1
|
Tang WZ, Cui ZJ. Permanent Photodynamic Activation of the Cholecystokinin 2 Receptor. Biomolecules 2020; 10:236. [PMID: 32033232 PMCID: PMC7072308 DOI: 10.3390/biom10020236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 02/07/2023] Open
Abstract
The cholecystokinin 2 receptor (CCK2R) is expressed in the central nervous system and peripheral tissues, playing an important role in higher nervous and gastrointestinal functions, pain sensation, and cancer growth. CCK2R is reversibly activated by cholecystokinin or gastrin, but whether it can be activated permanently is not known. In this work, we found that CCK2R expressed ectopically in CHO-K1 cells was permanently activated in the dark by sulfonated aluminum phthalocyanine (SALPC / AlPcS4, 10-1,000 nM), as monitored by Fura-2 fluorescent calcium imaging. Permanent CCK2R activation was also observed with AlPcS2, but not PcS4. CCK2R previously exposed to SALPC (3 and 10 nM) was sensitized by subsequent light irradiation (> 580 nm, 31.5 mW·cm-2). After the genetically encoded protein photosensitizer mini singlet oxygen generator (miniSOG) was fused to the N-terminus of CCK2R and expressed in CHO-K1 cells, light irradiation (450 nm, 85 mW·cm-2) activated in-frame CCK2R (miniSOG-CCK2R), permanently triggering persistent calcium oscillations blocked by the CCK2R antagonist YM 022 (30 nM). From these data, it is concluded that SALPC is a long-lasting CCK2R agonist in the dark, and CCK2R is photogenetically activated permanently with miniSOG as photosensitizer. These properties of SALPC and CCK2R could be used to study CCK2R physiology and possibly for pain and cancer therapies.
Collapse
Affiliation(s)
| | - Zong Jie Cui
- Institute of Cell Biology, Beijing Normal University, Beijing 100875, China;
| |
Collapse
|
2
|
Rai R, Chandra V, Tewari M, Kumar M, Shukla HS. Cholecystokinin and gastrin receptors targeting in gastrointestinal cancer. Surg Oncol 2012; 21:281-92. [PMID: 22801592 DOI: 10.1016/j.suronc.2012.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 05/16/2012] [Accepted: 06/21/2012] [Indexed: 12/12/2022]
Abstract
Cholecystokinin and Gastrin are amongst the first gastrointestinal hormone discovered. In addition to classical actions (contraction of gallbladder, growth and secretion in the stomach and pancreas), these also act as growth stimulants for gastrointestinal malignancies and cell lines. Growth of these tumours is inhibited by antagonists of the cholecystokinin and gastrin receptors. These receptors provides most promising approach in clinical oncology and several specific radiolabelled ligands have been synthesized for specific tumour targeting and therapy of tumours overexpressing these receptors. Therefore, definition of the molecular structure of the receptor involved in the autocrine/paracrine loop may contribute to novel therapies for gastrointestinal cancer. Hence, this review tries to focus on the role and distribution of these hormones and their receptors in gastrointestinal cancer with a brief talk about the clinical trial using available agonist and antagonist in gastrointestinal cancers.
Collapse
Affiliation(s)
- Rajani Rai
- Department of Surgical Oncology, Banaras Hindu University, 7 SKG Colony, Lanka, Varanasi 221005, Uttar Pradesh, India
| | | | | | | | | |
Collapse
|
3
|
Sanchez C, Escrieut C, Clerc P, Gigoux V, Waser B, Reubi JC, Fourmy D. Characterization of a novel five-transmembrane domain cholecystokinin-2 receptor splice variant identified in human tumors. Mol Cell Endocrinol 2012; 349:170-9. [PMID: 22040601 DOI: 10.1016/j.mce.2011.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 10/12/2011] [Accepted: 10/12/2011] [Indexed: 12/24/2022]
Abstract
The cholecystokinin-2 receptor (CCK2R), is expressed in cancers where it contributes to tumor progression. The CCK2R is over-expressed in a sub-set of tumors, allowing its use in tumor targeting with a radiolabel ligand. Since discrepancies between mRNA levels and CCK2R binding sites were noticed, we searched for abnormally spliced variants in tumors from various origins having been previously reported to frequently express cholecystokinin receptors, such as medullary thyroid carcinomas, gastrointestinal stromal tumors, leiomyomas and leiomyosarcomas, and gastroenteropancreatic tumors. A variant of the CCK2R coding for a putative five-transmembrane domains receptor has been cloned. This variant represented as much as 6% of CCK2R levels. Ectopic expression in COS-7 cells revealed that this variant lacks biological activity due to its sequestration in endoplasmic reticulum. When co-expressed with the CCK2R, this variant diminished membrane density of the CCK2R and CCK2R-mediated activity (phospholipase-C and ERK activation). In conclusion, a novel splice variant acting as a dominant negative on membrane density of the CCK2R may be of importance for the pathophysiology of certain tumors and for their in vivo CCK2R-targeting.
Collapse
|
4
|
Smith JP, Harms JF, Matters GL, McGovern CO, Ruggiero FM, Liao J, Fino KK, Ortega EE, Gilius EL, Phillips JA. A single nucleotide polymorphism of the cholecystokinin-B receptor predicts risk for pancreatic cancer. Cancer Biol Ther 2012; 13:164-74. [PMID: 22277584 DOI: 10.4161/cbt.13.3.18698] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
There currently are no tests available for early diagnosis or for the identification of patients at risk for development of pancreatic cancer. We report the discovery of single nucleotide polymorphism (SNP) in the cholecystokinin B receptor (CCKBR) gene predicts survival and risk of pancreatic cancer. Growth of human pancreatic cancer is stimulated by gastrin through the CCKBR and an alternatively spliced isoform of the CCKBR gene called CCKCR. One hundred and ten surgically resected benign and malignant pancreatic tissues as well as normal pancreas were prospectively evaluated for CCKBR genotype and protein expression. Analysis demonstrated the expression of the spliced isoform, CCKCR, was associated with a (SNP) (C > A) at position 32 of the intron 4 (IVS 4) of the CCKBR gene. Since the SNP is within an intron, it has not previously been identified in the GWAS studies. Only patients with the A/A or A/C genotypes, exhibited immunoreactivity to a selective CCKCR antibody. Survival among pancreatic cancer patients with the A-SNP was significantly shorter (p = 0.0001, hazard ratio = 3.63) compared with individuals with C/C genotype. Other variables such as surgical margins, lymph node status, histologic grade or adjuvant chemotherapy were not associated with survival. Furthermore, having one or two of the A-alleles was found to increase the risk of pancreatic adenocarcinoma by 174% (p = 0.0192) compared with the C/C wild type. Cancer cells transfected to overexpress the CCKCR demonstrated increased proliferation over controls. Genetic screening for this SNP may aid in early detection of pancreatic cancer in high risk subjects.
Collapse
Affiliation(s)
- Jill P Smith
- Penn State Hershey Medical Center, Medicine, Gastroenterology, Hershey, PA USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Zhou J, Zhang ZX, Li DC. Effects of lorglumide on growth and invasion of human pancreatic cancer cell line Mia PaCa-2 in vitro through the cholecystokinin-cholecystokinin-1 receptor pathway. Curr Ther Res Clin Exp 2010; 71:239-51. [PMID: 24688146 DOI: 10.1016/j.curtheres.2010.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2010] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Cholecystokinin (CCK) has been found to be a growth stimulant through its special receptor pathway, especially for gastrointestinal malignancies. Although the CCK-1 receptor has been shown to be highly expressed in resected human pancreatic cancer samples, its role is less clear. OBJECTIVE The aim of this in vitro study was to investigate the CCK-1 receptor expression and the function of the CCK-CCK-1 receptor pathway in the human pancreatic adenocarcinoma cell line, Mia PaCa-2. METHODS The expression of the CCK-1 receptor in Mia PaCa-2 cells was detected by reverse-transcriptase polymerase chain reaction and flow cytometry. CCK-1 receptor agonist CCK-8S (the major transmitter form of CCK) and antagonist lorglumide were cultured respectively with Mia PaCa-2. Three groups were created for this study: CCK-8S group (Mia PaCa-2 cells treated with CCK-8S), lorglumide group (Mia PaCa-2 cells treated with lorglumide), and the control group (Mia PaCa-2 cells alone). Investigators were blinded to group designation. 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry were used to detect the cell growth, cell cycle, and apoptosis. Apoptosis index rate was measured by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling. Cell invasion ability was observed by invasion assay. Expression of matrix metalloproteinase-2 (MMP-2) was measured by Western blotting. RESULTS Mia PaCa-2 cells were found to express the CCK-1 receptor. Compared with the control group (70.2% [1.5%]), CCK-8S was associated with significant mean (SD) cell proliferation (85.1% [1.7%]; P = 0.039), and the ratio in the S stage of the cell cycle increased significantly (50.5% [1.7%] vs 42.2% [1.4%]; P = 0.021). CCK-8S was also associated with increased Mia PaCa-2 cell invasion ability (123.8 [1.7] vs 102.1 [5.8]; P = 0.005 vs control). Compared with the control group, lorglumide was associated with significantly inhibited cell growth (52.1% [1.8%]; P = 0.002) and cell invasion (77.6% [1.2%]; P = 0.003). Lorglumide also induced G0/G1 cell cycle arrest and apoptosis (27.1% [3-5%] vs 3-7% [0.6%]; P = 0.003 vs control). The change of invasion ability appeared to be mediated by MMP-2 expression, which was upregulated by CCK-8S and downregulated by lorglumide. CONCLUSION The findings of this in vitro study suggest that CCK may exert a trophic action on the Mia PaCa-2 cell line, while lorglumide inhibited the cell growth and invasion.
Collapse
Affiliation(s)
- Jin Zhou
- General Surgery Department, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zi-Xiang Zhang
- General Surgery Department, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - De-Chun Li
- General Surgery Department, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
6
|
Harikumar KG, Akgün E, Portoghese PS, Miller LJ. Modulation of cell surface expression of nonactivated cholecystokinin receptors using bivalent ligand-induced internalization. J Med Chem 2010; 53:2836-42. [PMID: 20235611 DOI: 10.1021/jm100135g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CCK(2) receptor antagonists potentiate pain relief by MOP receptor agonists. In an attempt to enhance this effect, we prepared bivalent ligands incorporating CCK(2) receptor antagonist and MOP receptor agonist pharmacophores. (9) Ligands with 16- to 22-atom spacers could simultaneously bind both receptors but provided no advantage in activity over individual ligands. We now examine the effect of these ligands on receptor internalization as a mechanism of receptor regulation. We prepared CHO cell lines expressing nonfluorescent halves (YN and YC) of yellow fluorescent protein attached to each receptor. Spatial approximation of constructs was needed to yield fluorescence. Monovalent MOP agonist 1 signaled normally and internalized the MOP receptor. Monovalent CCK(2) antagonist 2 did not stimulate receptor internalization. In the dual receptor-bearing cells, bivalent ligands 3a-c capable of simultaneously binding both receptors resulted in cell surface fluorescence and internalization of the fluorescent complex in a time- and temperature-dependent manner. Bivalent ligand 4 with spacer too short to occupy both receptors simultaneously yielded no signal. Receptor tethering with appropriate bivalent ligands can down-regulate signaling by moving a nonactivated receptor into the endocytic pathway.
Collapse
Affiliation(s)
- Kaleeckal G Harikumar
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, Arizona 85259, USA
| | | | | | | |
Collapse
|
7
|
Chao C, Han X, Ives K, Park J, Kolokoltsov AA, Davey RA, Moyer MP, Hellmich MR. CCK2 receptor expression transforms non-tumorigenic human NCM356 colonic epithelial cells into tumor forming cells. Int J Cancer 2010; 126:864-75. [PMID: 19697327 DOI: 10.1002/ijc.24845] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Expression of gastrin and cholecystokinin 2 (CCK(2)) receptor splice variants (CCK(2)R and CCK(2i4sv)R) are upregulated in human colonic adenomas where they are thought to contribute to tumor growth and progression. To determine the effects of ectopic CCK(2) receptor variant expression on colonic epithelial cell growth in vitro and in vivo, we employed the non-tumorigenic colonic epithelial cell line, NCM356. Receptor expression was induced using a retroviral expression vector containing cDNAs for either CCK(2i4sv)R or CCK(2)R. RT-PCR and intracellular Ca(2+) ([Ca(2+)](i)) imaging of RIE/CCK(2)R cells treated with conditioned media (CM) from NCM356 revealed that NCM356 cells express gastrin mRNA and secrete endogenous, biologically active peptide. NCM356 cells expressing either CCK(2)R or CCK(2i4sv)R (71 and 81 fmol/mg, respectively) grew faster in vitro, and exhibited an increase in basal levels of phosphorylated ERK (pERK), compared with vector. CCK(2) receptor selective antagonist, YM022, partially inhibited the growth of both receptor-expressing NCM356 cells, but not the control cells. Inhibitors of mitogen activated protein kinase pathway (MEK/ERK) or protein kinase C (PKC) isozymes partially inhibited the elevated levels of basal pERK and in vitro growth of receptor-expressing cells. Vector-NCM356 cells did not form tumors in nude mice, whereas, either CCK(2) receptor-expressing cells formed large tumors. Autocrine activation CCK(2) receptor variants are sufficient to increase in vitro growth and tumorigenicity of non-transformed NCM356 colon epithelial cells through a pathway involving PKC and the MEK/ERK axis. These findings support the hypothesis that expression of gastrin and its receptors in human colonic adenomas contributes to tumor growth and progression.
Collapse
Affiliation(s)
- Celia Chao
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Regnault B, Osorio Y Fortea J, Miao D, Eisenbarth G, Melanitou E. Early over expression of messenger RNA for multiple genes, including insulin, in the Pancreatic Lymph Nodes of NOD mice is associated with Islet Autoimmunity. BMC Med Genomics 2009; 2:63. [PMID: 19799787 PMCID: PMC2763872 DOI: 10.1186/1755-8794-2-63] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Accepted: 10/02/2009] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Autoimmune diabetes (T1D) onset is preceded by a long inflammatory process directed against the insulin-secreting beta cells of the pancreas. Deciphering the early autoimmune mechanisms represents a challenge due to the absence of clinical signs at early disease stages. The aim of this study was to identify genes implicated in the early steps of the autoimmune process, prior to inflammation, in T1D. We have previously established that insulin autoantibodies (E-IAA) predict early diabetes onset delineating an early phenotypic check point (window 1) in disease pathogenesis. We used this sub-phenotype and applied differential gene expression analysis in the pancreatic lymph nodes (PLN) of 5 weeks old Non Obese Diabetic (NOD) mice differing solely upon the presence or absence of E-IAA. Analysis of gene expression profiles has the potential to provide a global understanding of the disease and to generate novel hypothesis concerning the initiation of the autoimmune process. METHODS Animals have been screened weekly for the presence of E-IAA between 3 and 5 weeks of age. E-IAA positive or negative NOD mice at least twice were selected and RNAs isolated from the PLN were used for microarray analysis. Comparison of transcriptional profiles between positive and negative animals and functional annotations of the resulting differentially expressed genes, using software together with manual literature data mining, have been performed. RESULTS The expression of 165 genes was modulated between E-IAA positive and negative PLN. In particular, genes coding for insulin and for proteins known to be implicated in tissue remodelling and Th1 immunity have been found to be highly differentially expressed. Forty one genes showed over 5 fold differences between the two sets of samples and 30 code for extracellular proteins. This class of proteins represents potential diagnostic markers and drug targets for T1D. CONCLUSION Our data strongly suggest that the immune related mechanisms taking place at this early age in the PLN, correlate with homeostatic changes influencing tissue integrity of the adjacent pancreatic tissue. Functional analysis of the identified genes suggested that similar mechanisms might be operating during pre-inflammatory processes deployed in tissues i) hosting parasitic microorganisms and ii) experiencing unrestricted invasion by tumour cells.
Collapse
Affiliation(s)
- Béatrice Regnault
- Immunophysiology and Intracellular Parasitism Unit, Department of Parasitology and Mycology, 75015 Paris, France.
| | | | | | | | | |
Collapse
|
9
|
Körner M, Waser B, Reubi JC, Miller LJ. CCK(2) receptor splice variant with intron 4 retention in human gastrointestinal and lung tumours. J Cell Mol Med 2009; 14:933-43. [PMID: 19627395 PMCID: PMC2888751 DOI: 10.1111/j.1582-4934.2009.00859.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The wild-type cholecystokinin type 2 (CCK2) receptor is expressed in many gastrointestinal and lung tumours. A splice variant of the CCK2 receptor with retention of intron 4 (CCK2Ri4sv) showing constitutive activity associated with increased tumour growth was described in few colorectal, pancreatic and gastric cancers. Given the potential functional and clinical importance of this spliceoform, its occurrence was quantitatively characterized in a broad collection of 81 gastrointestinal and lung tumours, including insulinomas, ileal carcinoids, gastrointestinal stromal tumours (GIST), gastric, colorectal and pancreatic ductal adenocarcinomas, cholangiocellular and hepatocellular carcinomas, small cell lung cancers (SCLC), non-SCLC (nSCLC) and bronchopulmonary carcinoids, as well as 21 samples of corresponding normal tissues. These samples were assessed for transcript expression of total CCK2 receptor, wild-type CCK2 receptor and CCK2Ri4sv with end-point and real-time RT-PCR, and for total CCK2 receptor protein expression on the basis of receptor binding with in vitro receptor autoradiography. Wild-type CCK2 receptor transcripts were found in the vast majority of tumours and normal tissues. CCK2Ri4sv mRNA expression was present predominantly in insulinomas (incidence 100%), GIST (100%) and SCLC (67%), but rarely in pancreatic, colorectal and gastric carcinomas and nSCLC. It was not found in wild-type CCK2 receptor negative tumours or any normal tissues tested. CCK2Ri4sv transcript levels in individual tumours were low, ranging from 0.02% to 0.14% of total CCK2 receptor transcripts. In conclusion, the CCK2Ri4sv is a marker of specific gastrointestinal and lung tumours. With its high selectivity for and high incidence in SCLC and GIST, it may represent an attractive clinical target.
Collapse
Affiliation(s)
- Meike Körner
- Mayo Clinic, Cancer Center and Department of Molecular Pharmacology and Experimental Therapeutics, Scottsdale, Arizona, USA.
| | | | | | | |
Collapse
|
10
|
Körner M, Miller LJ. Alternative splicing of pre-mRNA in cancer: focus on G protein-coupled peptide hormone receptors. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:461-72. [PMID: 19574427 DOI: 10.2353/ajpath.2009.081135] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Through alternative splicing, multiple different transcripts can be generated from a single gene. Alternative splicing represents an important molecular mechanism of gene regulation in physiological processes such as developmental programming as well as in disease. In cancer, splicing is significantly altered. Tumors express a different collection of alternative spliceoforms than normal tissues. Many tumor-associated splice variants arise from genes with an established role in carcinogenesis or tumor progression, and their functions can be oncogenic. This raises the possibility that products of alternative splicing play a pathogenic role in cancer. Moreover, cancer-associated spliceoforms represent potential diagnostic biomarkers and therapeutic targets. G protein-coupled peptide hormone receptors provide a good illustration of alternative splicing in cancer. The wild-type forms of these receptors have long been known to be expressed in cancer and to modulate tumor cell functions. They are also recognized as attractive clinical targets. Recently, splice variants of these receptors have been increasingly identified in various types of cancer. In particular, alternative cholecystokinin type 2, secretin, and growth hormone-releasing hormone receptor spliceoforms are expressed in tumors. Peptide hormone receptor splice variants can fundamentally differ from their wild-type receptor counterparts in pharmacological and functional characteristics, in their distribution in normal and malignant tissues, and in their potential use for clinical applications.
Collapse
Affiliation(s)
- Meike Körner
- Institute of Pathology of the University of Berne, Murtenstrasse 31, CH-3010 Berne, Switzerland.
| | | |
Collapse
|
11
|
Subramaniam D, Ramalingam S, May R, Dieckgraefe BK, Berg DE, Pothoulakis C, Houchen CW, Wang TC, Anant S. Gastrin-mediated interleukin-8 and cyclooxygenase-2 gene expression: differential transcriptional and posttranscriptional mechanisms. Gastroenterology 2008; 134:1070-82. [PMID: 18395088 DOI: 10.1053/j.gastro.2008.01.040] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 01/04/2008] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Gastrin induces the expression of cyclooxygenase (COX)-2 and interleukin (IL)-8; however, the mechanism(s), especially in gastric epithelial cells, is not well understood. Here, we have determined the intracellular mechanisms mediating gastrin-dependent gene expression. METHODS AGS-E human gastric cancer cell line stably expressing cholecystokinin-2 receptor was treated with amidated gastrin-17. Real-time polymerase chain reaction, Western blot, and enzyme-linked immunosorbent assay were performed to determine COX-2 and IL-8 expression and Akt, Erk, and p38 phosphorylation. Gene promoter activity was determined by luciferase assay. Electrophoretic mobility shift assay analysis was performed for nuclear factor kappaB (NF-kappaB) and activator protein-1 activity. RNA stability was determined after actinomycin D treatment. HuR localization was determined by immunocytochemistry. RESULTS Gastrin induced COX-2 and IL-8 expression in AGS-E cells, which was inhibited by phosphatidylinositol 3' kinase (PI3K) and p38 inhibitors. Gastrin-mediated Akt activation was observed to be downstream of p38. IL-8 expression was dependent on COX-2-mediated prostaglandin E(2) synthesis. In the presence of an NF-kappaB inhibitor MG132, IL-8 transcription was inhibited, but not that of COX-2. This was confirmed after knockdown of the p65 RelA subunit of NF-kappaB. Further studies showed that COX-2 gene transcription is regulated by activator protein-1. Gastrin increased the stability of both COX-2 and IL-8 messenger RNA (mRNA) in a p38-dependent manner, the half-life increasing from 31 minutes to 8 hours and approximately 4 hours, respectively. Gastrin, through p38 activity, also enhanced HuR expression, nucleocytoplasmic translocation, and enhanced COX-2 mRNA binding. CONCLUSIONS Gastrin differentially induces COX-2 and IL-8 expression at the transcriptional and posttranscriptional levels by PI3K and p38 mitogen-activated protein kinase pathways, respectively.
Collapse
Affiliation(s)
- Dharmalingam Subramaniam
- Department of Internal Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Friis-Hansen L. Lessons from the gastrin knockout mice. ACTA ACUST UNITED AC 2007; 139:5-22. [DOI: 10.1016/j.regpep.2006.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 11/30/2006] [Accepted: 12/01/2006] [Indexed: 12/22/2022]
|
13
|
Harikumar KG, Dong M, Cheng Z, Pinon DI, Lybrand TP, Miller LJ. Transmembrane segment peptides can disrupt cholecystokinin receptor oligomerization without affecting receptor function. Biochemistry 2007; 45:14706-16. [PMID: 17144663 PMCID: PMC2585497 DOI: 10.1021/bi061107n] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Oligomerization of the G protein-coupled cholecystokinin (CCK) receptor has been demonstrated, but its molecular basis and functional importance are not clear. We now examine contributions of transmembrane (TM) segments to oligomerization of this receptor using a peptide competitive inhibition strategy. Oligomerization of CCK receptors tagged at the carboxyl terminus with Renilla luciferase or yellow fluorescent protein was quantified using bioluminescence resonance energy transfer (BRET). Synthetic peptides representing TM I, II, V, VI, and VII of the CCK receptor were utilized as competitors. Of these, only TM VI and VII peptides disrupted receptor BRET. Control studies established that the beta2-adrenergic receptor TM VI peptide that disrupts oligomerization of that receptor had no effect on CCK receptor BRET. Notably, disruption of CCK receptor oligomerization had no effect on agonist binding, biological activity, or receptor internalization. To gain insight into the face of TM VI contributing to oligomerization, we utilized analogous peptides with alanines in positions 315, 319, and 323 (interhelical face) or 317, 321, and 325 (external lipid-exposed face). The Ala317,321,325 peptide eliminated the disruptive effect on CCK receptor BRET, whereas the other mutant peptide behaved like wild-type TM VI. This suggests that the lipid-exposed face of the CCK receptor TM VI most contributes to oligomerization and supports external contact dimerization of helical bundles, rather than domain-swapped dimerization. Fluorescent CCK receptor mutants with residues 317, 321, and 325 replaced with alanines were also prepared and failed to yield significant resonance transfer signals using either BRET or a morphological FRET assay, further supporting this interpretation.
Collapse
Affiliation(s)
- Kaleeckal G Harikumar
- Cancer Center and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259, USA
| | | | | | | | | | | |
Collapse
|