1
|
Nokchan N, Suthapot P, Choochuen P, Khongcharoen N, Hongeng S, Anurathapan U, Surachat K, Sangkhathat S, Thai Pediatric Cancer Atlas Tpca Consortium. Whole-Exome Sequencing Reveals Novel Candidate Driver Mutations and Potential Druggable Mutations in Patients with High-Risk Neuroblastoma. J Pers Med 2024; 14:950. [PMID: 39338204 PMCID: PMC11433071 DOI: 10.3390/jpm14090950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Neuroblastoma is the most prevalent solid tumor in early childhood, with a 5-year overall survival rate of 40-60% in high-risk cases. Therefore, the identification of novel biomarkers for the diagnosis, prognosis, and therapy of neuroblastoma is crucial for improving the clinical outcomes of these patients. In this study, we conducted the whole-exome sequencing of 48 freshly frozen tumor samples obtained from the Biobank. Somatic variants were identified and selected using a bioinformatics analysis pipeline. The mutational signatures were determined using the Mutalisk online tool. Cancer driver genes and druggable mutations were predicted using the Cancer Genome Interpreter. The most common mutational signature was single base substitution 5. MUC4, MUC16, and FLG were identified as the most frequently mutated genes. Using the Cancer Genome Interpreter, we identified five recurrent cancer driver mutations spanning MUC16, MUC4, ALK, and CTNND1, with the latter being novel and containing a missense mutation, R439C. We also identified 11 putative actionable mutations including NF1 Q1798*, Q2616*, and S636X, ALK F1174L and R1275Q, SETD2 P10L and Q1829E, BRCA1 R612S, NOTCH1 D1670V, ATR S1372L, and FGFR1 N577K. Our findings provide a comprehensive overview of the novel information relevant to the underlying molecular pathogenesis and therapeutic targets of neuroblastoma.
Collapse
Affiliation(s)
- Natakorn Nokchan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Praewa Suthapot
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pongsakorn Choochuen
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Natthapon Khongcharoen
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Usanarat Anurathapan
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Surasak Sangkhathat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | | |
Collapse
|
2
|
Uekusa S, Kawashima H, Sugito K, Yoshizawa S, Shinojima Y, Igarashi J, Ghosh S, Wang X, Fujiwara K, Ikeda T, Koshinaga T, Soma M, Nagase H. Nr4a3, a possibile oncogenic factor for neuroblastoma associated with CpGi methylation within the third exon. Int J Oncol 2014; 44:1669-77. [PMID: 24626568 PMCID: PMC4027873 DOI: 10.3892/ijo.2014.2340] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/12/2014] [Indexed: 01/31/2023] Open
Abstract
Aberrant methylation of Nr4a3 exon 3 CpG island (CpGi) was initially identified during multistep mouse skin carcinogenesis. Nr4a3 is also known as a critical gene for neuronal development. Thus, we examined the Nr4a3 exon 3 CpGi methylation in mouse brain tissues from 15-day embryos, newborns and 12-week-old adults and found significant increase of its methylation and Nr4a3 expression during mouse brain development after birth. In addition, homologous region in human genome was frequently and aberrantly methylated in neuroblastoma specimens. A quantitative analysis of DNA methylation revealed that hypomethylation of CpG islands on NR4A3 exon 3, but not on exon 1 was identified in three neuroblastomas compared with matched adrenal glands. Additional analysis for 20 neuroblastoma patients was performed and 8 of 20 showed hypomethylation of the CpGi on NR4A3 exon 3. The survival rate of those 8 patients was significantly lower compared with those in patients with hypermethylation. Immunohistochemical NR4A3 expression was generally faint in neuroblastoma tissues compared with normal tissues. Moreover, the MYCN amplified NB9 cell line showed hypomethylation and low expression of NR4A3, while the non-MYCN amplified NB69 cell line showed hypermethylation and high expression. These results indicate that DNA hypomethylation of the CpGi at NR4A3 exon 3 is associated with low NR4A3 expression, and correlates with poor prognosis of neuroblastoma. Since NR4A3 upregulation associated with the hypermethylation and neuronal differentiation in mice, poor prognosis of neuroblastoma associated with NR4A3 low expression may be partly explained by dysregulation of its differentiation.
Collapse
Affiliation(s)
- Shota Uekusa
- Department of Pediatric Surgery, School of Medicine, Nihon University, Tokyo, Japan
| | - Hiroyuki Kawashima
- Department of Pediatric Surgery, School of Medicine, Nihon University, Tokyo, Japan
| | - Kiminobu Sugito
- Department of Pediatric Surgery, School of Medicine, Nihon University, Tokyo, Japan
| | - Shinsuke Yoshizawa
- Department of Pediatric Surgery, School of Medicine, Nihon University, Tokyo, Japan
| | - Yui Shinojima
- Department of Cancer Genetics, School of Medicine, Nihon University, Tokyo, Japan
| | - Jun Igarashi
- Department of Cancer Genetics, School of Medicine, Nihon University, Tokyo, Japan
| | - Srimoyee Ghosh
- Department of Zoology, North‑Eastern Hill University, Meghalaya, India
| | - Xaofei Wang
- Department of Cancer Genetics, School of Medicine, Nihon University, Tokyo, Japan
| | - Kyoko Fujiwara
- Department of Cancer Genetics, School of Medicine, Nihon University, Tokyo, Japan
| | - Taro Ikeda
- Department of Pediatric Surgery, School of Medicine, Nihon University, Tokyo, Japan
| | - Tsugumichi Koshinaga
- Department of Pediatric Surgery, School of Medicine, Nihon University, Tokyo, Japan
| | - Masayoshi Soma
- Innovative Therapy Research Group, Nihon University Research Institute of Medical Science, Nihon University School of Medicine, Tokyo, Japan
| | - Hiroki Nagase
- Department of Cancer Genetics, School of Medicine, Nihon University, Tokyo, Japan
| |
Collapse
|
3
|
Abstract
Neonatal or perinatal tumours frequently relate to prenatal or developmental events and have a short exposure window which provides an opportunity to study tumours in a selective sensitive period of development. As a result, they display a number of host-specific features which include occasional spontaneous maturational changes with cells still responding to developmental influences. Neonatal tumours (NNT) are studied for a number of important reasons. Firstly, many of the benign tumours arising from soft tissue appear to result from disturbances in growth and development and some are associated with other congenital anomalies. Study of these aspects may open the door for investigation of genetic and epigenetic changes in genes controlling foetal development as well as environmental and drug effects during pregnancy. Secondly, the clinical behaviour of NNT differs from that of similar tumours occurring later in childhood. In addition, certain apparently malignant NNT can 'change course' in infancy leading to the maturation of apparently highly malignant tumours. Thirdly, NNT underline the genetic associations of most tumours but appear to differ in the effects of proto-oncogenes and other oncogenic factors. In this context, there are also connections between the foetal and neonatal period and some "adult" cancers. Fourthly, they appear to arise in a period in which minimal environmental interference has occurred, thus providing a unique potential window of opportunity to study the pathogenesis of tumour behaviour. This study will seek to review what is currently known in each of these areas of study as they apply to NNT. Further study of the provocative differences in tumour behaviour in neonates provides insights into the natural history of cancer in humans and promotes novel cancer therapies.
Collapse
Affiliation(s)
- S W Moore
- Department of Paediatric Surgery, Faculty of Medicine and Health Sciences, University of Stellenbosch, P.O. Box 19063, Tygerberg, 7505, South Africa,
| |
Collapse
|
4
|
Banelli B, Merlo DF, Allemanni G, Forlani A, Romani M. Clinical potentials of methylator phenotype in stage 4 high-risk neuroblastoma: an open challenge. PLoS One 2013; 8:e63253. [PMID: 23717404 PMCID: PMC3661569 DOI: 10.1371/journal.pone.0063253] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/31/2013] [Indexed: 12/31/2022] Open
Abstract
Approximately 20% of stage 4 high-risk neuroblastoma patients are alive and disease-free 5 years after disease onset while the remaining experience rapid and fatal progression. Numerous findings underline the prognostic role of methylation of defined target genes in neuroblastoma without taking into account the clinical and biological heterogeneity of this disease. In this report we have investigated the methylation of the PCDHB cluster, the most informative member of the “Methylator Phenotype” in neuroblastoma, hypothesizing that if this epigenetic mark can predict overall and progression free survival in high-risk stage 4 neuroblastoma, it could be utilized to improve the risk stratification of the patients, alone or in conjunction with the previously identified methylation of the SFN gene (14.3.3sigma) that can accurately predict outcome in these patients. We have utilized univariate and multivariate models to compare the prognostic power of PCDHB methylation in terms of overall and progression free survival, quantitatively determined by pyrosequencing, with that of other markers utilized for the patients' stratification utilizing methylation thresholds calculated on neuroblastoma at stage 1–4 and only on stage 4, high-risk patients. Our results indicate that PCDHB accurately distinguishes between high- and intermediate/low risk stage 4 neuroblastoma in agreement with the established risk stratification criteria. However PCDHB cannot predict outcome in the subgroup of stage 4 patients at high-risk whereas methylation levels of SFN are suggestive of a “methylation gradient” associated with tumor aggressiveness as suggested by the finding of a higher threshold that defines a subset of patients with an extremely severe disease (OS <24 months). Because of the heterogeneity of neuroblastoma we believe that clinically relevant methylation markers should be selected and tested on homogeneous groups of patients rather than on patients at all stages.
Collapse
Affiliation(s)
- Barbara Banelli
- Tumor Genetics and Epigenetics, IRCCS AOU San Martino-IST, Genova, Italy.
| | | | | | | | | |
Collapse
|
5
|
Sugito K, Kawashima H, Yoshizawa S, Uekusa S, Hoshi R, Furuya T, Kaneda H, Hosoda T, Konuma N, Masuko T, Ohashi K, Ikeda T, Koshinaga T, Tomita R, Shinojima Y, Fujiwara K, Watanabe T, Held WA, Nagase H. Non-promoter DNA hypermethylation of Zygote Arrest 1 (ZAR1) in neuroblastomas. J Pediatr Surg 2013; 48:782-8. [PMID: 23583134 DOI: 10.1016/j.jpedsurg.2012.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 07/10/2012] [Accepted: 08/10/2012] [Indexed: 12/31/2022]
Abstract
BACKGROUND The comprehensive methylation analysis of tumor-specific differently methylated regions in malignant melanomas and brain tumors has led to the identification of non-promoter hypermethylation of zygote arrest 1 (ZAR1). To search the non-promoter ZAR1 hypermethylation in neuroblastomas, we analyzed the levels of the methylation and transcript expression of ZAR1. METHODS The MassARRAY® EpiTYPER (Sequenom Inc., San Diego, CA, USA) system was optimized to determine the quantitative methylation levels of ZAR1 for 12 neuroblastoma cell lines, 23 neuroblastoma samples and four adrenal samples. ZAR1 expression levels were evaluated through a quantitative, real-time reverse transcription-polymerase chain reaction. The quantitative methylation levels of ZAR1 were subjected to correlation studies with the established markers of progressive disease and outcome. RESULTS Strikingly, the hypermethylation of ZAR1 regions and ZAR1 expression levels was observed in the neuroblastoma cell lines and neuroblastoma samples, compared to the adrenal samples. Somatic changes in ZAR1 methylation and ZAR1 expression were found in all three neuroblastoma patients. In the ZAR1 regions, poor-outcome tumors that were MYCN-amplified and/or Stage 3 or 4 and/or the age at diagnosis was≥18months, and/or showed an unfavorable histology were frequently hypermethylated. CONCLUSION Our results indicate that the hypermethylation of ZAR1 regions is extremely frequent in neuroblastomas and correlates with established markers of progressive disease and outcome.
Collapse
Affiliation(s)
- Kiminobu Sugito
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Sugito K, Kawashima H, Uekusa S, Yoshizawa S, Hoshi R, Furuya T, Kaneda H, Hosoda T, Masuko T, Ohashi K, Ikeda T, Koshinaga T, Fujiwara K, Igarashi J, Ghosh S, Held WA, Nagase H. Identification of aberrant methylation regions in neuroblastoma by screening of tissue-specific differentially methylated regions. Pediatr Blood Cancer 2013; 60:383-9. [PMID: 22911660 DOI: 10.1002/pbc.24282] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/12/2012] [Indexed: 11/11/2022]
Abstract
BACKGROUND The identification of tissue-specific differentially methylated regions (tDMRs) is key to our understanding of mammalian development. Research has indicated that tDMRs are aberrantly methylated in cancer and may affect the oncogenic process. PROCEDURE We used the MassARRAY EpiTYPER system to determine the quantitative methylation levels of seven neuroblastomas (NBs) and two control adrenal medullas at 12 conserved tDMRs. A second sample set of 19 NBs was also analyzed. Statistical analysis was carried out to determine the relationship of the quantitative methylation levels to other prognostic factors in these sample sets. RESULTS Screening of 12 tDMRs revealed 2 genomic regions (SLC16A5 and ZNF206) with frequent aberrant methylation patterns in NB. The methylation levels of SLC16A5 and ZNF206 were low compared to the control adrenal medullas. The SLC16A5 methylation level (cut-off point, 13.25%) was associated with age at diagnosis, disease stage, and Shimada classification but not with MYCN amplification. The ZNF206 methylation level (cut-off point, 68.80%) was associated with all of the prognostic factors analyzed. Although the methylation levels at these regions did not reach statistical significance in their association with prognosis in mono-variant analysis, patients with both hypomethylation of SLC16A5 and hypermethylation of ZNF206 had a significantly prolonged event-free survival, when these two variables were analyzed together. CONCLUSIONS We demonstrated that two tDMRs frequently displayed altered methylation patterns in the NB genome, suggesting their distinct involvement in NB development/differentiation. The combined analysis of these two regions could serve as a diagnostic biomarker for poor clinical outcome.
Collapse
Affiliation(s)
- Kiminobu Sugito
- Department of Pediatric Surgery, Nihon University School of Medicine, Nihon, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Feng W, Dong Z, He B, Wang K. Analysis method of epigenetic DNA methylation to dynamically investigate the functional activity of transcription factors in gene expression. BMC Genomics 2012; 13:532. [PMID: 23035652 PMCID: PMC3505177 DOI: 10.1186/1471-2164-13-532] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 09/28/2012] [Indexed: 01/17/2023] Open
Abstract
Background DNA methylation is a fundamental component of epigenetic modification, which is intimately involved in the regulation of gene expression. One important DNA methylation pathway reduces the abilities of transcription factors to bind to gene promoter regions. Although many experiments have been designed to measure genome-wide DNA methylation levels at high resolution, the meaning of these different DNA methylation levels on transcription factor binding abilities remains poorly understood. We have, therefore, developed a method to quantitatively explore the extent to which DNA methylation levels can significantly reduce or even abolish the binding of certain transcription factors, resulting in reduced or non-expression of flanking genes. This method allows transcription factors that are functionally active in gene expression to be investigated. Results The method is based on a general model that depicts the relationship between DNA methylation and transcription factor binding ability based on intrinsic component properties, and the model parameters can be optimized through relative analysis of recognized transcription factor binding status and gene expression profiling. With fixed models, transcription factors functionally active in the regulation of gene expression and affected by epigenetic DNA methylation can be identified and subsequently confirmed. The method identified eleven apparently functionally active transcriptional factors in SH-SY5Y neuroblastoma cells. Conclusions Compared with gene regulatory elements, epigenetic modifications are able to change to dynamically respond to signals from physical, biological and social environments. Our proposed method is therefore designed to provide a dynamic assessment to investigate functionally active transcription factors. With the information deduced from our method, we can predict transcription factor binding status in promoter regions to further investigate how a particular gene is regulated by a specific group of transcription factors organized in a particular pattern. This will be helpful in the diagnosis and development of treatment for numerous diseases, including cancer. Although the method only investigates DNA methylation, it has the potential to be applied to more epigenetic factors, such as histone modification.
Collapse
Affiliation(s)
- Weixing Feng
- Pattern Recognition and Intelligent System Institute, Automation College, Harbin Engineering University, Harbin, Heilongjiang, China.
| | | | | | | |
Collapse
|
8
|
Banelli B, Brigati C, Di Vinci A, Casciano I, Forlani A, Borzì L, Allemanni G, Romani M. A pyrosequencing assay for the quantitative methylation analysis of the PCDHB gene cluster, the major factor in neuroblastoma methylator phenotype. J Transl Med 2012; 92:458-65. [PMID: 22157715 DOI: 10.1038/labinvest.2011.169] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Epigenetic alterations are hallmarks of cancer and powerful biomarkers, whose clinical utilization is made difficult by the absence of standardization and of common methods of data interpretation. The coordinate methylation of many loci in cancer is defined as 'CpG island methylator phenotype' (CIMP) and identifies clinically distinct groups of patients. In neuroblastoma (NB), CIMP is defined by a methylation signature, which includes different loci, but its predictive power on outcome is entirely recapitulated by the PCDHB cluster only. We have developed a robust and cost-effective pyrosequencing-based assay that could facilitate the clinical application of CIMP in NB. This assay permits the unbiased simultaneous amplification and sequencing of 17 out of 19 genes of the PCDHB cluster for quantitative methylation analysis, taking into account all the sequence variations. As some of these variations were at CpG doublets, we bypassed the data interpretation conducted by the methylation analysis software to assign the corrected methylation value at these sites. The final result of the assay is the mean methylation level of 17 gene fragments in the protocadherin B cluster (PCDHB) cluster. We have utilized this assay to compare the methylation levels of the PCDHB cluster between high-risk and very low-risk NB patients, confirming the predictive value of CIMP. Our results demonstrate that the pyrosequencing-based assay herein described is a powerful instrument for the analysis of this gene cluster that may simplify the data comparison between different laboratories and, in perspective, could facilitate its clinical application. Furthermore, our results demonstrate that, in principle, pyrosequencing can be efficiently utilized for the methylation analysis of gene clusters with high internal homologies.
Collapse
Affiliation(s)
- Barbara Banelli
- Laboratory of Tumor Genetics and Epigenetic, Istituto Nazionale per la Ricerca sul Cancro, Largo Rosanna Benzi, Genova, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Ciappio ED, Mason JB, Crott JW. Maternal one-carbon nutrient intake and cancer risk in offspring. Nutr Rev 2012; 69:561-71. [PMID: 21967157 DOI: 10.1111/j.1753-4887.2011.00424.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Dietary intake of one-carbon nutrients, particularly folate, vitamin B(2) (riboflavin), vitamin B(6) , vitamin B(12) , and choline have been linked to the risk of cancers of the colon and breast in both human and animal studies. More recently, experimental and epidemiological data have emerged to suggest that maternal intake of these nutrients during gestation may also have an impact on the risk of cancer in offspring later in life. Given the plasticity of DNA methylation in the developing embryo and the established role of one-carbon metabolism in supporting biological methylation reactions, it is plausible that alterations in maternal one-carbon nutrient availability might induce subtle epigenetic changes in the developing embryo and fetus that persist into later life, altering the risk of tumorigenesis throughout the lifespan. This review summarizes the current literature on maternal one-carbon nutrient intake and offspring cancer risk, with an emphasis on cancers of the colon and breast, and discusses specific epigenetic modifications that may play a role in their pathogenesis.
Collapse
Affiliation(s)
- Eric D Ciappio
- Vitamins and Carcinogenesis Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
10
|
FENG WX, WANG KJ, HE B, LI X. Method to Analyze Gene Promoter Methylation Inhibition Effect on Binding of Transcription Factors. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2010.00355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Abstract
Childhood tumours are associated with congenital abnormalities suggesting that disruption of normal developmental processes may be linked with oncogenesis. Genetic and environmental exposures may combine to disrupt critical epigenetic processes during development, thus affecting gene-related signalling pathways and cellular function. This review examines the role of critical genes and processes regulating development such as the polycomb family and sonic hedgehog (SHH) as well as the Wnt signalling pathways and epigenetic variations (Snf5), methylation and loss of heterozygosity in controlling homeotic gene transcription and intracellular chromatin structure. The developmental and perinatal periods appears important as a window of opportunity for cancer research.
Collapse
Affiliation(s)
- Sam W Moore
- Division of Pediatric Surgery, University of Stellenbosch, Cape Town, South Africa.
| |
Collapse
|
12
|
Macy ME, Sawczyn KK, Garrington TP, Graham DK, Gore L. Pediatric developmental therapies: interesting new drugs now in early-stage clinical trials. Curr Oncol Rep 2009; 10:477-90. [PMID: 18928662 DOI: 10.1007/s11912-008-0073-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The current high cure rates for children diagnosed with cancer can be attributed in part to emphasis on large cooperative group clinical trials. The significant improvement in pediatric cancer survival over the past few decades is the result of optimized chemotherapy drug dosing, timing, and intensity; however, further alterations in traditional chemotherapy agents are unlikely to produce substantially better outcomes. Furthermore, there remains a subset of patients who have a very poor prognosis due to tumor type or stage at presentation, or who have a dismal prognosis with relapse or recurrence. As such, innovative approaches to therapy and new drugs are clearly needed for introduction into the current pediatric oncology arsenal. A variety of biologically targeted therapies that have shown promise in preclinical studies and early-phase adult clinical trials are now being explored in pediatric clinical trials. These novel agents hold the promise for continuing to drive forward improvements in patient survival, with potentially less toxicity than exists with traditional chemotherapy drugs.
Collapse
|
13
|
Yagyu S, Gotoh T, Iehara T, Miyachi M, Katsumi Y, Tsubai-Shimizu S, Kikuchi K, Tamura S, Tsuchiya K, Imamura T, Misawa-Furihata A, Sugimoto T, Sawada T, Hosoi H. Circulating methylated-DCR2 gene in serum as an indicator of prognosis and therapeutic efficacy in patients with MYCN nonamplified neuroblastoma. Clin Cancer Res 2008; 14:7011-9. [PMID: 18980997 DOI: 10.1158/1078-0432.ccr-08-1249] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND MYCN amplification (MNA) in neuroblastoma is a strong indicator of poor prognosis. However, some MYCN nonamplified (non-MNA) cases show poor outcomes, and examining the status of the gene requires an operation, which may have surgical complications. Therefore, a new marker is needed to identify cases of non-MNA neuroblastomas with poor prognoses using less risky procedures. Aberrant hypermethylation of the DCR2 promoter has recently been associated with rapidly progressing neuroblastoma. We aimed to develop a noninvasive DCR2 methylation assay for patients with neuroblastoma using serum DNA, which predominantly originates from tumor-released DNA. METHODS Using DNA-based real-time PCR, we simultaneously quantified a methylated-DCR2 specific sequence (M) and a reference sequence (R) located in the promoter region in serum DNA, and evaluated DCR2 methylation status as M/R ratios in 86 patients with neuroblastoma. RESULTS Serum DCR2 M/R ratios were strongly correlated with those in the tumor (r=0.67; P=0.002). DCR2 methylation was associated with stage both in the whole neuroblastoma group and in the non-MNA group (P<0.001), and DCR2-methylated patients showed significantly poorer 5-year event-free survival in the whole neuroblastoma group (43% versus 84%; P<0.001), especially in the non-MNA group (12% versus 96%;P<0.001). Among five DCR2-methylated patients whose clinical courses were followed, serum M/R ratios were close to 0 in the patients in remission, whereas the ratios increased in patients who relapsed. CONCLUSIONS Detection of methylated-DCR2 in serum DNA has promise as a noninvasive assay for predicting prognosis and therapeutic efficacy in neuroblastoma, especially in non-MNA cases. Furthermore, it might be a sensitive marker of tumor recurrence in DCR2-methylated cases.
Collapse
Affiliation(s)
- Shigeki Yagyu
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
de Pontual L, Trochet D, Bourdeaut F, Thomas S, Etchevers H, Chompret A, Minard V, Valteau D, Brugieres L, Munnich A, Delattre O, Lyonnet S, Janoueix-Lerosey I, Amiel J. Methylation-associated PHOX2B gene silencing is a rare event in human neuroblastoma. Eur J Cancer 2007; 43:2366-72. [PMID: 17765533 DOI: 10.1016/j.ejca.2007.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 06/20/2007] [Accepted: 07/12/2007] [Indexed: 10/25/2022]
Abstract
Neuroblastoma (NB), an embryonic tumour originating from neural crest cells, is one of the most common solid tumours in childhood. Although NB is characterised by numerous recurrent, large-scale chromosome rearrangements, the genes targeted by these imbalances have remained elusive. We recently identified the paired-like homeobox 2B (PHOX2B, MIM 603851) gene as disease-causing in dysautonomic disorders including Congenital Central Hypoventilation Syndrome (CCHS), Hirschsprung disease (HSCR) and NB in various combinations. Most patients with NB due to a germline heterozygous PHOX2B gene mutation are familial and/or syndromic. PHOX2B, at chromosome 4p12, does not lie in a commonly rearranged locus in NB. To evaluate the role of PHOX2B in sporadic, isolated NB, we analysed 13 NB cell lines and 45 tumours for expression, mutations of coding and promoter sequences, loss of heterozygosity (LOH), or aberrant hypermethylation of PHOX2B (13 cell lines and 18 tumours). We didn't identify any mutation but LOH in about 10% of the cases and aberrant CpG dinucleotide methylation of the 500 bp PHOX2B promoter region in 4/31 tumours and cell lines (12.9%). Altogether, both germinal and somatic anomalies at the PHOX2B locus are found in NB.
Collapse
Affiliation(s)
- Loïc de Pontual
- Unité de Recherches sur les Handicaps Génétiques de l'Enfant INSERM U-781, et Département de Génétique, Université René-Descartes, Faculté de Médecine, Hôpitaux de Paris, Hôpital Necker-Enfants Malades, 149, rue de Sèvres, 75743 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wolk M, Martin JE, Nowicki M. Foetal haemoglobin-blood cells (F-cells) as a feature of embryonic tumours (blastomas). Br J Cancer 2007; 97:412-9. [PMID: 17595660 PMCID: PMC2360326 DOI: 10.1038/sj.bjc.6603867] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Tumour markers are important in the diagnosis and monitoring of many tumours. This study tested the hypothesis that an oncofoetal protein, foetal haemoglobin (HbF) is a potential tumour marker in embryonic tumours, useful for management. An immunohistochemical investigation of HbF blood cell (Fc) distribution was carried out in tumours and in bone marrow samples from 83 children and 13 adults with various embryonic tumours (blastomas), and in bone marrow samples of 24 leukaemia patients. In the three, main blastoma types, nephroblastoma (Wilms' tumour), neuroblastoma and retinoblastoma, where all the patients, except two, were children, around 80% of the tumour samples had Fc within proliferating blood vessels and spaces between tumour cells. In parallel, clusters of Fc, mostly F-erythroblasts (Feb), were distributed in the bone marrow of some of those patients and in the bone marrow of 79% of the leukaemia patients. Foetal haemoglobin, as well as being a potential prognostic cancer marker, is a potential indicator of DNA hypomethylation implicated in the development of these tumours, as well as in others previously noted for the presence of HbF.
Collapse
Affiliation(s)
- M Wolk
- Department of Histopathology, Royal London Hospital, Centre for pathology, Institute of Cell and Molecular Sciences, Queen Mary School of Medicine and Dentistry, The Royal London Hospital, Whitechapel, London, UK.
| | | | | |
Collapse
|