1
|
Souza DS, Vicente CM, Macheroni C, Campo VL, Porto CS. Signaling crosstalk of Galectin-3, β-catenin, and estrogen receptor in androgen-independent prostate cancer DU-145 cells. J Steroid Biochem Mol Biol 2025; 247:106679. [PMID: 39848549 DOI: 10.1016/j.jsbmb.2025.106679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
The aims of this study were to investigate the localization of non-phosphorylated β‑catenin and Galectin-3 (GAL-3), the regulation of the expression of both proteins by activation of estrogen receptors (ERs) and their role in tumorigenic characteristics of androgen-independent prostate cancer DU-145 cells. DU-145 cells were cultured in the absence (control), and presence of 17β-estradiol (E2). Cells were also untreated or pre-treated with the inhibitor of GAL‑3, VA03, or with a compound that disrupts the complex β-catenin-TCF/LEF transcription factor, PKF 118-310. Immunofluorescence assay for non-phosphorylated β-catenin and GAL-3, cell proliferation, wound healing and cell invasion assays were performed. 17β-estradiol (E2, 4 h) increased the expression of non-phosphorylated β-catenin and GAL-3. E2 also increased (2-fold) the co-localization of the fluorescence of non-phosphorylated β-catenin and GAL‑3 in the whole cells compared to the control. The up-regulation of non-phosphorylated β-catenin expression was blocked by VA03, suggesting that GAL-3 is upstream protein involved in this process. E2 (24 h) increased the cell number, migration, and invasion of the DU‑145 cells compared to control. Furthermore, PKF 118-310 completely blocked the proliferation, migration, and invasion of the DU-145 cells induced by activation of ERs. The activation of ERs increases the expression, co-localization and signaling of the GAL-3 and non-phosphorylated β-catenin in DU-145 cells. Non-phosphorylated β-catenin is downstream protein involved in proliferation, migration, and invasion of the DU‑145 cells.
Collapse
Affiliation(s)
- Deborah Simão Souza
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04039-032, Brazil
| | - Carolina Meloni Vicente
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04039-032, Brazil
| | - Carla Macheroni
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04039-032, Brazil
| | | | - Catarina Segreti Porto
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04039-032, Brazil.
| |
Collapse
|
2
|
Xuan Y, Xu J, Que H, Zhu J. Effects of sulforaphane on prostate cancer stem cells-like properties: In vitro and molecular docking studies. Arch Biochem Biophys 2024; 762:110216. [PMID: 39549984 DOI: 10.1016/j.abb.2024.110216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/07/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
The increasing incidence of prostate cancer worldwide has spurred research into novel therapeutics for its treatment and prevention. A critical factor contributing to its incidence and development is the presence of prostate cancer stem cells (PCSCs). Targeting PCSCs has become key in enhancing therapeutic and clinical outcomes of prostate cancer. Sulforaphane (SFN), a compound found in cruciferous vegetables, has shown effective antineoplastic activity in prostate cancer. Yet, its mechanisms of action in PCSCs remains unclear. In the present study, tumorsphere formation assay was used to isolate and enrich PCSCs from PC-3 cells. Our results found that SFN effectively reduced the activity of PCSCs, including the ability of tumorsphere formation, the number of CD133 positive cells, and the expression of PCSCs markers. Moreover, the data showed that SFN inhibited PCSCs through downregulating the activation of Wnt/β-catenin and hedgehog signaling pathways in PCSCs. Furthermore, the verification experiments showed that the activators of Wnt/β-catenin (LiCl) and hedgehog (purmorphamine) attenuated the effects of SFN on PCSCs, including the expression of stem cell markers, cell proliferation and apoptosis. Meanwhile, suppression of β-catenin or Smoothened enhanced the effects of SFN on PCSCs. In addition, molecular docking further indicated that SFN inhibited Wnt/β-catenin and hedgehog pathways by directly targeting β-catenin and Smoothened. Taken together, our results demonstrated that SFN targeted PCSCs through Wnt/β-catenin and hedgehog pathways to inhibit stemness and proliferation and induce apoptosis. Findings from this study could provide new insights into SFN as a dietary supplement or adjunct to chemotherapy.
Collapse
Affiliation(s)
- Yanling Xuan
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingyi Xu
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215008, China
| | - Hongliang Que
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215008, China.
| | - Jianyun Zhu
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215008, China.
| |
Collapse
|
3
|
Faheem SA, Hazem RM, Elsayed NM, Ahmed YM, Saeed NM. Niclosamide modulates cyclosporin A-induced hepatotoxicity in a mouse model: PPAR-γ and Wnt/β-catenin crosstalk. Int Immunopharmacol 2023; 117:109941. [PMID: 37012891 DOI: 10.1016/j.intimp.2023.109941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/06/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate whether: 1) Wnt/β-catenin signaling is involved in cyclosporin A (CsA)-induced hepatotoxicity, and 2) knockdown of this pathway by niclosamide (NCL) attenuate CsA-induced hepatotoxicity. METHODS The experiment was accomplished in 21 days. Adult male mice were randomly distributed into five groups: control group, CsA (25 mg/kg/day) group, CsA + NCL (2.5 mg/kg/day) group, CsA + NCL (5 mg/kg/day) group, and NCL (5 mg/kg/day) group. RESULTS NCL showed marked hepatoprotection by significantly decreasing liver enzymes activities and ameliorating the histopathological alterations induced by CsA. Besides, NCL alleviated oxidative stress and inflammation. NCL-treated groups (2.5 and 5 mg/kg) displayed rise in the expression of hepatic peroxisome proliferator-activated receptor-γ (PPAR-γ) by 2.1- and 2.5-fold, respectively. Notably, NCL (2.5 and 5 mg/kg) significantly inhibited Wnt/β-catenin signaling, evidenced by a marked decrease in the hepatic expression of Wnt3a by 54 % and 50 %, frizzled-7 receptor by 50 % and 50 %, β-catenin by 22 % and 49 %, and c-myc by 50 % and 50 %, respectively. CONCLUSIONS NCL can be regarded as a potential agent to mitigate CsA-induced hepatotoxicity.
Collapse
Affiliation(s)
- Safaa A Faheem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Reem M Hazem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Norhan M Elsayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Yasser M Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Badr University in Cairo, Cairo, Egypt
| | - Noha M Saeed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt.
| |
Collapse
|
4
|
Shinawi T, Nasser KK, Moradi FA, Mujalli A, Albaqami WF, Almukadi HS, Elango R, Shaik NA, Banaganapalli B. A comparative mRNA- and miRNA transcriptomics reveals novel molecular signatures associated with metastatic prostate cancers. Front Genet 2022; 13:1066118. [DOI: 10.3389/fgene.2022.1066118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/01/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Prostate cancer (PC) is a fatally aggressive urogenital cancer killing millions of men, globally. Thus, this study aims to identify key miRNAs, target genes, and drug targets associated with prostate cancer metastasis.Methods: The miRNA and mRNA expression datasets of 148 prostate tissue biopsies (39 tumours and 109 normal tissues), were analysed by differential gene expression analysis, protein interactome mapping, biological pathway analysis, miRNA-mRNA networking, drug target analysis, and survival curve analysis.Results: The dysregulated expression of 53 miRNAs and their 250 target genes involved in Hedgehog, ErbB, and cAMP signalling pathways connected to cell growth, migration, and proliferation of prostate cancer cells was detected. The subsequent miRNA-mRNA network and expression status analysis have helped us in narrowing down their number to 3 hub miRNAs (hsa-miR-455-3p, hsa-miR-548c-3p, and hsa-miR-582-5p) and 9 hub genes (NFIB, DICER1, GSK3B, DCAF7, FGFR1OP, ABHD2, NACC2, NR3C1, and FGF2). Further investigations with different systems biology methods have prioritized NR3C1, ABHD2, and GSK3B as potential genes involved in prostate cancer metastasis owing to their high mutation load and expression status. Interestingly, down regulation of NR3C1 seems to improve the prostate cancer patient survival rate beyond 150 months. The NR3C1, ABHD2, and GSK3B genes are predicted to be targeted by hsa-miR-582-5p, besides some antibodies, PROTACs and inhibitory molecules.Conclusion: This study identified key miRNAs (miR-548c-3p and miR-582-5p) and target genes (NR3C1, ABHD2, and GSK3B) as potential biomarkers for metastatic prostate cancers from large-scale gene expression data using systems biology approaches.
Collapse
|
5
|
Hiroto A, Kim WK, Pineda A, He Y, Lee DH, Le V, Olson AW, Aldahl J, Nenninger CH, Buckley AJ, Xiao GQ, Geradts J, Sun Z. Stromal androgen signaling acts as tumor niches to drive prostatic basal epithelial progenitor-initiated oncogenesis. Nat Commun 2022; 13:6552. [PMID: 36323713 PMCID: PMC9630272 DOI: 10.1038/s41467-022-34282-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
The androgen receptor (AR)-signaling pathways are essential for prostate tumorigenesis. Although significant effort has been devoted to directly targeting AR-expressing tumor cells, these therapies failed in most prostate cancer patients. Here, we demonstrate that loss of AR in stromal sonic-hedgehog Gli1-lineage cells diminishes prostate epithelial oncogenesis and tumor development using in vivo assays and mouse models. Single-cell RNA sequencing and other analyses identified a robust increase of insulin-like growth factor (IGF) binding protein 3 expression in AR-deficient stroma through attenuation of AR suppression on Sp1-regulated transcription, which further inhibits IGF1-induced Wnt/β-catenin activation in adjacent basal epithelial cells and represses their oncogenic growth and tumor development. Epithelial organoids from stromal AR-deficient mice can regain IGF1-induced oncogenic growth. Loss of human prostate tumor basal cell signatures reveals in basal cells of stromal AR-deficient mice. These data demonstrate a distinct mechanism for prostate tumorigenesis and implicate co-targeting stromal and epithelial AR-signaling for prostate cancer.
Collapse
Affiliation(s)
- Alex Hiroto
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Won Kyung Kim
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Ariana Pineda
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Yongfeng He
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Dong-Hoon Lee
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Vien Le
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Adam W Olson
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Joseph Aldahl
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Christian H Nenninger
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Alyssa J Buckley
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Guang-Qian Xiao
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joseph Geradts
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Zijie Sun
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
6
|
Meszaros A, Ahmed J, Russo G, Tompa P, Lazar T. The evolution and polymorphism of mono-amino acid repeats in androgen receptor and their regulatory role in health and disease. Front Med (Lausanne) 2022; 9:1019803. [PMID: 36388907 PMCID: PMC9642029 DOI: 10.3389/fmed.2022.1019803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Androgen receptor (AR) is a key member of nuclear hormone receptors with the longest intrinsically disordered N-terminal domain (NTD) in its protein family. There are four mono-amino acid repeats (polyQ1, polyQ2, polyG, and polyP) located within its NTD, of which two are polymorphic (polyQ1 and polyG). The length of both polymorphic repeats shows clinically important correlations with disease, especially with cancer and neurodegenerative diseases, as shorter and longer alleles exhibit significant differences in expression, activity and solubility. Importantly, AR has also been shown to undergo condensation in the nucleus by liquid-liquid phase separation, a process highly sensitive to protein solubility and concentration. Nonetheless, in prostate cancer cells, AR variants also partition into transcriptional condensates, which have been shown to alter the expression of target gene products. In this review, we summarize current knowledge on the link between AR repeat polymorphisms and cancer types, including mechanistic explanations and models comprising the relationship between condensate formation, polyQ1 length and transcriptional activity. Moreover, we outline the evolutionary paths of these recently evolved amino acid repeats across mammalian species, and discuss new research directions with potential breakthroughs and controversies in the literature.
Collapse
Affiliation(s)
- Attila Meszaros
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Junaid Ahmed
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Giorgio Russo
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Peter Tompa
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Research Centre for Natural Sciences (RCNS), ELKH, Budapest, Hungary
| | - Tamas Lazar
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
7
|
Kim WK, Olson AW, Mi J, Wang J, Lee DH, Le V, Hiroto A, Aldahl J, Nenninger CH, Buckley AJ, Cardiff R, You S, Sun Z. Aberrant androgen action in prostatic progenitor cells induces oncogenesis and tumor development through IGF1 and Wnt axes. Nat Commun 2022; 13:4364. [PMID: 35902588 PMCID: PMC9334353 DOI: 10.1038/s41467-022-32119-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 07/18/2022] [Indexed: 12/26/2022] Open
Abstract
Androgen/androgen receptor (AR) signaling pathways are essential for prostate tumorigenesis. However, the fundamental mechanisms underlying the AR functioning as a tumor promoter in inducing prostatic oncogenesis still remain elusive. Here, we demonstrate that a subpopulation of prostatic Osr1 (odd skipped-related 1)-lineage cells functions as tumor progenitors in prostate tumorigenesis. Single cell transcriptomic analyses reveal that aberrant AR activation in these cells elevates insulin-like growth factor 1 (IGF1) signaling pathways and initiates oncogenic transformation. Elevating IGF1 signaling further cumulates Wnt/β-catenin pathways in transformed cells to promote prostate tumor development. Correlations between altered androgen, IGF1, and Wnt/β-catenin signaling are also identified in human prostate cancer samples, uncovering a dynamic regulatory loop initiated by the AR through prostate cancer development. Co-inhibition of androgen and Wnt-signaling pathways significantly represses the growth of AR-positive tumor cells in both ex-vivo and in-vivo, implicating co-targeting therapeutic strategies for these pathways to treat advanced prostate cancer.
Collapse
Affiliation(s)
- Won Kyung Kim
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Adam W Olson
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Jiaqi Mi
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Jinhui Wang
- Integrative Genomics Core, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Dong-Hoon Lee
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Vien Le
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Alex Hiroto
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Joseph Aldahl
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Christian H Nenninger
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Alyssa J Buckley
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Robert Cardiff
- Center for Comparative Medicine, University of California at Davis, Davis, CA, USA
| | - Sungyong You
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Zijie Sun
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
8
|
Hamidi AA, Khalili-Tanha G, Nasrpour Navaei Z, Moghbeli M. Long non-coding RNAs as the critical regulators of epithelial mesenchymal transition in colorectal tumor cells: an overview. Cancer Cell Int 2022; 22:71. [PMID: 35144601 PMCID: PMC8832734 DOI: 10.1186/s12935-022-02501-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/30/2022] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer mortality and a major health challenge worldwide. Despite advances in therapeutic and diagnostic methods, there is still a poor prognosis in CRC patients. Tumor recurrence and metastasis are the main causes of high mortality rate in these patients, which are due to late diagnosis in advanced tumor stages. Epithelial-mesenchymal transition (EMT) is known to be the most important cause of CRC metastasis, during which tumor cells obtain metastasis ability by losing epithelial features and gaining mesenchymal features. Long non-coding RNAs (lncRNAs) are pivotal regulators of EMT process. Regarding the higher stability of lncRNAs compared with coding RNAs in body fluids, they can be used as non-invasive diagnostic markers for EMT process. In the present review, we summarized all of the lncRNAs involved in regulation of EMT process during CRC progression and metastasis. It was observed that lncRNAs mainly induced the EMT process in CRC cells by regulation of EMT-related transcription factors, Poly comb repressive complex (PRC), and also signaling pathways such as WNT, NOTCH, MAPK, and Hippo.
Collapse
Affiliation(s)
- Amir Abbas Hamidi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Nasrpour Navaei
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Guo H, Peng J, Hu J, Chang S, Liu H, Luo H, Chen X, Tang H, Chen Y. BAIAP2L2 promotes the proliferation, migration and invasion of osteosarcoma associated with the Wnt/β-catenin pathway. J Bone Oncol 2021; 31:100393. [PMID: 34786330 PMCID: PMC8577457 DOI: 10.1016/j.jbo.2021.100393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/17/2021] [Accepted: 09/29/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Osteosarcoma is the most common bone cancer that significantly affects the quality of life of patients. Studies have shown that overexpression of BAIAP2L2 elevates the proliferation and growth of some types of cancer cells. However, the role of BAIAP2L2 in osteosarcoma is unclear. This study aimed to investigate the functions of BAIAP2L2 in the development of osteosarcoma. METHODS We used immunohistochemical and Western blot analysis to determine the expression levels of endogenic BAIAP2L2 in osteosarcoma cells. Cell counting kit-8 assay and colony formation assay were performed to investigate cell proliferation of tumor cells. Transwell assay was performed to detect cell migration. Flow cytometry assay was used to analyze cell apoptosis. The role of BAIAP2L2 in tumor growth was further explored in vivo. RESULTS We found that BAIAP2L2 was significantly upregulated in human osteosarcoma, and inhibition of BAIAP2L2 suppressed the proliferation of osteosarcoma cells. In addition, down-regulation of BAIAP2L2 could lead to osteosarcoma cancer cell apoptosis, inhibit cell migration and invasion, and induce the inactivation of the Wnt/β-catenin pathway. In addition, down-regulation of BAIAP2L2 inhibited tumor growth in vivo. CONCLUSION In conclusion, down-regulation of BAIAP2L2 inhibited the proliferation, migration, and invasion of osteosarcoma associated with the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Hongting Guo
- Oncologe Department, Chong Qing University Three Gorges Hospital, Chongqing City 404100, PR China
| | - Jing Peng
- Blood Transfusion Department, Chong Qing University Three Gorges Hospital, Chongqing City 404100, PR China
| | - Juan Hu
- Department of Anesthesiology, Chong Qing University Three Gorges Hospital, Chongqing City 404100, PR China
| | - Shichuan Chang
- Oncologe Department, Chong Qing University Three Gorges Hospital, Chongqing City 404100, PR China
| | - Huawen Liu
- Oncologe Department, Chong Qing University Three Gorges Hospital, Chongqing City 404100, PR China
| | - Hao Luo
- Department of Orthopaedics, Chong Qing University Three Gorges Hospital, Chongqing City 404100, PR China
| | - Xiaohua Chen
- Department of Orthopaedics, Chong Qing University Three Gorges Hospital, Chongqing City 404100, PR China
| | - Haiping Tang
- Blood Transfusion Department, Chong Qing University Three Gorges Hospital, Chongqing City 404100, PR China
| | - Youhao Chen
- Department of Orthopaedics, Chong Qing University Three Gorges Hospital, Chongqing City 404100, PR China
| |
Collapse
|
10
|
Wang C, Chen Q, Xu H. Wnt/β-catenin signal transduction pathway in prostate cancer and associated drug resistance. Discov Oncol 2021; 12:40. [PMID: 35201496 PMCID: PMC8777554 DOI: 10.1007/s12672-021-00433-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/01/2021] [Indexed: 11/22/2022] Open
Abstract
Globally, prostate cancer ranks second in cancer burden of the men. It occurs more frequently in black men compared to white or Asian men. Usually, high rates exist for men aged 60 and above. In this review, we focus on the Wnt/β-catenin signal transduction pathway in prostate cancer since many studies have reported that β-catenin can function as an oncogene and is important in Wnt signaling. We also relate its expression to the androgen receptor and MMP-7 protein, both critical to prostate cancer pathogenesis. Some mutations in the androgen receptor also impact the androgen-β-catenin axis and hence, lead to the progression of prostate cancer. We have also reviewed MiRNAs that modulate this pathway in prostate cancer. Finally, we have summarized the impact of Wnt/β-catenin pathway proteins in the drug resistance of prostate cancer as it is a challenging facet of therapy development due to the complexity of signaling pathways interaction and cross-talk.
Collapse
Affiliation(s)
- Chunyang Wang
- Urology Department, PLA General Hospital, Beijing, 100853, China
| | - Qi Chen
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China
| | - Huachao Xu
- Department of Urologic Oncology Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China.
| |
Collapse
|
11
|
He R, Du S, Lei T, Xie X, Wang Y. Glycogen synthase kinase 3β in tumorigenesis and oncotherapy (Review). Oncol Rep 2020; 44:2373-2385. [PMID: 33125126 PMCID: PMC7610307 DOI: 10.3892/or.2020.7817] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/17/2020] [Indexed: 02/05/2023] Open
Abstract
Glycogen synthase kinase 3β (GSK 3β), a multifunctional serine and threonine kinase, plays a critical role in a variety of cellular activities, including signaling transduction, protein and glycogen metabolism, cell proliferation, cell differentiation, and apoptosis. Therefore, aberrant regulation of GSK 3β results in a broad range of human diseases, such as tumors, diabetes, inflammation and neurodegenerative diseases. Accumulating evidence has suggested that GSK 3β is correlated with tumorigenesis and progression. However, GSK 3β is controversial due to its bifacial roles of tumor suppression and activation. In addition, overexpression of GSK 3β is involved in tumor growth, whereas it contributes to the cell sensitivity to chemotherapy. However, the underlying regulatory mechanisms of GSK 3β in tumorigenesis remain obscure and require further in‑depth investigation. In this review, we comprehensively summarize the roles of GSK 3β in tumorigenesis and oncotherapy, and focus on its potentials as an available target in oncotherapy.
Collapse
Affiliation(s)
- Rui He
- Department of Union, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Suya Du
- Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Tiantian Lei
- Department of Pharmacy, Chongqing Health Center for Women and Children, Chongqing 400013, P.R. China
| | - Xiaofang Xie
- Department of Medicine, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Yi Wang
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
- Center of Translational Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
12
|
Wang B, Li X, Liu L, Wang M. β-Catenin: oncogenic role and therapeutic target in cervical cancer. Biol Res 2020; 53:33. [PMID: 32758292 PMCID: PMC7405349 DOI: 10.1186/s40659-020-00301-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/28/2020] [Indexed: 12/23/2022] Open
Abstract
Cervical cancer is a common and fatal malignancy of the female reproductive system. Human papillomavirus (HPV) is the primary causal agent for cervical cancer, but HPV infection alone is insufficient to cause the disease. Actually, most HPV infections are sub-clinical and cleared spontaneously by the host immune system; very few persist and eventually develop into cervical cancer. Therefore, other host or environmental alterations could also contribute to the malignant phenotype. One of the candidate co-factors is the β-catenin protein, a pivotal component of the Wnt/β-catenin signaling pathway. β-Catenin mainly implicates two major cellular activities: cell–cell adhesion and signal transduction. Recent studies have indicated that an imbalance in the structural and signaling properties of β-catenin leads to various cancers, such as cervical cancer. In this review, we will systematically summarize the role of β-catenin in cervical cancer and provide new insights into therapeutic strategies.
Collapse
Affiliation(s)
- Bingqi Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xianping Li
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Lei Liu
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Min Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
13
|
Mohajeri M, Bianconi V, Ávila-Rodriguez MF, Barreto GE, Jamialahmadi T, Pirro M, Sahebkar A. Curcumin: a phytochemical modulator of estrogens and androgens in tumors of the reproductive system. Pharmacol Res 2020; 156:104765. [PMID: 32217147 DOI: 10.1016/j.phrs.2020.104765] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 02/14/2020] [Accepted: 03/18/2020] [Indexed: 01/06/2023]
Abstract
Curcumin (Cur) is an active derivative extracted from turmeric which exerts a wide range of interactions with biomolecules through complex signaling pathways. Cur has been extensively shown to possess potential antitumor properties. In addition, there is growing body of evidence suggesting that Cur may exert potential anti-estrogen and anti-androgen activity. In vitro and in vivo studies suggest that anticancer properties of Cur against tumors affecting the reproductive system in females and males may be underlied by the Cur-mediated inhibition of androgen and estrogen signaling pathways. In this review we examine various studies assessing the crosstalk between Cur and both androgen and estrogen hormonal activity. Also, we discuss the potential chemopreventive and antitumor role of Cur in the most prevalent cancers affecting the reproductive system in females and males.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology & Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vanessa Bianconi
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | | | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland
| | - Tannaz Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Doo DW, Meza-Perez S, Londoño AI, Goldsberry WN, Katre AA, Boone JD, Moore DJ, Hudson CT, Betella I, McCaw TR, Gangrade A, Bao R, Luke JJ, Yang ES, Birrer MJ, Starenki D, Cooper SJ, Buchsbaum DJ, Norian LA, Randall TD, Arend RC. Inhibition of the Wnt/β-catenin pathway enhances antitumor immunity in ovarian cancer. Ther Adv Med Oncol 2020; 12:1758835920913798. [PMID: 32313567 PMCID: PMC7158255 DOI: 10.1177/1758835920913798] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/26/2020] [Indexed: 01/31/2023] Open
Abstract
Background: The Wnt/β-catenin pathway is linked to tumorigenesis in a variety of tumors and promotes T cell exclusion and resistance to checkpoint inhibitors. We sought to determine whether a small molecule inhibitor of this pathway, WNT974, would impair tumor growth, affect gene expression patterns, and improve the immune response in human and murine ovarian cancer models. Methods: Human ovarian cancer cells were treated with WNT974 in vitro. RNAseq libraries were constructed and differences in gene expression patterns between responders and nonresponders were compared to The Cancer Genome Atlas (TCGA). Mice with subcutaneous or intraperitoneal ID8 ovarian cancer tumors were treated with WNT974, paclitaxel, combination, or control. Tumor growth and survival were measured. Flow cytometry and β-TCR repertoire analysis were used to determine the immune response. Results: Gene expression profiling revealed distinct signatures in responders and nonresponders, which strongly correlated with T cell infiltration patterns in the TCGA analysis of ovarian cancer. WNT974 inhibited tumor growth, prevented ascites formation, and prolonged survival in mouse models. WNT974 increased the ratio of CD8+ T cells to T regulatory cells (Tregs) in tumors and enhanced the effector functions of infiltrating CD4+ and CD8+ T cells. Treatment also decreased the expression of inhibitory receptors on CD8+ T cells. Combining WNT974 with paclitaxel further reduced tumor growth, prolonged survival, and expanded the T cell repertoire. Conclusions: These findings suggest that inhibiting the Wnt/β-catenin pathway may have a potent immunomodulatory effect in the treatment of ovarian cancer, particularly when combined with paclitaxel.
Collapse
Affiliation(s)
- David W Doo
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Selene Meza-Perez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Angelina I Londoño
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Whitney N Goldsberry
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ashwini A Katre
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jonathan D Boone
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dylana J Moore
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cindy T Hudson
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ilaria Betella
- Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
| | - Tyler R McCaw
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Abhishek Gangrade
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Riyue Bao
- Department of Pediatrics, University of Chicago School of Medicine, Chicago, IL, USA
| | - Jason J Luke
- Department of Medicine, University of Chicago School of Medicine, Chicago, IL, USA
| | - Eddy S Yang
- Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
| | - Michael J Birrer
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dmytro Starenki
- Hudson Alpha Institute for Biotechnology, Huntsville, AL, USA
| | - Sara J Cooper
- Hudson Alpha Institute for Biotechnology, Huntsville, AL, USA
| | - Donald J Buchsbaum
- Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
| | - Lyse A Norian
- Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
| | - Troy D Randall
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rebecca C Arend
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Alabama at Birmingham, 619 19th Street South, 176F Rm 10250, Birmingham, AL 35249, USA
| |
Collapse
|
15
|
Abd. Wahab NA, H. Lajis N, Abas F, Othman I, Naidu R. Mechanism of Anti-Cancer Activity of Curcumin on Androgen-Dependent and Androgen-Independent Prostate Cancer. Nutrients 2020; 12:E679. [PMID: 32131560 PMCID: PMC7146610 DOI: 10.3390/nu12030679] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/22/2020] [Accepted: 02/26/2020] [Indexed: 12/22/2022] Open
Abstract
Prostate cancer (PCa) is a heterogeneous disease and ranked as the second leading cause of cancer-related deaths in males worldwide. The global burden of PCa keeps rising regardless of the emerging cutting-edge technologies for treatment and drug designation. There are a number of treatment options which are effectively treating localised and androgen-dependent PCa (ADPC) through hormonal and surgery treatments. However, over time, these cancerous cells progress to androgen-independent PCa (AIPC) which continuously grow despite hormone depletion. At this particular stage, androgen depletion therapy (ADT) is no longer effective as these cancerous cells are rendered hormone-insensitive and capable of growing in the absence of androgen. AIPC is a lethal type of disease which leads to poor prognosis and is a major contributor to PCa death rates. A natural product-derived compound, curcumin has been identified as a pleiotropic compound which capable of influencing and modulating a diverse range of molecular targets and signalling pathways in order to exhibit its medicinal properties. Due to such multi-targeted behaviour, its benefits are paramount in combating a wide range of diseases including inflammation and cancer disease. Curcumin exhibits anti-cancer properties by suppressing cancer cells growth and survival, inflammation, invasion, cell proliferation as well as possesses the ability to induce apoptosis in malignant cells. In this review, we investigate the mechanism of curcumin by modulating multiple signalling pathways such as androgen receptor (AR) signalling, activating protein-1 (AP-1), phosphatidylinositol 3-kinases/the serine/threonine kinase (PI3K/Akt/mTOR), wingless (Wnt)/ß-catenin signalling, and molecular targets including nuclear factor kappa-B (NF-κB), B-cell lymphoma 2 (Bcl-2) and cyclin D1 which are implicated in the development and progression of both types of PCa, ADPC and AIPC. In addition, the role of microRNAs and clinical trials on the anti-cancer effects of curcumin in PCa patients were also reviewed.
Collapse
Affiliation(s)
- Nurul Azwa Abd. Wahab
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; (N.A.A.W.); (I.O.)
| | - Nordin H. Lajis
- Laboratory of Natural Products, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia; (N.H.L.); (F.A.)
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia; (N.H.L.); (F.A.)
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; (N.A.A.W.); (I.O.)
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; (N.A.A.W.); (I.O.)
| |
Collapse
|
16
|
Androgen receptor with short polyglutamine tract preferably enhances Wnt/β-catenin-mediated prostatic tumorigenesis. Oncogene 2020; 39:3276-3291. [PMID: 32089544 PMCID: PMC7165053 DOI: 10.1038/s41388-020-1214-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 02/08/2023]
Abstract
Polyglutamine (polyQ) tract polymorphism within the human androgen receptor (AR) shows population heterogeneity. African American men possess short polyQ tracts significantly more frequently than Caucasian American men. The length of polyQ tracts is inversely correlated with the risk of prostate cancer, age of onset, and aggressiveness at diagnosis. Aberrant activation of Wnt signaling also reveals frequently in advanced prostate cancer, and an enrichment of androgen and Wnt signaling activation has been observed in African American patients. Here, we assessed aberrant expression of AR bearing different polyQ tracts and stabilized β-catenin in prostate tumorigenesis using newly generated mouse models. We observed an early onset oncogenic transformation, accelerated tumor cell growth, and aggressive tumor phenotypes in the compound mice bearing short polyQ tract AR and stabilized β-catenin. RNA sequencing analysis showed a robust enrichment of Myc-regulated downstream genes in tumor samples bearing short polyQ AR versus those with longer polyQ tract AR. Upstream regulator analysis further identified Myc as the top candidate of transcriptional regulators in tumor cells from the above mouse samples with short polyQ tract AR and β-catenin. Chromatin immunoprecipitation analyses revealed increased recruitment of β-catenin and AR on the c-Myc gene regulatory locus in the tumor tissues expressing stabilized β-catenin and shorter polyQ tract AR. These data demonstrate a promotional role of aberrant activation of Wnt/β-catenin in combination with short polyQ AR expression in prostate tumorigenesis and suggest a potential mechanism underlying aggressive prostatic tumor development, which has been frequently observed in African American patients.
Collapse
|
17
|
Aldahl J, Mi J, Pineda A, Kim WK, Olson A, Hooker E, He Y, Yu EJ, Le V, Lee DH, Geradts J, Sun Z. Aberrant activation of hepatocyte growth factor/MET signaling promotes β-catenin-mediated prostatic tumorigenesis. J Biol Chem 2019; 295:631-644. [PMID: 31819003 DOI: 10.1074/jbc.ra119.011137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/04/2019] [Indexed: 12/16/2022] Open
Abstract
Co-occurrence of aberrant hepatocyte growth factor (HGF)/MET proto-oncogene receptor tyrosine kinase (MET) and Wnt/β-catenin signaling pathways has been observed in advanced and metastatic prostate cancers. This co-occurrence positively correlates with prostate cancer progression and castration-resistant prostate cancer development. However, the biological consequences of these abnormalities in these disease processes remain largely unknown. Here, we investigated the aberrant activation of HGF/MET and Wnt/β-catenin cascades in prostate tumorigenesis by using a newly generated mouse model in which both murine Met transgene and stabilized β-catenin are conditionally co-expressed in prostatic epithelial cells. These compound mice displayed accelerated prostate tumor formation and invasion compared with their littermates that expressed only stabilized β-catenin. RNA-Seq and quantitative RT-PCR analyses revealed increased expression of genes associated with tumor cell proliferation, progression, and metastasis. Moreover, Wnt signaling pathways were robustly enriched in prostate tumor samples from the compound mice. ChIP-qPCR experiments revealed increased β-catenin recruitment within the regulatory regions of the Myc gene in tumor cells of the compound mice. Interestingly, the occupancy of MET on the Myc promoter also appeared in the compound mouse tumor samples, implicating a novel role of MET in β-catenin-mediated transcription. Results from implanting prostate graft tissues derived from the compound mice and controls into HGF-transgenic mice further uncovered that HGF induces prostatic oncogenic transformation and cell growth. These results indicate a role of HGF/MET in β-catenin-mediated prostate cancer cell growth and progression and implicate a molecular mechanism whereby nuclear MET promotes aberrant Wnt/β-catenin signaling-mediated prostate tumorigenesis.
Collapse
Affiliation(s)
- Joseph Aldahl
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California 91010-3000
| | - Jiaqi Mi
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California 91010-3000
| | - Ariana Pineda
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California 91010-3000
| | - Won Kyung Kim
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California 91010-3000
| | - Adam Olson
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California 91010-3000
| | - Erika Hooker
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California 91010-3000
| | - Yongfeng He
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California 91010-3000
| | - Eun-Jeong Yu
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California 91010-3000
| | - Vien Le
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California 91010-3000
| | - Dong-Hoon Lee
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California 91010-3000
| | - Joseph Geradts
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, California 91010-3000
| | - Zijie Sun
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California 91010-3000.
| |
Collapse
|
18
|
Olson A, Le V, Aldahl J, Yu EJ, Hooker E, He Y, Lee DH, Kim WK, Cardiff RD, Geradts J, Sun Z. The comprehensive role of E-cadherin in maintaining prostatic epithelial integrity during oncogenic transformation and tumor progression. PLoS Genet 2019; 15:e1008451. [PMID: 31658259 PMCID: PMC6816545 DOI: 10.1371/journal.pgen.1008451] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
E-cadherin complexes with the actin cytoskeleton via cytoplasmic catenins and maintains the functional characteristics and integrity of the epithelia in normal epithelial tissues. Lost expression of E-cadherin disrupts this complex resulting in loss of cell polarity, epithelial denudation and increased epithelial permeability in a variety of tissues. Decreased expression of E-cadherin has also been observed in invasive and metastatic human tumors. In this study, we investigated the effect of E-cadherin loss in prostatic epithelium using newly developed genetically engineered mouse models. Deletion of E-cadherin in prostatic luminal epithelial cells with modified probasin promoter driven Cre (PB-Cre4) induced the development of mouse prostatic intraepithelial neoplasia (PIN). An increase in levels of cytoplasmic and nuclear β-catenin appeared in E-cadherin deleted atypical cells within PIN lesions. Using various experimental approaches, we further demonstrated that the knockdown of E-cadherin expression elevated free cytoplasmic and nuclear β-catenin and enhanced androgen-induced transcription and cell growth. Intriguingly, pathological changes representing prostatic epithelial cell denudation and increased apoptosis accompanied the above PIN lesions. The essential role of E-cadherin in maintaining prostatic epithelial integrity and organization was further demonstrated using organoid culture approaches. To directly assess the role of loss of E-cadherin in prostate tumor progression, we generated a new mouse model with bigenic Cdh1 and Pten deletion in prostate epithelium. Early onset, aggressive tumor phenotypes presented in the compound mice. Strikingly, goblet cell metaplasia was observed, intermixed within prostatic tumor lesions of the compound mice. This study provides multiple lines of novel evidence demonstrating a comprehensive role of E-cadherin in maintaining epithelial integrity during the course of prostate oncogenic transformation, tumor initiation and progression. The biological significance of E-cadherin in maintaining prostatic epithelial integrity and related molecular mechanisms are still unclear. In this study, using mouse genetic tools, we directly address this important and unresolved question. Conditional deletion of E-cadherin in mouse prostatic epithelia resulted in prostatic intraepithelial neoplasia (PIN) development but no prostatic tumor formation. Both in vivo and in vitro data showed that loss of E-cadherin modulates the cellular localization of β-catenin, elevates its cytoplasmic and nuclear levels, and enhances its activity in transcription and cell proliferation. Intriguingly, in addition to PIN lesions, increased epithelial denudation and cell apoptosis also appeared within PIN lesions. This implicates that although lost E-cadherin is sufficient to introduce oncogenic transformation in prostatic epithelia, it also induces cell apoptosis and disrupts epithelial structure, preventing atypical PIN cells from progressing to tumor cells. Simultaneous deletion of Pten, a tumor suppressor, and E-cadherin in prostatic epithelia resulted in early onset, invasive prostatic tumors with admixture of goblet cells. These results demonstrate a critical role of E-cadherin in promoting prostatic tumor transdifferentiation and progression. This study further elucidates the dynamic role of E-cadherin in maintaining prostatic epithelial integrity during tumor initiation and progression.
Collapse
Affiliation(s)
- Adam Olson
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Vien Le
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Joseph Aldahl
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Eun-Jeong Yu
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Erika Hooker
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Yongfeng He
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Dong-Hong Lee
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Won Kyung Kim
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Robert D. Cardiff
- Center for Comparative Medicine, University of California at Davis, Davis, California, United States of America
| | - Joseph Geradts
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Zijie Sun
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
19
|
Aripaka K, Gudey SK, Zang G, Schmidt A, Åhrling SS, Österman L, Bergh A, von Hofsten J, Landström M. TRAF6 function as a novel co-regulator of Wnt3a target genes in prostate cancer. EBioMedicine 2019; 45:192-207. [PMID: 31262711 PMCID: PMC6642315 DOI: 10.1016/j.ebiom.2019.06.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 06/09/2019] [Accepted: 06/24/2019] [Indexed: 12/18/2022] Open
Abstract
Background Tumour necrosis factor receptor associated factor 6 (TRAF6) promotes inflammation in response to various cytokines. Aberrant Wnt3a signals promotes cancer progression through accumulation of β-Catenin. Here we investigated a potential role for TRAF6 in Wnt signaling. Methods TRAF6 expression was silenced by siRNA in human prostate cancer (PC3U) and human colorectal SW480 cells and by CRISPR/Cas9 in zebrafish. Several biochemical methods and analyses of mutant phenotype in zebrafish were used to analyse the function of TRAF6 in Wnt signaling. Findings Wnt3a-treatment promoted binding of TRAF6 to the Wnt co-receptors LRP5/LRP6 in PC3U and LNCaP cells in vitro. TRAF6 positively regulated mRNA expression of β-Catenin and subsequent activation of Wnt target genes in PC3U cells. Wnt3a-induced invasion of PC3U and SW480 cells were significantly reduced when TRAF6 was silenced by siRNA. Database analysis revealed a correlation between TRAF6 mRNA and Wnt target genes in patients with prostate cancer, and high expression of LRP5, TRAF6 and c-Myc correlated with poor prognosis. By using CRISPR/Cas9 to silence TRAF6 in zebrafish, we confirm TRAF6 as a key molecule in Wnt3a signaling for expression of Wnt target genes. Interpretation We identify TRAF6 as an important component in Wnt3a signaling to promote activation of Wnt target genes, a finding important for understanding mechanisms driving prostate cancer progression. Fund KAW 2012.0090, CAN 2017/544, Swedish Medical Research Council (2016-02513), Prostatacancerförbundet, Konung Gustaf V:s Frimurarestiftelse and Cancerforskningsfonden Norrland. The funders did not play a role in manuscript design, data collection, data analysis, interpretation nor writing of the manuscript.
TRAF6 positively regulated mRNA expression of b-Catenin and subsequent activation of Wnt target genes in prostate cancer cells in vitro. High expression of LRP5, TRAF6 and c-Myc correlated with poor prognosis for patients with prostate cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anders Bergh
- Medical Biosciences, Umeå University, Umeå, Sweden
| | - Jonas von Hofsten
- Umeå Centre for Molecular Medicine (UCMM), Umeå, Sweden; Integrative Medical Biology, Umeå University, Umeå, Sweden
| | | |
Collapse
|
20
|
Moon YH, Lim W, Jeong BC. Transmembrane protein 64 modulates prostate tumor progression by regulating Wnt3a secretion. Oncol Lett 2019; 18:283-290. [PMID: 31289498 PMCID: PMC6540479 DOI: 10.3892/ol.2019.10324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/29/2019] [Indexed: 12/11/2022] Open
Abstract
Wnt3a is a glycosylated ligand that activates the β-catenin-dependent signaling pathway. Wnt signaling is also important in the prostate tumor microenvironment, and Wnt proteins secreted by the tumor stroma promote resistance to therapy. Bioactive Wnt3a production requires a number of dedicated factors in the secretory cell, but their coordinated functions are not fully understood. We previously reported transmembrane protein 64 (Tmem64) as a novel regulator of the Wnt/β-catenin signaling pathway, which is correlated with β-catenin regulation. In the present study, the role of Tmem64 in prostate cancer cells was investigated by modulating Wnt3a secretion. Overexpression of Tmem64 inhibited Wnt3a secretion and Lef/Tcf-sensitive transcription. By contrast, a Tmem64 mutation deleting the protein's transmembrane region restored Wnt3a secretion. Notably, Tmem64 protein and mRNA in PC3 cells were significantly overexpressed compared with that observed in LNCaP and DU145 cells. In a mouse metastasis model intracardially injected with PC3 cells, Tmem64 expression was downregulated in the metastatic spine and mandible lesions compared with in the primary injection regions. However, Wnt3a was strongly expressed in the metastatic spine and mandible lesions. Collectively, these findings suggest that Tmem64 is involved in the metastatic progression of prostate cancer cells by regulating Wnt3a secretion.
Collapse
Affiliation(s)
- Yeon Hee Moon
- Department of Dental Hygiene, Chodang University, Muangun, Jeollanamdo 58530, Republic of Korea
| | - Wonbong Lim
- Department of Orthopaedic Surgery, Chosun University Hospital, Donggu, Gwangju 61453, Republic of Korea.,Laboratory of Orthopaedic Research, Department of Orthopaedic Surgery, Chosun University Hospital, Donggu, Gwangju 61453, Republic of Korea.,Department of Premedical Program, School of Medicine, Chosun University, Donggu, Gwangju 61452, Republic of Korea
| | - Byung-Chul Jeong
- Department of Orthopaedic Surgery, Chosun University Hospital, Donggu, Gwangju 61453, Republic of Korea.,Laboratory of Orthopaedic Research, Department of Orthopaedic Surgery, Chosun University Hospital, Donggu, Gwangju 61453, Republic of Korea
| |
Collapse
|
21
|
Oncogenic and osteolytic functions of histone demethylase NO66 in castration-resistant prostate cancer. Oncogene 2019; 38:5038-5049. [DOI: 10.1038/s41388-019-0774-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 12/07/2018] [Accepted: 02/16/2019] [Indexed: 02/07/2023]
|
22
|
He Y, Hooker E, Yu EJ, Cunha GR, Liao L, Xu J, Earl A, Wu H, Gonzalgo ML, Sun Z. Androgen signaling is essential for development of prostate cancer initiated from prostatic basal cells. Oncogene 2018; 38:2337-2350. [PMID: 30510232 PMCID: PMC6440846 DOI: 10.1038/s41388-018-0583-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/03/2018] [Accepted: 10/17/2018] [Indexed: 12/15/2022]
Abstract
Emerging evidence has shown that both prostatic basal and luminal cells are able to initiate oncogenic transformation. However, despite the diversity of tumor-initiating cells, most prostate cancer cells express the androgen receptor (AR) and depend on androgens for their growth and expansion, implicating an essential role of androgen signaling in prostate tumorigenesis. Prostatic basal cells express p63 and are able to differentiate into luminal, neuroendocrine, and basal cells. Here, we directly assessed the essential role of androgen signaling in prostatic p63-expressing cell initiated oncogenic transformation and tumor formation. Using novel and relevant mouse models, we demonstrated that, with stabilized β-catenin expression, prostatic p63-expressing cells possess the ability to initiate oncogenic transformation and, in the presence of androgens, they further transdifferentiate into luminal-like tumor cells and develop adenocarcinomas. Castration prior to activating stabilized β-catenin sensitizes p63-expressing cells and increases their sensitivity to androgens, resulting in aggressive and fast growing tumor phenotypes. These findings are consistent with what have been observed in human prostate cancers, demonstrating an essential role for androgen signaling in prostate cancer initiation and progression. This study also provides fresh insight into developing new therapeutic strategies for better treating prostate cancer patients.
Collapse
Affiliation(s)
- Yongfeng He
- Department of Cancer Biology, Beckman Research Institute and Cancer Center, City of Hope, Duarte, CA, 91010, USA.,Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Erika Hooker
- Department of Cancer Biology, Beckman Research Institute and Cancer Center, City of Hope, Duarte, CA, 91010, USA.,Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Eun-Jeong Yu
- Department of Cancer Biology, Beckman Research Institute and Cancer Center, City of Hope, Duarte, CA, 91010, USA.,Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Gerald R Cunha
- Department of Urology, School of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Lan Liao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Andrew Earl
- Department of Cancer Biology, Beckman Research Institute and Cancer Center, City of Hope, Duarte, CA, 91010, USA
| | - Huiqing Wu
- Department of Pathology, Beckman Research Institute and Cancer Center, City of Hope, Duarte, CA, 91010, USA
| | - Michael L Gonzalgo
- Department of Urology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Zijie Sun
- Department of Cancer Biology, Beckman Research Institute and Cancer Center, City of Hope, Duarte, CA, 91010, USA. .,Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
23
|
Zhou Y, Zou H, Wu E, Huang L, Yin R, Mei Y, Zhu X. Overexpression of ROD1 inhibits invasion of breast cancer cells by suppressing the translocation of β-catenin into the nucleus. Oncol Lett 2018; 16:2645-2653. [PMID: 30013660 DOI: 10.3892/ol.2018.8917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 04/16/2018] [Indexed: 12/14/2022] Open
Abstract
The incidence of breast cancer is increasing throughout the world. Although significant progress has been made in diagnostic techniques and targeted therapies, the prognosis of breast cancer remains poor. Regulator of differentiation 1 (ROD1) may inhibit the development of several types of cancer. However, the role of ROD1 in breast cancer cells remains unknown. In the present study, western blot analysis and reverse transcription-quantitative polymerase chain reaction revealed that expression of ROD1 was significantly reduced in breast cancer cells. Overexpression of ROD1 reduced the proliferation rate, demonstrated using a Cell Counting Kit-8 assay. Additionally, the overexpression of ROD1 decreased the invasiveness of breast cancer cells, indicating that ROD1 may serve as a tumor suppressor. Additionally, the data suggested that ROD1 significantly suppressed the activity of Wnt luciferase reporter (TOP Flash) in MDA-MB-231 cells. Furthermore, it was demonstrated that ROD1 may interact with β-catenin by using co-immunoprecipitation, resulting in suppression of β-catenin migration into the nucleus. Notably, ROD1 demonstrated its anticancer effect by decreasing β-catenin (Y333) phosphorylation in a nude mouse xenograft model. Overexpression of ROD1 may downregulate Ki67 protein levels, as determined by immunohistochemistry. These results indicated that ROD1 may be used as a therapeutic target in patients with breast cancer.
Collapse
Affiliation(s)
- Ya Zhou
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Hanqing Zou
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Enhao Wu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Lei Huang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Rui Yin
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Yuxin Mei
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Xun Zhu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
24
|
Kobayashi PE, Fonseca-Alves CE, Rivera-Calderón LG, Carvalho M, Kuasne H, Rogatto SR, Laufer-Amorim R. Deregulation of E-cadherin, β-catenin, APC and Caveolin-1 expression occurs in canine prostate cancer and metastatic processes. Res Vet Sci 2018; 118:254-261. [PMID: 29529534 DOI: 10.1016/j.rvsc.2018.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/12/2018] [Accepted: 03/02/2018] [Indexed: 01/08/2023]
Abstract
Prostate cancer is a heterogeneous disease with high levels of clinical and gene heterogeneity, consequently offering several targets for therapy. Dogs with naturally occurring prostate cancer are useful models for molecular investigations and studying new treatment efficacy. Three genes and proteins associated with the WNT pathway (β-catenin, APC and E-cadherin) and Caveolin-1 (CAV-1) were evaluated in canine pre-neoplastic proliferative inflammatory atrophy (PIA), prostate cancer and metastatic disease. The APC gene methylation status was also investigated. As in human prostate cancer, cytoplasmic and nuclear β-catenin, which are fundamental for activating the canonical WNT pathway, were found in canine prostate cancer and metastasis. Membranous E-cadherin was also lost in these lesions, allowing cellular migration to the stroma and nuclear localization of β-catenin. In contrast to human prostate tumours, no APC downregulation or hypermethylation was found in canine prostate cancer. The CAV-1 gene and protein overexpression were found in canine prostate cancer, and as in humans, the highest levels were found in Gleason scores ≥8. In conclusion, as with human prostate cancer, β-catenin and E-cadherin in the WNT pathway, as well as Caveolin-1, are molecular drivers in canine prostate cancer. These findings provide additional evidence that dogs are useful models for studying new therapeutic targets in prostate cancer.
Collapse
Affiliation(s)
- Priscila E Kobayashi
- São Paulo State University (UNESP), Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, Botucatu, SP, Brazil
| | - Carlos E Fonseca-Alves
- São Paulo State University (UNESP), Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, Botucatu, SP, Brazil
| | - Luis G Rivera-Calderón
- São Paulo State University (UNESP), Department of Veterinary Pathology, School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Márcio Carvalho
- São Paulo State University (UNESP), Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, Botucatu, SP, Brazil
| | - Hellen Kuasne
- International Center for Research (CIPE), AC Camargo Hospital, Liberdade, São Paulo, Brazil
| | - Silvia R Rogatto
- Department of Clinical Genetics, Vejle Hospital and Institute of Regional Health, University of Southern Denmark, Denmark
| | - Renée Laufer-Amorim
- São Paulo State University (UNESP), Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, Botucatu, SP, Brazil.
| |
Collapse
|
25
|
|
26
|
Zhang P, Schaefer-Klein J, Cheville JC, Vasmatzis G, Kovtun IV. Frequently rearranged and overexpressed δ-catenin is responsible for low sensitivity of prostate cancer cells to androgen receptor and β-catenin antagonists. Oncotarget 2018; 9:24428-24442. [PMID: 29849951 PMCID: PMC5966253 DOI: 10.18632/oncotarget.25319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 04/13/2018] [Indexed: 12/22/2022] Open
Abstract
The mechanism of prostate cancer (PCa) progression towards the hormone refractory state remains poorly understood. Treatment options for such patients are limited and present a major clinical challenge. Previously, δ-catenin was reported to promote PCa cell growth in vitro and its increased level is associated with PCa progression in vivo. In this study we show that re-arrangements at Catenin Delta 2 (CTNND2) locus, including gene duplications, are very common in clinically significant PCa and may underlie δ-catenin overexpression. We find that δ-catenin in PCa cells exists in a complex with E-cadherin, p120, and α- and β-catenin. Increased expression of δ-catenin leads to its further stabilization as well as upregulation and stabilization of its binding partners. Resistant to degradation and overexpressed δ-catenin isoform activates Wnt signaling pathway by increasing the level of nuclear β-catenin and subsequent stimulation of Tcf/Lef transcription targets. Evaluation of responses to treatments, with androgen receptor (AR) antagonist and β-catenin inhibitors revealed that cells with high levels of δ-catenin are more resistant to killing with single agent treatment than matched control cells. We show that combination treatment targeting both AR and β-catenin networks is more effective in suppressing tumor growth than targeting a single network. In conclusion, targeting clinically significant PCa with high levels of δ–catenin with anti-androgen and anti β-catenin combination therapy may prevent progression of the disease to a castration-resistant state and, thus, represents a promising therapeutic strategy.
Collapse
Affiliation(s)
- Piyan Zhang
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - John C Cheville
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - George Vasmatzis
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Molecular Medicine and Mayo Clinic, Rochester, Minnesota, USA
| | - Irina V Kovtun
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
27
|
Straub SF, Drage MG, Gonzalez RS. Comparison of dysplastic fundic gland polyps in patients with and without familial adenomatous polyposis. Histopathology 2018; 72:1172-1179. [PMID: 29436014 DOI: 10.1111/his.13485] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/07/2018] [Indexed: 12/18/2022]
Abstract
AIMS Dysplastic fundic gland polyps (d-FGPs) typically arise in patients with familial adenomatous polyposis (FAP) but may occur in non-syndromic patients. They rarely become malignant, but their significance is unclear, especially in non-syndromic patients. We aimed to compare d-FGPs in patients with and without FAP, using clinicopathologic findings and β-catenin immunohistochemistry (IHC). METHODS AND RESULTS We identified 124 fundic gland polyps with low-grade dysplasia (LGD) or high-grade dysplasia (HGD) or indefinite for dysplasia (IFD) from 66 patients (27 with FAP; 39 non-syndromic). We recorded patient sex, age at first d-FGP, time until subsequent d-FGP (if any), history of non-gastric cancer (no patients had gastric cancer), proton-pump inhibitor use, and the presence of Helicobacter pylori. β-Catenin IHC was performed on cases with available blocks. The mean age at d-FGP diagnosis was 31 years for FAP patients and 61 years for non-syndromic patients (P < 0.0001). Sixteen FAP patients (59%) developed at least one subsequent d-FGP, as compared with 10 (27%) non-syndromic patients (P = 0.0099). The median time between d-FGP detection was 11.5 months in FAP patients and 7 months in non-syndromic patients (P = 0.82). Six FAP patients (22%) and 17 non-syndromic patients (44%) had non-gastric malignancies (P = 0.11). β-Catenin IHC showed nuclear positivity in 14 of 112 (13%) d-FGPs: 12 of 94 with LGD, two of three with HGD, and none of 15 with IFD polyps. CONCLUSIONS Familial adenomatous polyposis patients develop d-FGPs earlier and more often develop additional ones than non-syndromic patients. d-FGPs in FAP and non-syndromic patients have similar low rates of β-catenin nuclear IHC positivity. FAP and non-syndromic patients developed non-gastric cancers at similar rates, suggesting that d-FGPs may portend a general increased risk of carcinogenesis in non-syndromic patients.
Collapse
Affiliation(s)
- Shana F Straub
- Office of the Chief Medical Examiner of New York City, New York, NY, USA
| | - Michael G Drage
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Raul S Gonzalez
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
28
|
Zhang P, Song Y, Sun Y, Li X, Chen L, Yang L, Xing Y. AMPK/GSK3β/β‐catenin cascade‐triggered overexpression of CEMIP promotes migration and invasion in anoikis‐resistant prostate cancer cells by enhancing metabolic reprogramming. FASEB J 2018; 32:3924-3935. [DOI: 10.1096/fj.201701078r] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Peng Zhang
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of UrologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Yarong Song
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yadong Sun
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xuechao Li
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Lifeng Chen
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Plastic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Likun Yang
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yifei Xing
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
29
|
A novel non-canonical Wnt signature for prostate cancer aggressiveness. Oncotarget 2018; 8:9572-9586. [PMID: 28030815 PMCID: PMC5354754 DOI: 10.18632/oncotarget.14161] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/23/2016] [Indexed: 01/22/2023] Open
Abstract
Activation of the Canonical Wnt pathway (CWP) has been linked to advanced and metastatic prostate cancer, whereas the Wnt5a-induced non-canonical Wnt pathway (NCWP) has been associated with both good and poor prognosis. A newly discovered NCWP, Wnt5/Fzd2, has been shown to induce epithelial-to-mesenchymal transition (EMT) in cancers, but has not been investigated in prostate cancer. The aim of this study was to investigate if the CWP and NCWP, in combination with EMT, are associated with metabolic alterations, aggressive disease and biochemical recurrence in prostate cancer. An initial analysis was performed using integrated transcriptomics, ex vivo and in vivo metabolomics, and histopathology of prostatectomy samples (n=129), combined with at least five-year follow-up. This analysis detected increased activation of NCWP through Wnt5a/ Fzd2 as the most common mode of Wnt activation in prostate cancer. This activation was associated with increased expression of EMT markers and higher Gleason score. The transcriptional association between NCWP and EMT was confirmed in five other publicly available patient cohorts (1519 samples in total). A novel gene expression signature of concordant activation of NCWP and EMT (NCWP-EMT) was developed, and this signature was significantly associated with metastasis and shown to be a significant predictor of biochemical recurrence. The NCWP-EMT signature was also associated with decreased concentrations of the metabolites citrate and spermine, which have previously been linked to aggressive prostate cancer. Our results demonstrate the importance of NCWP and EMT in prostate cancer aggressiveness, suggest a novel gene signature for improved risk stratification, and give new molecular insight.
Collapse
|
30
|
Schneider JA, Logan SK. Revisiting the role of Wnt/β-catenin signaling in prostate cancer. Mol Cell Endocrinol 2018; 462:3-8. [PMID: 28189566 PMCID: PMC5550366 DOI: 10.1016/j.mce.2017.02.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/14/2016] [Accepted: 02/07/2017] [Indexed: 12/18/2022]
Abstract
The androgen receptor (AR) is a widely accepted therapeutic target in prostate cancer and multiple studies indicate that the AR and Wnt/β-catenin pathways intersect. Recent genome-wide analysis of prostate cancer metastases illustrate the importance of the Wnt/β-catenin pathway in prostate cancer and compel us to reexamine the interaction of the AR and Wnt/β-catenin signaling pathways. This review includes newer areas of interest such as non-canonical Wnt signaling and the role of Wnts in prostate cancer stem cells. The effort to develop Wnt modulating therapeutics, both biologics and small molecules, is also discussed.
Collapse
Affiliation(s)
- Jeffrey A Schneider
- Departments of Urology, Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, United States
| | - Susan K Logan
- Departments of Urology, Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, United States.
| |
Collapse
|
31
|
Liang M, Sun Y, Yang HL, Zhang B, Wen J, Shi BK. DLX1, a binding protein of beta-catenin, promoted the growth and migration of prostate cancer cells. Exp Cell Res 2018; 363:26-32. [PMID: 29317218 DOI: 10.1016/j.yexcr.2018.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/31/2017] [Accepted: 01/04/2018] [Indexed: 11/25/2022]
Abstract
Several studies have indicated the involvement of DLX1 in the progression of prostate cancer. However, the functions of DLX1 in the prostate cancer and the underlying molecular mechanism remains largely unknown. In this study, we have shown that DLX1 was up-regulated in the prostate clinical samples. DLX1 promoted the growth, migration and colony formation of prostate cancer cells by activating beta-catenin/TCF signaling. DLX1 interacted with beta-catenin and enhanced the interaction between beta-catenin and TCF4. Taken together, this study demonstrated that DLX1 exerted the oncogenic roles on the prostate cancer by activating beta-catenin/TCF signaling.
Collapse
Affiliation(s)
- Ming Liang
- Department of Urology, Qilu Hospital, Shandong University, Jinan, Shandong, China; Reproductive Medical Center, The Second Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yan Sun
- The Second People's Hospital of Jinan, Jinan, Shandong, China
| | - Huai-Liang Yang
- Reproductive Medical Center, The Second Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Bin Zhang
- Reproductive Medical Center, The Second Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ji Wen
- Reproductive Medical Center, The Second Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ben-Kang Shi
- Department of Urology, Qilu Hospital, Shandong University, Jinan, Shandong, China; Reproductive Medical Center, The Second Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China; The Second People's Hospital of Jinan, Jinan, Shandong, China.
| |
Collapse
|
32
|
Pratheeshkumar P, Divya SP, Parvathareddy SK, Alhoshani NM, Al-Badawi IA, Tulbah A, Al-Dayel F, Siraj AK, Al-Kuraya KS. FoxM1 and β-catenin predicts aggressiveness in Middle Eastern ovarian cancer and their co-targeting impairs the growth of ovarian cancer cells. Oncotarget 2017; 9:3590-3604. [PMID: 29423068 PMCID: PMC5790485 DOI: 10.18632/oncotarget.23338] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/26/2017] [Indexed: 01/12/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is a highly lethal disease with poor prognosis especially in advanced stage tumor. Emerging evidence has reported that aberrant upregulation of FoxM1 and β-catenin are closely associated with aggressiveness of human cancer. However, interplay between these factors in the aggressiveness of EOC is not fully illustrated. In this study, we show that FoxM1 is frequently increased in Middle Eastern EOC and associated with high proliferative index (p = 0.0007) and high grade tumor (p = 0.0024). Interestingly, FoxM1 is significantly associated with elevated nuclear β-catenin and the concomitant increase of FoxM1 and β-catenin is associated with advanced stage of EOC by immunohistochemical analysis of 261 samples of Saudi patients with EOC. Functional analysis showed that β-catenin is a direct transcriptional target of FoxM1 in EOC cell lines. FoxM1 inhibition either by specific inhibitor, thiostrepton or siRNA suppressed β-catenin expression, whereas overexpression of FoxM1 increased nuclear β-catenin expression. We identified two FoxM1 binding sites in the β-catenin promoter that specifically bound to FoxM1 protein. Down-regulation of FoxM1 using thiostrepton induced apoptosis and inhibited cell migration/invasion in EOC cells. Moreover, co-inhibition of FoxM1 by thiostrepton and β-catenin by FH535 significantly and synergistically inhibited EOC cell growth in vitro and in vivo. Collectively, our findings confer that co-targeting FoxM1/β-catenin signaling cascade may be a promising molecular therapeutic choice in advanced EOC.
Collapse
Affiliation(s)
- Poyil Pratheeshkumar
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sasidharan Padmaja Divya
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | - Norah M Alhoshani
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ismail A Al-Badawi
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Asma Tulbah
- Department of Pathology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Fouad Al-Dayel
- Department of Pathology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Abdul K Siraj
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Khawla S Al-Kuraya
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
33
|
Kong P, Pan H, Yu M, Chen L, Ge H, Zhu J, Ma G, Li L, Ding Q, Zhou W, Wang S. Insufficient microwave ablation-induced promotion of distant metastasis is suppressed by β-catenin pathway inhibition in breast cancer. Oncotarget 2017; 8:115089-115101. [PMID: 29383144 PMCID: PMC5777756 DOI: 10.18632/oncotarget.22859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/16/2017] [Indexed: 02/07/2023] Open
Abstract
Microwave ablation (MWA), a thermal ablation, is an effective treatment for breast cancer. However, residual breast cancer is still detected. The biological characteristics of residual breast cancer after thermal ablation remain unknown. To mimic insufficient MWA in vitro, breast cancer cells were treated at 37°C, 42°C, 45°C, 47°C and 50°C for 10 mins, the 37°C as control group. Insufficient MWA induced EMT-like changes of residual breast cancer by down-regulation of E-cadherin and up-regulation of vimentin and N-cadherin in vitro and in vivo. For the first time, we reported insufficient MWA promoted distant metastasis of residual breast cancer in vivo. Reduced β-catenin expression by siRNA diminished the EMT-like phenotype and enhanced migration capability induced by heat treatment in breast cancer cells. Moreover, ICG001, a special inhibitor of β-catenin pathway, depressed EMT of residual tumor and distant metastasis in an insufficient MWA nude mice model of breast cancer. In conclusion, our results demonstrate that insufficient MWA promotes EMT of residual breast cancer by activating β-catenin signal pathway, resulting in enhanced distant metastasis of residual breast cancer. In addition, the effectiveness of ICG001 in suppressing enhanced metastasis of residual breast cancer is preliminarily validated.
Collapse
Affiliation(s)
- Peng Kong
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 210029 Nanjing, China
| | - Hong Pan
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 210029 Nanjing, China
| | - Muxin Yu
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 210029 Nanjing, China
| | - Lie Chen
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 210029 Nanjing, China
| | - Han Ge
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 210029 Nanjing, China
| | - Jin Zhu
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 210029 Nanjing, China
| | - Ge Ma
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 210029 Nanjing, China
| | - Li Li
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 210029 Nanjing, China
| | - Qiang Ding
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 210029 Nanjing, China
| | - Wenbin Zhou
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 210029 Nanjing, China
| | - Shui Wang
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 210029 Nanjing, China
| |
Collapse
|
34
|
Nanoemulsion formulation of a novel taxoid DHA-SBT-1214 inhibits prostate cancer stem cell-induced tumor growth. Cancer Lett 2017; 406:71-80. [PMID: 28803993 DOI: 10.1016/j.canlet.2017.08.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/20/2017] [Accepted: 08/03/2017] [Indexed: 02/01/2023]
Abstract
The main aim of this study was to evaluate the therapeutic efficacy of an oil-in-water nanoemulsion formulation encapsulating DHA-SBT-1214, a novel omega-3 fatty acid conjugated taxoid prodrug, against prostate cancer stem cells. Nanoemulsions of DHA-SBT-1214 (NE-DHA-SBT-1214) were prepared and characterized. In vitro delivery efficiency and cytotoxicity of NE-DHA-SBT-1214 was compared with solution formulation in PPT2 cells. In vivo studies included analysis of comparative efficacy of NE-DHA-SBT-1214 with Abraxane® and placebo nanoemulsions as well as post-treatment alternations in clonogenic and sphere-forming capabilities of the tumor cells. Qualitative intracellular uptake studies of dye encapsulated NEs by confocal imaging showed uptake by both monolayer and spheroid cultured PPT2 cells. Treatment of PPT2 cells with NE DHA-SBT-1214 (1nM-1μM for monolayer culture of cells grown on collagen-coated dishes for 48 h) induced complete cell death, showing higher efficacy as compared to the drug solution. This nanoemulsion (10nM-10μM) also showed toxicity in 3D culture of floating spheroids. Weekly intravenous administration of the NE-DHA-SBT-1214 to NOD/SCID mice bearing subcutaneous PPT2 tumor xenografts led to dramatic suppression of tumor growth compared to Abraxane® and placebo nanoemulsion formulation. Viable cells that survived from this in vivo treatment regimen were no longer able to induce floating spheroids and holoclones, whereas control and Abraxane® treated tumor cells induced a large number of both. The results show that NE-DHA-SBT-1214 possesses significant activity against prostate CD133high/CD44+/high tumor-initiating cells both in vitro and in vivo.
Collapse
|
35
|
Liu R, Cheng J, Chen Y, Wang W, Chen J, Mao G. Potential role and prognostic importance of dishevelled-2 in epithelial ovarian cancer. Int J Gynaecol Obstet 2017; 138:304-310. [PMID: 28513833 DOI: 10.1002/ijgo.12218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 03/07/2017] [Accepted: 05/15/2017] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To investigate the role and prognostic importance of Dvl2 in human epithelial ovarian cancer (EOC). METHODS A multimethod study was undertaken including patients with pathologically confirmed non-metastatic EOC who underwent surgery for maximum tumor resection at a center in China. Dvl2 expression was assessed by western blot using fresh EOC tissues and normal ovarian tissues obtained between June 2014 and January 2015. Additionally, retrospective data were obtained for patients treated between April 2004 and September 2009. Their tumor specimens were used in immunohistochemistry analysis. Kaplan-Meier survival plots were constructed to estimate the overall survival by Dvl2 expression, and a Cox proportional hazards model was used to analyze prognostic factors. Alterations in Dvl2 expression during the cell cycle were assessed by a starvation and refeeding assay. RESULTS Dvl2 expression was higher in EOC samples than in normal tissues on western blot. Overall, 124 patients were included in immunohistochemistry analysis, and Dvl2 expression level was significantly associated with the tumor grade and Ki-67 expression. Overexpression of Dvl2 was correlated with poor prognosis. The pattern of Dvl2 expression throughout the cell cycle matched that of the cell proliferation marker cyclin D1. CONCLUSION Dvl2 could play a part in EOC progression and might be an independent prognostic factor. Additionally, it might be a prospective therapeutic target in the treatment of EOC.
Collapse
Affiliation(s)
- Rong Liu
- Department of Gynecologic Oncology, Nantong University Cancer Hospital, Nantong University, Nantong, China
| | - Jialin Cheng
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Yannan Chen
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Jie Chen
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong University, Nantong, China.,Department of Oncology, Jiangyin People's Hospital, Wuxi, China
| | - Guoxin Mao
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| |
Collapse
|
36
|
Nandana S, Tripathi M, Duan P, Chu CY, Mishra R, Liu C, Jin R, Yamashita H, Zayzafoon M, Bhowmick NA, Zhau HE, Matusik RJ, Chung LWK. Bone Metastasis of Prostate Cancer Can Be Therapeutically Targeted at the TBX2-WNT Signaling Axis. Cancer Res 2017; 77:1331-1344. [PMID: 28108510 PMCID: PMC5783646 DOI: 10.1158/0008-5472.can-16-0497] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 11/21/2016] [Accepted: 11/26/2016] [Indexed: 11/16/2022]
Abstract
Identification of factors that mediate visceral and bone metastatic spread and subsequent bone remodeling events is highly relevant to successful therapeutic intervention in advanced human prostate cancer. TBX2, a T-box family transcription factor that negatively regulates cell-cycle inhibitor p21, plays critical roles during embryonic development, and recent studies have highlighted its role in cancer. Here, we report that TBX2 is overexpressed in human prostate cancer specimens and bone metastases from xenograft mouse models of human prostate cancer. Blocking endogenous TBX2 expression in PC3 and ARCaPM prostate cancer cell models using a dominant-negative construct resulted in decreased tumor cell proliferation, colony formation, and invasion in vitro Blocking endogenous TBX2 in human prostate cancer mouse xenografts decreased invasion and abrogation of bone and soft tissue metastasis. Furthermore, blocking endogenous TBX2 in prostate cancer cells dramatically reduced bone-colonizing capability through reduced tumor cell growth and bone remodeling in an intratibial mouse model. TBX2 acted in trans by promoting transcription of the canonical WNT (WNT3A) promoter. Genetically rescuing WNT3A levels in prostate cancer cells with endogenously blocked TBX2 partially restored the TBX2-induced prostate cancer metastatic capability in mice. Conversely, WNT3A-neutralizing antibodies or WNT antagonist SFRP-2 blocked TBX2-induced invasion. Our findings highlight TBX2 as a novel therapeutic target upstream of WNT3A, where WNT3A antagonists could be novel agents for the treatment of metastasis and for skeletal complications in prostate cancer patients. Cancer Res; 77(6); 1331-44. ©2017 AACR.
Collapse
Affiliation(s)
- Srinivas Nandana
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.
| | - Manisha Tripathi
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Peng Duan
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Chia-Yi Chu
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Rajeev Mishra
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Chunyan Liu
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Renjie Jin
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hironobu Yamashita
- Department of Pathology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Majd Zayzafoon
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Neil A Bhowmick
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Haiyen E Zhau
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Robert J Matusik
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Leland W K Chung
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.
| |
Collapse
|
37
|
Chen F, Xiong W, Dou K, Ran Q. Knockdown of FOXK1 Suppresses Proliferation, Migration, and Invasion in Prostate Cancer Cells. Oncol Res 2017; 25:1261-1267. [PMID: 28267429 PMCID: PMC7841013 DOI: 10.3727/096504017x14871164924588] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Forkhead box K1 (FOXK1) is a member of the FOX transcription factor family and plays an important role in the development of several tumors. However, the role of FOXK1 in the progression of prostate cancer remains unknown. Thus, the objectives of this study were to detect the expression of FOXK1 in prostate cancer and to examine its role in prostate cancer cells. We found that the expression of FOXK1 at both the mRNA and protein levels was significantly upregulated in human prostate cancer cell lines. In addition, the downregulation of FOXK1 obviously inhibited the cell proliferation of prostate cancer cells in vitro and attenuated tumor growth in a xenograft model in vivo. Furthermore, knockdown of FOXK1 suppressed the migration and invasion of prostate cancer cells, and prevented the EMT phenotype through upregulating the expression of E-cadherin, as well as downregulating the expression of N-cadherin in prostate cancer cells. Mechanistically, knockdown of FOXK1 efficiently downregulated the expression levels of β-catenin, c-myc, and cyclin D1 in PC-3 cells. Overall, our results demonstrated that knockdown of FOXK1 inhibited the proliferation and metastasis of prostate cancer, at least in part, through suppressing the Wnt/β-catenin signaling pathway. Therefore, these results suggest that FOXK1 may be a potential therapeutic target for human prostate cancer.
Collapse
|
38
|
Aberrant expression of CDK8 regulates the malignant phenotype and associated with poor prognosis in human laryngeal squamous cell carcinoma. Eur Arch Otorhinolaryngol 2017; 274:2205-2213. [DOI: 10.1007/s00405-017-4484-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/24/2017] [Indexed: 10/20/2022]
|
39
|
Zhang K, Guo Y, Wang X, Zhao H, Ji Z, Cheng C, Li L, Fang Y, Xu D, Zhu HH, Gao WQ. WNT/β-Catenin Directs Self-Renewal Symmetric Cell Division of hTERThigh Prostate Cancer Stem Cells. Cancer Res 2017; 77:2534-2547. [PMID: 28209613 DOI: 10.1158/0008-5472.can-16-1887] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/30/2016] [Accepted: 01/11/2017] [Indexed: 11/16/2022]
Affiliation(s)
- Kai Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yanjing Guo
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xue Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Huifang Zhao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhongzhong Ji
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Chaping Cheng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Li Li
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yuxiang Fang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dawei Xu
- Department of Medicine, Division of Haematology and Centre for Molecular Medicine (CMM), Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Collaborative Innovation Center of Systems Biomedicine, Shanghai, China
| |
Collapse
|
40
|
Torquato HFV, Goettert MI, Justo GZ, Paredes-Gamero EJ. Anti-Cancer Phytometabolites Targeting Cancer Stem Cells. Curr Genomics 2017; 18:156-174. [PMID: 28367074 PMCID: PMC5345336 DOI: 10.2174/1389202917666160803162309] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 12/24/2015] [Accepted: 12/28/2015] [Indexed: 12/13/2022] Open
Abstract
Medicinal plants are a plentiful source of bioactive molecules with much structural diversity. In cancer treatment, molecules obtained from plants represent an attractive alternative to other treatments because several plant-derived compounds have exhibited lower toxicity and higher selectivity against cancer cells. In this review, we focus on the possible application of bioactive molecules obtained from plants against more primitive cell populations in cancers, cancer stem cells. Cancer stem cells are present in several kinds of tumors and are responsible for recurrences and metastases. Common anti-cancer drugs exhibit lower effectiveness against cancer stem cells because of their biological features. However, recently discovered natural phytometabolites exert cytotoxic effects on this rare population of cells in cancers. Therefore, this review presents the latest research on promising compounds from plants that can act as antitumor drugs and that mainly affect stem cell populations in cancers.
Collapse
Affiliation(s)
- Heron F V Torquato
- Departamento de Bioquímica, Universidade Federal de São Paulo (Campus São Paulo), São Paulo, Brazil
| | - Márcia I Goettert
- Programa de Pós-Graduação em Biotecnologia, Centro Universitário Univates, Rio Grande do Sul, Brazil
| | - Giselle Z Justo
- Departamento de Bioquímica, Universidade Federal de São Paulo (Campus São Paulo), São Paulo, Brazil;; Departamento de Ciências Biológicas (Campus Diadema), Universidade Federal de São Paulo, São Paulo, Brazil
| | - Edgar J Paredes-Gamero
- Departamento de Bioquímica, Universidade Federal de São Paulo (Campus São Paulo), São Paulo, Brazil;; Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes, São Paulo, Brazil
| |
Collapse
|
41
|
Geng JH, Lin VC, Yu CC, Huang CY, Yin HL, Chang TY, Lu TL, Huang SP, Bao BY. Inherited Variants in Wnt Pathway Genes Influence Outcomes of Prostate Cancer Patients Receiving Androgen Deprivation Therapy. Int J Mol Sci 2016; 17:E1970. [PMID: 27898031 PMCID: PMC5187770 DOI: 10.3390/ijms17121970] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/17/2016] [Accepted: 11/21/2016] [Indexed: 12/29/2022] Open
Abstract
Aberrant Wnt signaling has been associated with many types of cancer. However, the association of inherited Wnt pathway variants with clinical outcomes in prostate cancer patients receiving androgen deprivation therapy (ADT) has not been determined. Here, we comprehensively studied the contribution of common single nucleotide polymorphisms (SNPs) in Wnt pathway genes to the clinical outcomes of 465 advanced prostate cancer patients treated with ADT. Two SNPs, adenomatous polyposis coli (APC) rs2707765 and rs497844, were significantly (p ≤ 0.009 and q ≤ 0.043) associated with both prostate cancer progression and all-cause mortality, even after multivariate analyses and multiple testing correction. Patients with a greater number of favorable alleles had a longer time to disease progression and better overall survival during ADT (p for trend ≤ 0.003). Additional, cDNA array and in silico analyses of prostate cancer tissue suggested that rs2707765 affects APC expression, which in turn is correlated with tumor aggressiveness and patient prognosis. This study identifies the influence of inherited variants in the Wnt pathway on the efficacy of ADT and highlights a preclinical rationale for using APC as a prognostic marker in advanced prostate cancer.
Collapse
Affiliation(s)
- Jiun-Hung Geng
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
- Department of Urology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung 812, Taiwan.
| | - Victor C Lin
- Department of Urology, E-Da Hospital, Kaohsiung 824, Taiwan.
- School of Medicine for International Students, I-Shou University, Kaohsiung 840, Taiwan.
| | - Chia-Cheng Yu
- Division of Urology, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
- Department of Urology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Department of Pharmacy, Tajen University, Pingtung 907, Taiwan.
| | - Chao-Yuan Huang
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100, Taiwan.
- Department of Urology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 300, Taiwan.
| | - Hsin-Ling Yin
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
- Department of Pathology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Ta-Yuan Chang
- Department of Occupational Safety and Health, China Medical University, Taichung 404, Taiwan.
| | - Te-Ling Lu
- Department of Pharmacy, China Medical University, Taichung 404, Taiwan.
| | - Shu-Pin Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
- Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Bo-Ying Bao
- Department of Pharmacy, China Medical University, Taichung 404, Taiwan.
- Sex Hormone Research Center, China Medical University Hospital, Taichung 404, Taiwan.
- Department of Nursing, Asia University, Taichung 413, Taiwan.
| |
Collapse
|
42
|
Fong Y, Tang CC, Hu HT, Fang HY, Chen BH, Wu CY, Yuan SS, Wang HMD, Chen YC, Teng YN, Chiu CC. Inhibitory effect of trans-ferulic acid on proliferation and migration of human lung cancer cells accompanied with increased endogenous reactive oxygen species and β-catenin instability. Chin Med 2016; 11:45. [PMID: 27733866 PMCID: PMC5045596 DOI: 10.1186/s13020-016-0116-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 09/19/2016] [Indexed: 12/13/2022] Open
Abstract
Background Trans-ferulic (FA) acid exhibits antioxidant effects in vitro. However, the underlying mechanism of trans-FA activity in cellular physiology, especially cancer physiology, remains largely unknown. This study investigated the cellular physiological effects of trans-FA on the H1299 human lung cancer cell line. Methods The 2,2-diphenyl-1-picrylhydrazyl assay was used to determine free radical scavenging capability. Assessment of intracellular reactive oxygen species (ROS) was evaluated using oxidized 2ʹ,7ʹ-dichlorofluorescin diacetate and dihydroethidium staining. Trypan blue exclusion, colony formation, and anchorage-independent growth assays were used to determine cellular proliferation. Annexin V staining assay was used to assess cellular apoptosis by flow cytometry. Wound healing and Boyden’s well assays were used to detect the migration and invasion of cells. Gelatin zymography was used to detect matrix metalloproteinase (MMP-2 and MMP-9) activity. Western blotting was used to detect expression levels of various signaling pathway proteins. Results DPPH assay results indicated that trans-FA exerted potent antioxidant effects. However, trans-FA increased intracellular ROS levels, including hydrogen peroxide and superoxide anion, in H1299 cells. Trans-FA treatment inhibited cellular proliferation and induced moderate apoptotic cell death at the highest concentration used (0.6 mM). Furthermore, trans-FA moderately inhibited the migration of H1299 cells at the concentrations of 0.3 and 0.6 mM and attenuated MMP-2 and MMP-9 activity. Trans-FA caused the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin. Conversely, trans-FA treatment increased the expression of pro-apoptotic factor Bax and decreased the expression of pro-survival factor survivin. Conclusion Various concentrations (0.06–0.6 mM) of trans-FA exert both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299. Electronic supplementary material The online version of this article (doi:10.1186/s13020-016-0116-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yao Fong
- Department of Thoracic Surgery, Chi-Mei Medical Center, Tainan, 710 Taiwan
| | - Chia-Chun Tang
- Division of Chest, Ten Chan General Hospital, Chung-Li, 320 Taiwan, ROC
| | - Huei-Ting Hu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807 Taiwan
| | - Hsin-Yu Fang
- Department of Food Nutrition, Chung-Hwa University of Medical Technology, Tainan, 701 Taiwan
| | - Bing-Hung Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807 Taiwan.,The Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804 Taiwan
| | - Chang-Yi Wu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807 Taiwan.,Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 804 Taiwan
| | - Shyng-Shiou Yuan
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807 Taiwan
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 402 Taiwan
| | - Yen-Chun Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807 Taiwan
| | - Yen-Ni Teng
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, 700 Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807 Taiwan.,Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 804 Taiwan.,Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807 Taiwan.,Research Center for Environment Medicine, Kaohsiung Medical University, Kaohsiung, 807 Taiwan
| |
Collapse
|
43
|
Ko SH, Baeg MK, Bae WJ, Kim P, Choi MG. Prostate cancer patients may have an increased risk of coexisting advanced colorectal neoplasms. Onco Targets Ther 2016; 9:5611-7. [PMID: 27672332 PMCID: PMC5024772 DOI: 10.2147/ott.s110595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background/aims Patients being treated for prostate cancer (PCa) have an increased risk of developing colorectal cancer. However, whether PCa patients are inherently at a higher risk of colorectal neoplasms (CRNs) is unknown. We aimed to investigate the risk of CRNs in PCa patients. Materials and methods Patients who had been diagnosed with PCa at a tertiary medical center and had colonoscopy within 1 year of the PCa diagnosis were investigated. Patients were propensity-matched 1:2 by age and body mass index to asymptomatic control subjects who had undergone colonoscopy for routine health screening. CRN was defined as histological confirmation of an adenoma or adenocarcinoma component. Advanced CRN was defined as any of the following: 1) histological findings of high-grade dysplasia, 2) inclusion of villous features, 3) tumor ≥1 cm in size, or 4) presence of an adenocarcinoma. Risk factors for CRN and advanced CRN were evaluated by univariate and multivariate analysis. Results A total of 191 patients diagnosed with PCa had colonoscopies within 1 year of PCa diagnosis. Of these, 23 patients with a history of previous malignancy and seven with incomplete colonoscopies were excluded, leaving 161 patients in the PCa group. Although presence of PCa was not a significant risk factor for CRN by multivariate analysis, PCa was a significant risk factor for advanced CRN (odds ratio [OR] 3.300; 95% confidence interval [CI] 1.766–6.167; P<0.001). Other significant risk factors for advanced CRN were age (OR 1.050; 95% CI 1.003–1.009; P=0.036) and body mass index (OR 1.205; 95% CI 1.067–1.361; P=0.003), whereas aspirin use (OR 0.414; 95% CI 0.173–0.990; P=0.047) was a preventive factor. Conclusion The risk of advanced CRN may be significantly increased in patients with PCa. Patients with PCa should have a colonoscopy at the time of PCa diagnosis.
Collapse
Affiliation(s)
- Sun-Hye Ko
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Myong Ki Baeg
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea; Department of Internal Medicine, International St Mary's Hospital, Catholic Kwandong University, Incheon, South Korea
| | - Woong Jin Bae
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Pumsoo Kim
- Department of Internal Medicine, International St Mary's Hospital, Catholic Kwandong University, Incheon, South Korea
| | - Myung-Gyu Choi
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
44
|
Shu X, Ye Y, Gu J, He Y, Davis JW, Thompson TC, Logothetis CJ, Kim J, Wu X. Genetic variants of the Wnt signaling pathway as predictors of aggressive disease and reclassification in men with early stage prostate cancer on active surveillance. Carcinogenesis 2016; 37:965-971. [PMID: 27515962 DOI: 10.1093/carcin/bgw082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/30/2016] [Indexed: 11/12/2022] Open
Abstract
Little is known about the genetic predictors of prostate cancer aggressiveness and reclassification in men with localized prostate cancer undergoing active surveillance. The Wnt signaling pathway is important for prostate cancer development and progression. Identifying genetic variants associated with prostate cancer aggressiveness and reclassification may have a potential role in the management of localized patients. In this study, we used a three-phase design. In phases I and II prostate cancer patient cohort, 578 single nucleotide polymorphisms (SNPs) from 45 genes of the Wnt signaling pathway were analyzed in 1762 localized prostate cancer patients. Twelve SNPs from four regions were significantly associated with aggressive disease, among which, three linked SNPs in CSNK1A1 at 5q32 (represented by rs752822) may differentiate GS 4+3 from GS 3+4 patients (OR = 1.44, 95% CI = 1.12-1.87, P = 4.76×10(-3)). In phase III active surveillance (AS) cohort, genotyping of rs752822 (candidate from phases I and II) and previously identified rs2735839 were determined in 494 GS ≤7 patients. We found a significant association between rs2735839 and prostate cancer reclassification in the AS cohort (AG + AA versus GG, HR = 1.59, 95% CI = 1.11-2.28, P = 0.012) and a suggestive association of rs752822. Jointly, rs752822 and rs2735839 showed good potentials in risk-stratifying GS 7 patients and predicting disease reclassification (OR = 2.71, 95% CI = 1.62-4.51, P = 1×10(-4) in phase II; HR = 1.89, 95% CI = 1.13-3.18, P = 0.016 in phase III). In summary, rs752822 and rs2735839 may assist in risk-stratifying GS 7 patients and predict prostate cancer reclassification. The significant associations were independent from GS, T stage and PSA levels at baseline.
Collapse
Affiliation(s)
- Xiang Shu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuanqing Ye
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yonggang He
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | - Timothy C Thompson
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christopher J Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeri Kim
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
45
|
Xu W, Pang K, Zhou ZG, Chen YF, Mo T, Li M, Liu CB. Dickkopf 2 promotes proliferation and invasion via Wnt signaling in prostate cancer. Mol Med Rep 2016; 14:2283-8. [PMID: 27431620 DOI: 10.3892/mmr.2016.5502] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 03/01/2016] [Indexed: 11/06/2022] Open
Abstract
Wnt/β-catenin signaling dysregulation is involved in tumorigenesis. Furthermore, epigenetic modification of the Dickkopf (DKK) family (DKK1‑4) has been shown to be important in the regulation of Wnt signaling. However, the functions and mechanism of DKK2 in the development and progression of prostate cancer remain unclear. Therefore, the present study investigated the role of DKK2 in prostate cancer. The mRNA and protein expression levels of DKK2 in prostate cancer tissues and cells were assessed by reverse transcription‑quantitative polymerase chain reaction and western blotting, respectively. The biological function of DKK2 in prostate cancer was investigated using 3‑(4,5‑dimethylthiazol‑2‑yl)-2,5‑diphenyltetrazolium bromide and transwell invasion assays. DKK2 was demonstrated to be upregulated in prostate cancer tissues and cells, and knockdown of DKK2 suppressed cell proliferation and invasion. Furthermore, small interfering RNA targeting DKK2 inhibited the expression of β‑catenin, cyclin D1 and c‑Myc in prostate cancer cells. The present report suggested that DKK2 downregulation suppressed the proliferation and invasion of prostate cancer cells by inhibiting the Wnt/β‑catenin signaling pathway.
Collapse
Affiliation(s)
- Wei Xu
- Department of Urology, The First People's Hospital of Yulin, Yulin, Guangxi 537000, P.R. China
| | - Kuan Pang
- Department of Urology, The First People's Hospital of Yulin, Yulin, Guangxi 537000, P.R. China
| | - Ze-Guang Zhou
- Department of Urology, The First People's Hospital of Yulin, Yulin, Guangxi 537000, P.R. China
| | - Yi-Feng Chen
- Department of Urology, The First People's Hospital of Yulin, Yulin, Guangxi 537000, P.R. China
| | - Ting Mo
- Department of Urology, The First People's Hospital of Yulin, Yulin, Guangxi 537000, P.R. China
| | - Ming Li
- Basic Medicine College, Shanghai Jiaotong University, Shanghai 200025, P.R. China
| | - Cheng-Bei Liu
- Department of Urology, The First People's Hospital of Yulin, Yulin, Guangxi 537000, P.R. China
| |
Collapse
|
46
|
Cristóbal I, Rojo F, Madoz-Gúrpide J, García-Foncillas J. Cross Talk between Wnt/β-Catenin and CIP2A/Plk1 Signaling in Prostate Cancer: Promising Therapeutic Implications. Mol Cell Biol 2016; 36:1734-9. [PMID: 27090640 PMCID: PMC4907099 DOI: 10.1128/mcb.00130-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aberrant activation of the Wnt/β-catenin pathway and polo-like kinase 1 (Plk1) overexpression represent two common events in prostate cancer with relevant functional implications. This minireview analyzes their potential therapeutic significance in prostate cancer based on their role as androgen receptor (AR) signaling regulators and the pivotal role of the tumor suppressor protein phosphatase 2A (PP2A) modulating these pathways.
Collapse
Affiliation(s)
- Ion Cristóbal
- Translational Oncology Division, Oncohealth Institute, IIS Fundación Jiménez Diaz, UAM, University Hospital Fundación Jiménez Diaz, Madrid, Spain
| | - Federico Rojo
- Pathology Department, IIS Fundación Jiménez Diaz, UAM, Madrid, Spain
| | | | - Jesús García-Foncillas
- Translational Oncology Division, Oncohealth Institute, IIS Fundación Jiménez Diaz, UAM, University Hospital Fundación Jiménez Diaz, Madrid, Spain
| |
Collapse
|
47
|
Fang F, Qin Y, Hao F, Li Q, Zhang W, Zhao C, Chen S, Zhao L, Wang L, Cai J. CD147 modulates androgen receptor activity through the Akt/Gsk-3β/β-catenin/AR pathway in prostate cancer cells. Oncol Lett 2016; 12:1124-1128. [PMID: 27446405 DOI: 10.3892/ol.2016.4684] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 03/01/2016] [Indexed: 11/06/2022] Open
Abstract
The androgen signaling pathway serves an important role in the development of prostate cancer. β-Catenin is an androgen receptor (AR) cofactor and augments AR signaling. Glycogen synthase kinase-3β (GSK-3β), a target of phosphorylated serine/threonine protein kinase B (p-Akt), regulates β-catenin stability. In addition, β-catenin, a coregulator of AR, physically interacts with AR and enhances AR-mediated target gene transcription. The multifunctional glycoprotein cluster of differentiation (CD) 147 is highly expressed on the cell surface of the majority of cancer cells, and it promotes tumor invasion, metastasis and growth. In the present study, the molecular effects of CD147 on the Akt/GSK-3β/β-catenin/AR signaling network were investigated in LNCaP cells. Using short hairpin-mediated RNA knockdown of CD147 in LNCaP cells, it was demonstrated that downregulation of CD147 resulted in inhibitory phosphorylation of GSK-3β, and then promoted degeneration of β-catenin and reduced nuclear accumulation of β-catenin. In addition, immunoprecipitation studies demonstrated that CD147 downregulation decreased the formation of a complex between β-catenin and AR. It was shown that CD147 knockdown suppressed the expression of the AR target gene prostate-specific antigen and the growth of AR-positive LNCaP cells. Furthermore, inhibition of PI3K/Akt with LY294002 augmented CD147-mediated function. The present study indicates that the PI3K/Akt pathway may facilitate CD147-mediated activation of the AR pathway.
Collapse
Affiliation(s)
- Fang Fang
- Department of Immunology, Jilin Medical University, Jilin 132013, P.R. China
| | - Yingxin Qin
- Department of Anesthesiology, Affiliated Hospital of Jilin Medical University, Jilin 132011, P.R. China
| | - Feng Hao
- Department of Immunology, Jilin Medical University, Jilin 132013, P.R. China
| | - Qiang Li
- Department of Immunology, Jilin Medical University, Jilin 132013, P.R. China
| | - Wei Zhang
- Department of Biochemistry, Jilin Medical University, Jilin 132013, P.R. China
| | - Chen Zhao
- Department of Immunology, Jilin Medical University, Jilin 132013, P.R. China
| | - Shuang Chen
- Department of Immunology, Jilin Medical University, Jilin 132013, P.R. China
| | - Liangzhong Zhao
- Department of Immunology, Jilin Medical University, Jilin 132013, P.R. China
| | - Liguo Wang
- Department of Urology Surgery, Affiliated Hospital of Jilin Medical University, Jilin 132011, P.R. China
| | - Jianhui Cai
- Department of Immunology, Jilin Medical University, Jilin 132013, P.R. China
| |
Collapse
|
48
|
Boone JD, Arend RC, Johnston BE, Cooper SJ, Gilchrist SA, Oelschlager DK, Grizzle WE, McGwin G, Gangrade A, Straughn JM, Buchsbaum DJ. Targeting the Wnt/β-catenin pathway in primary ovarian cancer with the porcupine inhibitor WNT974. J Transl Med 2016; 96:249-59. [PMID: 26658453 DOI: 10.1038/labinvest.2015.150] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/30/2015] [Accepted: 11/09/2015] [Indexed: 01/18/2023] Open
Abstract
Preclinical studies in ovarian cancer have demonstrated upregulation of the Wnt/β-catenin pathway promoting tumor proliferation and chemoresistance. Our objective was to evaluate the effect of the Wnt/β-catenin pathway inhibitor, WNT974, in primary ovarian cancer ascites cells. Ascites cells from patients with papillary serous ovarian cancer were isolated and treated with 1 μM WNT974±100 μM carboplatin. Viability was evaluated with the ATPlite assay. The IC50 was calculated using a dose-response analysis. Immunohistochemistry (IHC) was performed on ascites cells and tumor. Expression of R-spondin 2 (RSPO2), RSPO3, PORCN, WLS, AXIN2, and three previously characterized RSPO fusion transcripts were assessed using Taqman assays. Sixty ascites samples were analyzed for response to WNT974. The ascites samples that showed a decrease in ATP concentration after treatment demonstrated no difference from the untreated cells in percent viability with trypan blue staining. Flow cytometry demonstrated fewer cells in the G2 phase and more in the G1 and S phases after treatment with WNT974. Combination therapy with WNT974 and carboplatin resulted in a higher percentage of samples that showed ≥30% reduction in ATP concentration than either single drug treatment. IHC analysis of Wnt pathway proteins suggests cell cycle arrest rather than cytotoxicity after WNT974 treatment. QPCR indicated that RSPO fusions are not prevalent in ovarian cancer tissues or ascites. However, higher PORCN expression correlated to sensitivity to WNT974 (P=0.0073). In conclusion, WNT974 produces cytostatic effects in patient ascites cells with primary ovarian cancer through inhibition of the Wnt/β-catenin pathway. The combination of WNT974 and carboplatin induces cytotoxicity plus cell cycle arrest in a higher percentage of ascites samples than with single drug treatment. RSPO fusions do not contribute to WNT974 sensitivity; however, higher PORCN expression indicates increased WNT974 sensitivity.
Collapse
Affiliation(s)
- Jonathan D Boone
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rebecca C Arend
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Sara J Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Scott A Gilchrist
- University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Denise K Oelschlager
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - William E Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gerald McGwin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Abhishek Gangrade
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J Michael Straughn
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Donald J Buchsbaum
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
49
|
Schweizer MT, Yu EY. Persistent androgen receptor addiction in castration-resistant prostate cancer. J Hematol Oncol 2015; 8:128. [PMID: 26566796 PMCID: PMC4644296 DOI: 10.1186/s13045-015-0225-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/10/2015] [Indexed: 02/07/2023] Open
Abstract
It is now understood that persistent activation of the androgen receptor (AR) signaling pathway often underlies the development of castration-resistant prostate cancer (CRPC). This realization led to renewed interest in targeting the AR and ultimately to the development of the potent next-generation AR-directed agents abiraterone and enzalutamide. While these drugs prolong survival in men with CRPC, they are unfortunately not curative. Perhaps not surprisingly, evidence points to persistent AR signaling as one of the key drivers by which resistances to these agents develops. In this context, activation of the AR signaling program can occur through a number of molecular adaptations, including alterations leading to persistent canonical AR signaling (e.g., AR amplification/overexpression, elucidations/concentration of intratumoral androgens), activation of the AR program via feedback pathways (e.g., AKT/mTOR/Pi3K, HER2/Neu), and activation of the AR program via mutation or substitution (e.g., AR ligand binding domain mutation; AR splice variants; glucocorticoid receptor signaling). This review will provide an overview of the more clinical relevant (i.e., druggable) pathways that have been implicated in the emergence of drug resistance in men with CRPC and highlight some of the ongoing efforts towards developing therapeutics to impair these mechanisms.
Collapse
Affiliation(s)
- Michael T Schweizer
- Division of Oncology, Department of Medicine, University of Washington/Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
| | - Evan Y Yu
- Division of Oncology, Department of Medicine, University of Washington/Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
| |
Collapse
|
50
|
Abstract
Inhibitors of Wnt signaling have been shown to be involved in prostate cancer (PC) metastasis; however the role of Sclerostin (Sost) has not yet been explored. Here we show that elevated Wnt signaling derived from Sost deficient osteoblasts promotes PC invasion, while rhSOST has an inhibitory effect. In contrast, rhDKK1 promotes PC elongation and filopodia formation, morphological changes characteristic of an invasive phenotype. Furthermore, rhDKK1 was found to activate canonical Wnt signaling in PC3 cells, suggesting that SOST and DKK1 have opposing roles on Wnt signaling in this context. Gene expression analysis of PC3 cells co-cultured with OBs exhibiting varying amounts of Wnt signaling identified CRIM1 as one of the transcripts upregulated under highly invasive conditions. We found CRIM1 overexpression to also promote cell-invasion. These findings suggest that bone-derived Wnt signaling may enhance PC tropism by promoting CRIM1 expression and facilitating cancer cell invasion and adhesion to bone. We concluded that SOST and DKK1 have opposing effects on PC3 cell invasion and that bone-derived Wnt signaling positively contributes to the invasive phenotypes of PC3 cells by activating CRIM1 expression and facilitating PC-OB physical interaction. As such, we investigated the effects of high concentrations of SOST in vivo. We found that PC3-cells overexpressing SOST injected via the tail vein in NSG mice did not readily metastasize, and those injected intrafemorally had significantly reduced osteolysis, suggesting that targeting the molecular bone environment may influence bone metastatic prognosis in clinical settings.
Collapse
|