alleles of RAD51, TP53 and XRCC1 combined genotypes indicated a strong protective role against hereditary breast cancer.
Collapse
|
37
|
High expression of Rad51c predicts poor prognostic outcome and induces cell resistance to cisplatin and radiation in non-small cell lung cancer. Tumour Biol 2016; 37:13489-13498. [PMID: 27465554 DOI: 10.1007/s13277-016-5192-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 07/13/2016] [Indexed: 02/06/2023] Open
Abstract
Rad51c is critical for homologous recombination repair and genomic stability and may play roles in tumorigenesis and cancer therapy. We investigated the expression level and clinical significance of Rad51c in non-small cell lung cancer (NSCLC) and determined the effect of Rad51c on NSCLC cell chemosensitivity and radiosensitivity. Rad51c expression was detected using immunohistochemistry and was higher in NSCLC patient samples than in adjacent normal tissues. Kaplan-Meier analysis revealed that high Rad51c expression was an independent predictor of short overall survival (OS) and disease-free survival (DFS) in NSCLC patients receiving chemotherapy and/or radiotherapy. Furthermore, Rad51c knockdown increased the killing effect of ionizing radiation (IR) and enhanced cisplatin-induced apoptotic cells in NSCLC cells by disrupting the repair of cisplatin- and IR-induced DNA damage. In addition, ectopic expression of Rad51c dramatically enhanced NSCLC cell resistance to cisplatin and radiotherapy. These findings suggest that increased expression of Rad51c may confer resistance to chemotherapy and/or radiotherapy of NSCLC, and also be an independent prognostic factor for patient outcome. Therefore, targeting Rad51c may represent an improved therapeutic strategy for NSCLC patients with locally advanced disease.
Collapse
|
38
|
Silva MC, Morrical MD, Bryan KE, Averill AM, Dragon J, Bond JP, Morrical SW. RAD51 variant proteins from human lung and kidney tumors exhibit DNA strand exchange defects. DNA Repair (Amst) 2016; 42:44-55. [PMID: 27153211 DOI: 10.1016/j.dnarep.2016.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/16/2016] [Accepted: 02/29/2016] [Indexed: 02/05/2023]
Abstract
In human cells, error-free repair of DNA double-strand breaks requires the DNA pairing and strand exchange activities of RAD51 recombinase. Activation of RAD51 recombination activities requires the assembly of RAD51 presynaptic filaments on the single-stranded DNA that forms at resected DSB ends. Mutations in proteins that control presynaptic filament assembly, such as BRCA2, and in RAD51 itself, are associated with human breast cancer. Here we describe the properties of two mutations in RAD51 protein that derive from human lung and kidney tumors, respectively. Sequence variants Q268P and Q272L both map to the DNA binding loop 2 (L2) region of RAD51, a motif that is involved in DNA binding and in the allosteric activation of ATP hydrolysis and DNA strand exchange activities. Both mutations alter the thermal stability, DNA binding, and ATPase properties of RAD51, however both variants retain intrinsic DNA strand exchange activity towards oligonucleotide substrates under optimized conditions. In contrast, both Q268P and Q272L variants exhibit drastically reduced DNA strand exchange activity in reaction mixtures containing long homologous ssDNA and dsDNA substrates and human RPA protein. Mixtures of wild-type and variant proteins also exhibit reduced DNA strand exchange activity, suggesting that heterozygous mutations could negatively affect DNA recombination and repair processes in vivo. Together, the findings of this study suggest that hypomorphic missense mutations in RAD51 protein could be drivers of genomic instability in cancer cells, and thereby contribute to the etiology of metastatic disease.
Collapse
Affiliation(s)
- Michelle C Silva
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405, United States
| | - Milagros D Morrical
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405, United States
| | - Katie E Bryan
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405, United States
| | - April M Averill
- Department of Microbiology & Molecular Genetics, University of Vermont College of Medicine, Burlington, VT, 05405 United States
| | - Julie Dragon
- Department of Microbiology & Molecular Genetics, University of Vermont College of Medicine, Burlington, VT, 05405 United States
| | - Jeffrey P Bond
- Department of Microbiology & Molecular Genetics, University of Vermont College of Medicine, Burlington, VT, 05405 United States; University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT 05405 United States
| | - Scott W Morrical
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405, United States; Department of Microbiology & Molecular Genetics, University of Vermont College of Medicine, Burlington, VT, 05405 United States; University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT 05405 United States.
| |
Collapse
|
39
|
Choi SH, Kim SH, Shim KW, Han JW, Choi J, Kim DS, Lyu CJ, Kim JW, Suh CO, Cho J. Treatment Outcome and Prognostic Molecular Markers of Supratentorial Primitive Neuroectodermal Tumors. PLoS One 2016; 11:e0153443. [PMID: 27074032 PMCID: PMC4830607 DOI: 10.1371/journal.pone.0153443] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/29/2016] [Indexed: 11/19/2022] Open
Abstract
Background To identify prognostic factors and define the optimal management of patients with supratentorial primitive neuroectodermal tumors (sPNETs), we investigated treatment outcomes and explored the prognostic value of specific molecular markers. Methods A total of 47 consecutive patients with pathologically confirmed sPNETs between May 1985 and June 2012 were included. Immunohistochemical analysis of LIN28, OLIG2, and Rad51 expression was performed and correlated with clinical outcome. Results With a median follow-up of 70 months, 5-year overall survival (OS) and progression-free survival (PFS) was 55.5% and 40%, respectively, for all patients. Age, surgical extent, and radiotherapy were significant prognostic factors for OS and PFS. Patients who received initially planned multimodal treatment without interruption (i.e., radiotherapy and surgery (≥subtotal resection), with or without chemotherapy) showed significantly higher 5-year OS (71.2%) and PFS (63.1%). In 29 patients with available tumor specimens, tumors with high expression of either LIN28 or OLIG2 or elevated level of Rad51 were significantly associated with poorer prognosis. Conclusions We found that multimodal treatment improved outcomes for sPNET patients, especially when radiotherapy and ≥subtotal resection were part of the treatment regimen. Furthermore, we confirmed the prognostic significance of LIN28 and OLIG2 and revealed the potential role of Rad51 in sPNETs.
Collapse
Affiliation(s)
- Seo Hee Choi
- Departments of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Se Hoon Kim
- Departments of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Kyu-Won Shim
- Departments of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Woo Han
- Departments of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Junjeong Choi
- Department of Pharmacy, College of Pharmacy, Yonsei University College of Medicine, Seoul, Korea
| | - Dong-Seok Kim
- Departments of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Chuhl Joo Lyu
- Departments of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Jun Won Kim
- Department of Radiation Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Chang-Ok Suh
- Departments of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Jaeho Cho
- Departments of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
40
|
Association of BRCA1, BRCA2, RAD51, and HER2 gene polymorphisms with the breast cancer risk in the Bangladeshi population. Breast Cancer 2016; 24:229-237. [PMID: 27068824 DOI: 10.1007/s12282-016-0692-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 03/17/2016] [Indexed: 10/22/2022]
Abstract
PURPOSE Breast cancer is considered as the most frequent female malignancy. Altered gene expressions due to genetic polymorphisms in the BRCA1, BRCA2, RAD51, and HER2 contribute toward the development of breast cancer, and yet, no such type of study has been conducted in the Bangladeshi population. This study was designed to evaluate the role of BRCA1rs80357713, BRCA1rs80357906, BRCA2rs11571653, RAD51rs1801320, and HER2rs1136201 polymorphisms as risk factors in the development of breast cancer in the Bangladeshi population. METHODS A total 310 patients with invasive breast cancers were recruited as cases from different public and private hospitals of Bangladesh, and 250 Bangladeshi healthy women matching age with the patients were recruited as controls. Polymerase chain reaction-restriction fragment length polymorphism method was used to analyze the genetic polymorphisms. RESULTS Patients carrying BRCA1/2 mutations, GC and GC plus CC genotypes of RAD51rs1801320, and AG plus GG genotype of HER2rs1136201 polymorphisms were found to be associated with breast cancer. In subgroup analysis, AG plus GG genotype of HER2rs1136201 was found to be associated with the breast cancer risk in the patients younger than 45 years of age compared with the older patients having more than 45 years of age, and RAD51rs1801320 was related to the tumor size and tumor aggressiveness (higher graded tumor). CONCLUSION Our results indicate that BRCA1/BRCA2, RAD51rs1801320 and HER2rs1136201 polymorphisms were associated with breast cancer in the studied population.
Collapse
|
41
|
Tulbah S, Alabdulkarim H, Alanazi M, Parine NR, Shaik J, Pathan AAK, Al-Amri A, Khan W, Warsy A. Polymorphisms in RAD51 and their relation with breast cancer in Saudi females. Onco Targets Ther 2016; 9:269-77. [PMID: 26834486 PMCID: PMC4716748 DOI: 10.2147/ott.s93343] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The present study aimed at investigating the relationship between rs1801320 (G>C), rs1801321 (G>T), and rs2619681 (C>T) RAD51 gene polymorphisms and the risk of breast cancer development in Saudi females. The genotypes were analyzed using TaqMan genotyping assay and polymerase chain reaction-restriction fragment length polymorphism. The genotype and allele frequencies were computed using chi-square or Fisher’s exact test (two-tailed) by SPSS 21 software. The results showed that rs1801321G>T GG genotype and G allele frequency were strongly (P<0.0001) related to an elevated risk of breast cancer, while the mutant T allele appeared to provide protection against breast cancer development as observed from the significantly lower (P<0.0001) frequencies of the TT and GT genotypes in cancer patients compared to the healthy controls. The variant rs1801320G>C showed no significant differences in the frequencies of the genotypes and alleles in the patients and the control groups. The CC genotype and C allele frequency of rs2619681 (C>T) variant were significantly (P=0.012) higher in cancer patients, whereas the T allele showed a protective effect against cancer development. The frequencies of the three single-nucleotide polymorphisms did not differ in cancer patients with different tumor grades and human epidermal growth factor receptor 2 status (+ or −). However, the genotype frequency of rs1801320 (135G>C) differed in the patients with estrogen receptor (ER)+ and ER−, where CC genotype showed a significantly higher prevalence in the females with ER− who were suffering from breast cancer. In addition, the frequency of C allele of rs2619681 (C>T) was also significantly higher in the breast cancer patients who were ER+ and progesterone receptor (PR)+ compared to those with ER− and PR−. In the Saudi females, rs1801320 did not show an association with risk of breast cancer. Taken together, the results suggest that RAD51 rs1801321 polymorphism may be involved in the etiology of breast cancer in the Saudi females; however, further studies are necessary to confirm this relation.
Collapse
Affiliation(s)
- Sahar Tulbah
- Department of Biochemistry, College of Science, King Saud University, Center of Scientific and Medical Colleges, Riyadh, Saudi Arabia
| | - Huda Alabdulkarim
- Department of Hematology/Oncology, King Fahad Medical City Hospital, Comprehensive Cancer Center, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Alanazi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Narasimha Reddy Parine
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jilani Shaik
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Akbar Ali Khan Pathan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah Al-Amri
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Wajahatullah Khan
- Basic Sciences Department, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Arjumand Warsy
- Department of Biochemistry, College of Science, King Saud University, Center of Scientific and Medical Colleges, Riyadh, Saudi Arabia
| |
Collapse
|
42
|
Ali AM, AbdulKareem H, Al Anazi M, Reddy Parine N, Shaik JP, Alamri A, Ali Khan Pathan A, Warsy A. Polymorphisms in DNA Repair Gene XRCC3 and Susceptibility to Breast Cancer in Saudi Females. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8721052. [PMID: 26881229 PMCID: PMC4736606 DOI: 10.1155/2016/8721052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 12/22/2022]
Abstract
We investigated three common polymorphisms (SNPs) in the XRCC3 gene (rs861539, rs1799794, and rs1799796) in 143 Saudi females suffering from breast cancer (median age = 51.4 years) and 145 age matched normal healthy controls. DNA was extracted from whole blood and genotyping was conducted using PCR-RFLP. rs1799794 showed significant association, where AA and AA+AG occurred at a significantly higher frequency in the cancer patients compared to the control group (OR: 28.1; 95% CI: 3.76-21.12; χ (2): 22.82; p < 0.0001). The G allele was protective and presented with a dominant model. The genotype and allele frequencies of rs861539 C>T and rs1799796 A>G did not show a significant difference when the results in the patients and controls were compared. However, the frequency of rs1799796 differed significantly in patients with different age of diagnosis, tumor grade, and ER and HER2 status. The wild type A allele occurred at a higher frequency in the ER- and HER2- group. Our results among Saudis suggest that some variations in XRCC3 may contribute to breast cancer susceptibility. In conclusion, the results obtained during this study suggest that rs1799794 in XRCC3 shows strong association with breast cancer development in Saudi females.
Collapse
Affiliation(s)
- Alaa Mohammed Ali
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Huda AbdulKareem
- Comprehensive Cancer Center, Department of Women's Imaging, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Mohammad Al Anazi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Narasimha Reddy Parine
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jilani Purusottapatnam Shaik
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah Alamri
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Akbar Ali Khan Pathan
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Arjumand Warsy
- Department of Biochemistry, Center for Science and Medical Studies for Girls, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| |
Collapse
|
43
|
Al-Zoubi MS, Mazzanti CM, Zavaglia K, Hamad MA, Armogida I, Lisanti MP, Bevilacqua G. Homozygous T172T and Heterozygous G135C Variants of Homologous Recombination Repairing Protein RAD51 are Related to Sporadic Breast Cancer Susceptibility. Biochem Genet 2015; 54:83-94. [PMID: 26650628 DOI: 10.1007/s10528-015-9703-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 11/21/2015] [Indexed: 12/30/2022]
|
44
|
Zhang BB, Wang DG, Xuan C, Sun GL, Deng KF. Genetic 135G/C polymorphism of RAD51 gene and risk of cancer: a meta-analysis of 28,956 cases and 28,372 controls. Fam Cancer 2015; 13:515-26. [PMID: 24859942 DOI: 10.1007/s10689-014-9729-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The RAD51 gene is essential for the repair of damaged DNA related to tumor development. Although a number of genetic studies have attempted to link the 135G/C polymorphism of RAD51 gene to the risk of cancer, the results were inconclusive. The present study aimed at investigating the pooled association using the more comprehensive meta-analysis. The PubMed, EBSCO, and BIOSIS databases were searched to identify eligible studies which were published in English before March 2014. Data were extracted using standardized methods. The association was assessed by odds ratio (OR) with 95 % confidence interval (CI). Begg's test was used to measure publication bias. Sensitivity analyses were also performed to assess the stability of the results. A total of 45 eligible studies with 28,956 patients and 28,372 controls were included in this meta-analysis. Overall, significant association was detected between 135G/C polymorphism and increased cancer risk (C allele vs. G allele: OR 1.23, 95 % CI 1.18-1.28; CC vs. GG: OR 2.41, 95 % CI 2.12-2.74; CC vs. CG: OR 3.86, 95 % CI 3.41-4.37; recessive model: OR 3.57, 95 % CI 3.19-4.00). In further stratified analysis, significantly elevated cancer risk was observed among Caucasians but not Asians. Subgroup analysis by different cancers also showed their significant associations in breast cancer, hematologic malignances, ovarian cancer, colorectal cancer and endometrial cancer, but not in head and neck cancer. Our results indicated that the RAD51 135G/C polymorphism was a candidate for susceptibility of cancer. The effect of the variants on the expression levels and the possible functional role of the variants in different cancers should be addressed in further studies.
Collapse
Affiliation(s)
- Bei-Bei Zhang
- Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| | | | | | | | | |
Collapse
|
45
|
Krivokuca AM, Malisic EJ, Dobricic JD, Brotto KV, Cavic MR, Jankovic RN, Tomasevic ZI, Brankovic-Magic MV. RAD51 135G>C and TP53 Arg72Pro polymorphisms and susceptibility to breast cancer in Serbian women. Fam Cancer 2015; 13:173-80. [PMID: 24114315 DOI: 10.1007/s10689-013-9690-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Breast cancer is a complex disease with both genetic and environmental factors involved in its etiology. An important role of polymorphisms in genes involved in DNA repair has been reported related to breast cancer risk. We conducted a case-control study in order to investigate the association of RAD51 135G>C and TP53 Arg72Pro polymorphisms with breast cancer in Serbian women.48 BRCA negative women with breast cancer and family history of breast/ovarian cancer (hereditary group), 107 women with breast cancer but without family history of the disease (sporadic group) and 114 healthy women without a history of the disease (control group) were included. Restriction fragment length polymorphism was used for genotyping. Genotype and allelic frequencies, the odds ratio (OR) and the 95 % confidence interval (CI) were calculated as an estimate of relative risk. The Hardy-Weinberg equilibrium was tested using χ(2) test. Significance was considered for p < 0.05. RAD51 135G>C showed statistically significant association of CC genotype and increased breast cancer risk (OR 10.28, 95 % CI 1.12-94.5) in hereditary group of patients compared to the control group. Regarding the TP53 Arg72Pro, we showed statistical significance for ProPro + ProArg comparing to ArgArg (OR 2.34, 95 %, CI 1.17-4.70) in hereditary compared to sporadic group. RAD51 135G>C contributes to hereditary breast cancer in Serbian population, with CC genotype as a risk factor. We also found that carriers of Pro allele of TP53 codon 72 is related to hereditary cancer comparing to sporadic one, which indicates it as a potential risk factor for hereditary form of disease.
Collapse
Affiliation(s)
- Ana M Krivokuca
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia,
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Chen J, Morrical MD, Donigan KA, Weidhaas JB, Sweasy JB, Averill AM, Tomczak JA, Morrical SW. Tumor-associated mutations in a conserved structural motif alter physical and biochemical properties of human RAD51 recombinase. Nucleic Acids Res 2014; 43:1098-111. [PMID: 25539919 PMCID: PMC4333388 DOI: 10.1093/nar/gku1337] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Human RAD51 protein catalyzes DNA pairing and strand exchange reactions that are central to homologous recombination and homology-directed DNA repair. Successful recombination/repair requires the formation of a presynaptic filament of RAD51 on ssDNA. Mutations in BRCA2 and other proteins that control RAD51 activity are associated with human cancer. Here we describe a set of mutations associated with human breast tumors that occur in a common structural motif of RAD51. Tumor-associated D149N, R150Q and G151D mutations map to a Schellman loop motif located on the surface of the RecA homology domain of RAD51. All three variants are proficient in DNA strand exchange, but G151D is slightly more sensitive to salt than wild-type (WT). Both G151D and R150Q exhibit markedly lower catalytic efficiency for adenosine triphosphate hydrolysis compared to WT. All three mutations alter the physical properties of RAD51 nucleoprotein filaments, with G151D showing the most dramatic changes. G151D forms mixed nucleoprotein filaments with WT RAD51 that have intermediate properties compared to unmixed filaments. These findings raise the possibility that mutations in RAD51 itself may contribute to genome instability in tumor cells, either directly through changes in recombinase properties, or indirectly through changes in interactions with regulatory proteins.
Collapse
Affiliation(s)
- Jianhong Chen
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Milagros D Morrical
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Katherine A Donigan
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Joanne B Weidhaas
- Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Joann B Sweasy
- Department of Microbiology and Molecular Genetics, University of Vermont College of Medicine, Burlington, VT 05405, USA Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - April M Averill
- Department of Microbiology and Molecular Genetics, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Jennifer A Tomczak
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Scott W Morrical
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405, USA Department of Microbiology and Molecular Genetics, University of Vermont College of Medicine, Burlington, VT 05405, USA
| |
Collapse
|
47
|
Xiong T, Wei H, Chen X, Xiao H. PJ34, a poly(ADP-ribose) polymerase (PARP) inhibitor, reverses melphalan-resistance and inhibits repair of DNA double-strand breaks by targeting the FA/BRCA pathway in multidrug resistant multiple myeloma cell line RPMI8226/R. Int J Oncol 2014; 46:223-32. [PMID: 25351371 DOI: 10.3892/ijo.2014.2726] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/03/2014] [Indexed: 11/06/2022] Open
Abstract
There is still no ideal treatment for multidrug resistant multiple myeloma, looking for drugs which can reverse chemotherapy resistance and enhance curative effects of chemotherapy drugs becomes a problem that needs to be solved urgently. Poly(ADP-ribose) polymerase inhibitors appear to be an important tool for medical therapy of several malignancies. In the present study, we investigated the potential of the PARP-1 inhibitor PJ34, in vitro, to further enhance the efficacy of the traditional chemotherapy drug melphalan in the multidrug-resistant multiple myeloma cell line RPMI8226/R. The effects of different concentrations of PJ34 and melphalan on cell proliferation were determined by the CCK-8 assay. The expressions of FA/BRCA pathway-related factors were detected by western blotting and RT-PCR. The percentage of cell apoptosis was measured with flow cytometry. DNA double-strand break (DSB) repair was quantified by γH2AX immunofluorescence. In addition, DNA damage repair at the level of the individual cell was determined by comet assay. Co-administration of PJ34 and melphalan had synergistic inhibitory effects on the proliferation of RPMI8226/R cells, suggesting more powerful antitumor activities. The apoptosis percentage also was increased more obviously by the treatment of melphalan plus PJ34. The activation of FA/BRCA pathway was inhibited by downregulation of related factors including FANCD2, BRCA2 and Rad51. PJ34 significantly increased the ratio of γH2AX-positive cells and the number of foci/cells. The comet tail rate of cells, tail length, tail moment and Olive tail moment all increased after PJ34 treatment in RPMI8226/R cells. These results indicate that PJ34 combined treatment with melphalan produces synergistic effects and reverses multidrug resistance of RPMI8226/R cells effectively. PJ34 cannot induce DNA damage directly, but it may increase the DNA damage induced by melphalan through inhibiting DNA damage repair. The suppression of FA/BRCA pathway may be the mechanism. Therefore, we suggest that PARP inhibitors may deserve future investigations as tools for medical treatment of multidrug resistant multiple myeloma.
Collapse
Affiliation(s)
- Ting Xiong
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Heng Wei
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Xiaoqiong Chen
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Hui Xiao
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
48
|
Esnault C, Renodon-Cornière A, Takahashi M, Casse N, Delorme N, Louarn G, Fleury F, Pilard JF, Chénais B. Assessment of DNA binding to human Rad51 protein by using quartz crystal microbalance and atomic force microscopy: effects of ADP and BRC4-28 peptide inhibitor. Chemphyschem 2014; 15:3753-60. [PMID: 25208912 DOI: 10.1002/cphc.201402451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Indexed: 11/06/2022]
Abstract
The interaction of human Rad51 protein (HsRad51) with single-stranded deoxyribonucleic acid (ssDNA) was investigated by using quartz crystal microbalance (QCM) monitoring and atomic force microscopy (AFM) visualization. Gold surfaces for QCM and AFM were modified by electrografting of the in situ generated aryldiazonium salt from the sulfanilic acid to obtain the organic layer Au-ArSO3 H. The Au-ArSO3 H layer was activated by using a solution of PCl5 in CH2 Cl2 to give a Au-ArSO2 Cl layer. The modified surface was then used to immobilize long ssDNA molecules. The results obtained showed that the presence of adenosine diphosphate promotes the protein autoassociation rather than nucleation around DNA. In addition, when the BRC4-28 peptide inhibitor was used, both QCM and AFM confirmed the inhibitory effect of BRC4-28 toward HsRad51 autoassociation. Altogether these results show the suitability of this modified surface to investigate the kinetics and structure of DNA-protein interactions and for the screening of inhibitors.
Collapse
Affiliation(s)
- Charles Esnault
- Institut des Molécules et Matériaux du Mans (IMMM), UMR CNRS 6283, Université du Maine, Av. Olivier Messiaen, 72085 Le Mans Cedex 9 (France)
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Balacescu O, Balacescu L, Tudoran O, Todor N, Rus M, Buiga R, Susman S, Fetica B, Pop L, Maja L, Visan S, Ordeanu C, Berindan-Neagoe I, Nagy V. Gene expression profiling reveals activation of the FA/BRCA pathway in advanced squamous cervical cancer with intrinsic resistance and therapy failure. BMC Cancer 2014; 14:246. [PMID: 24708616 PMCID: PMC4021393 DOI: 10.1186/1471-2407-14-246] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 04/03/2014] [Indexed: 12/18/2022] Open
Abstract
Background Advanced squamous cervical cancer, one of the most commonly diagnosed cancers in women, still remains a major problem in oncology due to treatment failure and distant metastasis. Antitumor therapy failure is due to both intrinsic and acquired resistance; intrinsic resistance is often decisive for treatment response. In this study, we investigated the specific pathways and molecules responsible for baseline therapy failure in locally advanced squamous cervical cancer. Methods Twenty-one patients with locally advanced squamous cell carcinoma were enrolled in this study. Primary biopsies harvested prior to therapy were analyzed for whole human gene expression (Agilent) based on the patient’s 6 months clinical response. Ingenuity Pathway Analysis was used to investigate the altered molecular function and canonical pathways between the responding and non-responding patients. The microarray results were validated by qRT-PCR and immunohistochemistry. An additional set of 24 formalin-fixed paraffin-embedded cervical cancer samples was used for independent validation of the proteins of interest. Results A 2859-gene signature was identified to distinguish between responder and non-responder patients. ‘DNA Replication, Recombination and Repair’ represented one of the most important mechanisms activated in non-responsive cervical tumors, and the ‘Role of BRCA1 in DNA Damage Response’ was predicted to be the most significantly altered canonical pathway involved in intrinsic resistance (p = 1.86E-04, ratio = 0.262). Immunohistological staining confirmed increased expression of BRCA1, BRIP1, FANCD2 and RAD51 in non-responsive compared with responsive advanced squamous cervical cancer, both in the initial set of 21 cervical cancer samples and the second set of 24 samples. Conclusions Our findings suggest that FA/BRCA pathway plays an important role in treatment failure in advanced cervical cancer. The assessment of FANCD2, RAD51, BRCA1 and BRIP1 nuclear proteins could provide important information about the patients at risk for treatment failure.
Collapse
Affiliation(s)
- Ovidiu Balacescu
- The Oncology Institute "Prof Dr, Ion Chiricuta", 34-36 Republicii street, 400015 Cluj-Napoca, Romania.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Downregulation of Rad51 participates in OTA-induced DNA double-strand breaks in GES-1 cells in vitro. Toxicol Lett 2014; 226:214-21. [PMID: 24525463 DOI: 10.1016/j.toxlet.2014.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/24/2014] [Accepted: 02/03/2014] [Indexed: 11/23/2022]
Abstract
Ochratoxin A (OTA), a mycotoxin produced by ubiquitous Aspergilli, is carcinogenic, teratogenic, and nephrotoxic in both humans and animals. Our previous study found that OTA induced DNA double-strand breaks (DSBs) and resulted in G2 phase arrest in human gastric epithelium immortalized (GES-1) cells. DSBs can cause genomic instability, mutations, and neoplastic transformations, and improper repair of DSBs may lead to the development of cancer. Rad51 is a key protein in the homologous recombination (HR) pathway of DSBs repair. The roles of Rad51 in the repair of DNA damage vary in response to different types of cytotoxic agents. The effect of OTA on Rad51 expression and its putative role in the OTA-induced DSBs in GES-1 cells are still not clear enough. The aim of the current study is to elucidate the role of Rad51 in OTA-induced DSBs in GES-1 cells. The results showed that OTA treatment decreased Rad51 expression in a dose- and time-dependent manner. Specific downregulation of Rad51 by siRNA induced DSBs and G2 phase arrest. Rad51 overexpression by transfection with a Rad51-expressing plasmid partly rescued the DSBs and G2 phase arrest in OTA-treated cells. The findings indicate that downregulation of Rad51 contributes to OTA-induced DNA damage in GES-1 cells. Knockdown of p53 with siRNA for 48h effectively reversed the downregulation of Rad51, and decreased the OTA-induced DSBs in GES-1 cells. In addition, the downregulation of Rad51 induced by OTA could be significantly attenuated with specific ERK inhibitor PD98059 or specific p38 MAPK inhibitor SB203580 pre-treatment in GES-1 cells. Thus, the results suggest that downregulation of Rad51 participates in OTA-induced DNA double-strand breaks in GES-1 cells in vitro. And p53, ERK and p38 signaling pathways are all involved in the process.
Collapse
|