1
|
Oliveira R, Azevedo AS, Mendes L. Application of Nucleic Acid Mimics in Fluorescence In Situ Hybridization. Methods Mol Biol 2021; 2246:69-86. [PMID: 33576983 DOI: 10.1007/978-1-0716-1115-9_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Traditionally, RNA and DNA probes are used in fluorescence in situ hybridization (FISH) methods for microbial detection and characterization of communities' structure and diversity. However, the recent introduction of nucleic acid mimics (NAMs) has improved the robustness of the FISH methods in terms of sensitivity and specificity. Several NAMs have been used, of which the most relevant are peptide nucleic acid (PNA), locked nucleic acids (LNA), 2'-O-methyl RNA (2'OMe), and phosphorothioates (PS). In this chapter, we describe a protocol using PNA and LNA/2'OMe probes for microbial detection by FISH, pointing out the differences between them. These protocols are easily adapted to different microorganisms and different probe sequences.
Collapse
Affiliation(s)
- Ricardo Oliveira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal.,INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
| | - Andreia S Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, University of Porto, Porto, Portugal.,CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Luzia Mendes
- FMDUP - Faculty of Dental Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
2
|
Oliveira R, Almeida C, Azevedo NF. Detection of Microorganisms by Fluorescence In Situ Hybridization Using Peptide Nucleic Acid. Methods Mol Biol 2021; 2105:217-230. [PMID: 32088873 DOI: 10.1007/978-1-0716-0243-0_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fluorescence in situ hybridization (FISH) is a 30-year-old technology that has evolved continuously and is now one of the most well-established molecular biology techniques. Traditionally, DNA probes are used for in situ hybridization. However, synthetic molecules are emerging as very promising alternatives, providing better hybridization performance and making FISH procedures easier and more efficient. In this chapter, we describe a universal FISH protocol, using nucleic acid probes, for the detection of bacteria. This protocol should be easily applied to different microorganisms as a way of identifying in situ relevant microorganisms (including pathogens) and their distribution patterns in different types of samples.
Collapse
Affiliation(s)
- Ricardo Oliveira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal.,INIAV - National Institute for Agrarian and Veterinarian Research, Vairao, Portugal
| | - Carina Almeida
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal.,INIAV - National Institute for Agrarian and Veterinarian Research, Vairao, Portugal.,CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Nuno F Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal.
| |
Collapse
|
3
|
Huang SC, Zhang L, Sung YS, Chen CL, Kao YC, Agaram NP, Antonescu CR. Secondary EWSR1 gene abnormalities in SMARCB1-deficient tumors with 22q11-12 regional deletions: Potential pitfalls in interpreting EWSR1 FISH results. Genes Chromosomes Cancer 2016; 55:767-76. [PMID: 27218413 DOI: 10.1002/gcc.22376] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/18/2016] [Accepted: 05/20/2016] [Indexed: 02/02/2023] Open
Abstract
SMARCB1 inactivation occurs in a variety of tumors, being caused by various genetic mechanisms. Since SMARCB1 and EWSR1 genes are located close to each other on chromosome 22, larger SMARCB1 deletions may encompass the EWSR1 locus. Herein, we report four cases with SMARCB1-deletions showing concurrent EWSR1 gene abnormalities by FISH, which lead initially to misinterpretations as EWSR1-rearranged tumors. Our study group included various morphologies: a poorly differentiated chordoma, an extrarenal rhabdoid tumor, a myoepithelial carcinoma, and a proximal-type epithelioid sarcoma. All cases showed loss of SMARCB1 (INI1) by immunohistochemistry (IHC) and displayed characteristic histologic features for the diagnoses. The SMARCB1 FISH revealed homozygous or heterozygous deletions in three and one case, respectively. The co-hybridized EWSR1 probes demonstrated either unbalanced split signals or heterozygous deletion in two cases each. The former suggested bona fide rearrangement, while the latter resembled an unbalanced translocation. However, all the FISH patterns were quite complex and distinct from the simple and uniform split signals seen in typical EWSR1 rearrangements. We conclude that in the context of 22q11-12 regional alterations present in SMARCB1-deleted tumors, simultaneous EWSR1 involvement may be misinterpreted as equivalent to EWSR1 rearrangement. A detailed clinicopathologic correlation and supplementing the EWSR1 FISH assay with complementary methodology is mandatory for correct diagnosis. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shih-Chiang Huang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Pathology, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Lei Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yun-Shao Sung
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Chun-Liang Chen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yu-Chien Kao
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Pathology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Narasimhan P Agaram
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | | |
Collapse
|
4
|
El-Mokadem I, Fitzpatrick J, Bondad J, Rauchhaus P, Cunningham J, Pratt N, Fleming S, Nabi G. Chromosome 9p deletion in clear cell renal cell carcinoma predicts recurrence and survival following surgery. Br J Cancer 2014; 111:1381-90. [PMID: 25137021 PMCID: PMC4183850 DOI: 10.1038/bjc.2014.420] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/25/2014] [Accepted: 07/01/2014] [Indexed: 11/23/2022] Open
Abstract
Background: Wider clinical applications of 9p status in clear cell renal cell carcinoma (ccRCC) are limited owing to the lack of validation and consensus for interphase fluorescent in situ hybridisation (I-FISH) scoring technique. The aim of this study was to analytically validate the applicability of I-FISH in assessing 9p deletion in ccRCC and to clinically assess its long-term prognostic impact following surgical excision of ccRCC. Methods: Tissue microarrays were constructed from 108 renal cell carcinoma (RCC) tumour paraffin blocks. Interphase fluorescent in situ hybridisation analysis was undertaken based on preset criteria by two independent observers to assess interobserver variability. 9p status in ccRCC tumours was determined and correlated to clinicopathological variables, recurrence-free survival and disease-specific survival. Results: There were 80 ccRCCs with valid 9p scoring and a median follow-up of 95 months. Kappa statistic for interobserver variability was 0.71 (good agreement). 9p deletion was detected in 44% of ccRCCs. 9p loss was associated with higher stage, larger tumours, necrosis, microvascular and renal vein invasion, and higher SSIGN (stage, size, grade and necrosis) score. Patients with 9p-deleted ccRCC were at a higher risk of recurrence (P=0.008) and RCC-specific mortality (P=0.001). On multivariate analysis, 9p deletion was an independent predictor of recurrence (hazard ratio 4.323; P=0.021) and RCC-specific mortality (hazard ratio 4.603; P=0.007). The predictive accuracy of SSIGN score improved from 87.7% to 93.1% by integrating 9p status to the model (P=0.001). Conclusions: Loss of 9p is associated with aggressive ccRCC and worse prognosis in patients following surgery. Our findings independently confirm the findings of previous reports relying on I-FISH to detect 9p (CDKN2A) deletion.
Collapse
Affiliation(s)
- I El-Mokadem
- Academic section of Urology, Medical Research Institute, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - J Fitzpatrick
- Academic section of Urology, Medical Research Institute, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - J Bondad
- Academic section of Urology, Medical Research Institute, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - P Rauchhaus
- Division of Population Sciences, Medical Research Institute, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - J Cunningham
- Department of Clinical Genetics, NHS Tayside Health Board, Dundee DD1 9SY, UK
| | - N Pratt
- Department of Clinical Genetics, NHS Tayside Health Board, Dundee DD1 9SY, UK
| | - S Fleming
- Department of Pathology, Medical Research Institute, School of Medicine, Dundee DD1 9SY, UK
| | - G Nabi
- Academic section of Urology, Medical Research Institute, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
5
|
Significance of chromosome 9p status in renal cell carcinoma: a systematic review and quality of the reported studies. BIOMED RESEARCH INTERNATIONAL 2014; 2014:521380. [PMID: 24877109 PMCID: PMC4022119 DOI: 10.1155/2014/521380] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/02/2014] [Indexed: 01/03/2023]
Abstract
Defining the prognosis of renal cell carcinoma (RCC) using genetic tests is an evolving area. The prognostic significance of 9p status in RCC, although described in the literature, remains underutilised in clinical practice. The study explored the causes of this translational gap. A systematic review on the significance of 9p status in RCC was performed to assess its clinical applicability and impact on clinical decision-making. Medline, Embase, and other electronic searches were made for studies reporting on 9p status in RCC. We collected data on: genetic techniques, pathological parameters, clinical outcomes, and completeness of follow-up assessment. Eleven studies reporting on 1,431 patients using different genetic techniques were included. The most commonly used genetic technique for the assessment of 9p status in RCC was fluorescence in situ hybridization. Combined genomic hybridisation (CGH), microsatellite analysis, karyotyping, and sequencing were other reported techniques. Various thresholds and cut-off values were used for the diagnosis of 9p deletion in different studies. Standardization, interobserver agreement, and consensus on the interpretation of test remained poor. The studies lacked validation and had high risk of bias and poor clinical applicability as assessed by two independent reviewers using a modified quality assessment tool. Further protocol driven studies with standardised methodology including use of appropriate positive and negative controls, assessment of interobserver variations, and evidenced based follow-up protocols are needed to clarify the role of 9p status in predicting oncological outcomes in renal cell cancer.
Collapse
|
6
|
Amakawa G, Ikemoto K, Ito H, Furuya T, Sasaki K. Quantitative analysis of centromeric FISH spots during the cell cycle by image cytometry. J Histochem Cytochem 2013; 61:699-705. [PMID: 23832878 DOI: 10.1369/0022155413498754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Two-color fluorescence in situ hybridization (FISH) with chromosome enumeration DNA probes specific to chromosomes 7, 11, 17, and 18 was applied to CAL-51 breast cancer cells to examine whether the fluorescence intensity of FISH spots was associated with cell cycle progression. The fluorescence intensity of each FISH spot was quantitatively analyzed based on the cell cycle stage determined by image cytometry at the single-cell level. The spot intensity of cells in the G2 phase was larger than that in the G0/1 phase. This increased intensity was not seen during the early and mid S phases, whereas the cells in the late S phase showed significant increases in spot intensity, reaching the same level as that observed in the G2 phase, indicating that alpha satellite DNA in the centromeric region was replicated in the late S phase. Thus, image cytometry can successfully detect small differences in the fluorescence intensities of centromeric spots of homologous chromosomes. This combinational image analysis of FISH spots and the cell cycle with cell image cytometry provides insights into new aspects of the cell cycle. This is the first report demonstrating that image cytometry can be used to analyze the fluorescence intensity of FISH signals during the cell cycle.
Collapse
Affiliation(s)
- Genta Amakawa
- Department of Pathology, Yamaguchi University Graduate School of Medicine, Ube, Japan (GA, KI, HI, TF, KS)
| | | | | | | | | |
Collapse
|
7
|
Pandita A, Bayani J, Paderova J, Marrano P, Graham C, Barrett M, Prasad M, Zielenska M, Squire J. Integrated Cytogenetic and High-Resolution Array CGH Analysis of Genomic Alterations Associated with MYCN Amplification. Cytogenet Genome Res 2011; 134:27-39. [DOI: 10.1159/000324698] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2010] [Indexed: 01/05/2023] Open
|
8
|
Guo B, Che T, Shi B, Guo L, Yin Y, Li L, Wang J, Yan D, Chen Y. Screening and identification of specific markers for bladder transitional cell carcinoma from urine urothelial cells with suppressive subtractive hybridization and cDNA microarray. Can Urol Assoc J 2011; 5:E129-37. [PMID: 21251473 DOI: 10.5489/cuaj.09118] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The objective of this study was to screen and identify differentially expressed genes in invasive bladder transitional cell carcinoma (BTCC). METHODS Voided urine samples were collected from consecutive patients with BTCC and patients under surveillance for bladder cancer recurrence; voided urine samples from patients with non-malignant diseases served as control. We identified the differentially expressed genes by comparing urine samples of bladder carcinoma to that of the control group with suppressive subtractive hybridization (SSH) and cDNA microarray. The differentially expressed genes were verified by quantitative real-time polymerase chain reaction (QPCR). RESULTS From the 762 white colonies, a total of 449 positive clones were obtained in which 112 were found to be upregulated in BTCC. Sequencing and homology analysis were performed for these 112 clonies. The detection rates of some known genes (including IGF-1, human telomerase reverse transcriptase [hTERT], bladder cancer specific nuclear matrix protein 4 [BLCA-4] and homeobox A13 [HOXA13]) for BTCC at the Ta, T1 and >T1 stages were 48%, 90% and 100%, respectively, with a specificity of 85%. The test specificity was 80% for the 30 control patients with urinary tract infections. The combination of BLCA-4 and HOXA13 could distinguish between low- and high-grade tumours, with specificity and sensitivity of 80%. CONCLUSION We successfully constructed a reliable SSH library of BTCC and found that combination detection insulin-like growth factor 1 (IGF-1), hTERT, BLCA-4 and HOXA13 genes could help to evaluate BTCC at different stages.
Collapse
Affiliation(s)
- Baihong Guo
- The First Affiliated Hospital of Lanzhou University, Lanzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Summersgill BM, Shipley JM. Fluorescence in situ hybridization analysis of formalin fixed paraffin embedded tissues, including tissue microarrays. Methods Mol Biol 2010; 659:51-70. [PMID: 20809303 DOI: 10.1007/978-1-60761-789-1_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Formalin fixed paraffin embedded (FFPE) material is frequently the most convenient readily available source of diseased tissue, including tumors. Multiple cores of FFPE material are being used increasingly to construct tissue microarrays (TMAs) that enable simultaneous analyses of many archival samples. Fluorescence in situ hybridization (FISH) is an important approach to analyze FFPE material for specific genetic aberrations that may be associated with tumor types or subtypes, cellular morphology, and disease prognosis. Annealing, or hybridization of labeled nucleic acid sequences, or probes, to detect and locate one or more complementary nucleic acid sequences within fixed tissue sections allows the detection of structural (translocation/inversion) and numerical (deletion/gain) aberrations and their localization within tissues. The robust protocols described include probe preparation, hybridization, and detection and take 2-3 days to complete. A protocol is also described for the stripping of probes for repeat FISH in order to maximize the use of scarce tissue resources.
Collapse
Affiliation(s)
- Brenda M Summersgill
- Molecular Cytogenetics, Male Urological Cancer Research Centre, Institute of Cancer Research, Sutton, Surrey, UK
| | | |
Collapse
|
10
|
Sugimura H, Mori H, Nagura K, Kiyose SI, Tao H, Hong T, Isozaki M, Igarashi H, Shinmura K, Hasegawa A, Kitayama Y, Tanioka F. Fluorescence in situ hybridization analysis with a tissue microarray: 'FISH and chips' analysis of pathology archives. Pathol Int 2010; 60:543-50. [PMID: 20618731 DOI: 10.1111/j.1440-1827.2010.02561.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Practicing pathologists expect major somatic genetic changes in cancers, because the morphological deviations in the cancers they diagnose are so great that the somatic genetic changes to direct these phenotypes of tumors are supposed to be correspondingly tremendous. Several lines of evidence, especially lines generated by high-throughput genomic sequencing and genome-wide analyses of cancer DNAs are verifying their preoccupations. This article reviews a comprehensive morphological approach to pathology archives that consists of fluorescence in situ hybridization with bacterial artificial chromosome (BAC) probes and screening with tissue microarrays to detect structural changes in chromosomes (copy number alterations and rearrangements) in specimens of human solid tumors. The potential of this approach in the attempt to provide individually tailored medical practice, especially in terms of cancer therapy, is discussed.
Collapse
Affiliation(s)
- Haruhiko Sugimura
- Department of Pathology, Hamamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ward, Hamamatsu 431-3192, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Cerqueira L, Azevedo NF, Almeida C, Jardim T, Keevil CW, Vieira MJ. DNA mimics for the rapid identification of microorganisms by fluorescence in situ hybridization (FISH). Int J Mol Sci 2008; 9:1944-60. [PMID: 19325728 PMCID: PMC2635612 DOI: 10.3390/ijms9101944] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 09/24/2008] [Accepted: 10/06/2008] [Indexed: 12/23/2022] Open
Abstract
Fluorescence in situ hybridization (FISH) is a well-established technique that is used for a variety of purposes, ranging from pathogen detection in clinical diagnostics to the determination of chromosomal stability in stem cell research. The key step of FISH involves the detection of a nucleic acid region and as such, DNA molecules have typically been used to probe for the sequences of interest. However, since the turn of the century, an increasing number of laboratories have started to move on to the more robust DNA mimics methods, most notably peptide and locked nucleic acids (PNA and LNA). In this review, we will cover the state-of-the-art of the different DNA mimics in regard to their application as efficient markers for the presence of individual microbial cells, and consider their potential advantages and pitfalls. Available PNA probes are then reassessed in terms of sensitivity and specificity using rRNA databases. In addition, we also attempt to predict the applicability of DNA mimics in well-known techniques attempting to detect in situ low number of copies of specific nucleic acid sequences such as catalyzed reporter deposition (CARD) and recognition of individual genes (RING) FISH.
Collapse
Affiliation(s)
- Laura Cerqueira
- IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal. E-Mails:
(L. C.);
(C. A.);
(T. J.);
(M. V.)
| | - Nuno F. Azevedo
- IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal. E-Mails:
(L. C.);
(C. A.);
(T. J.);
(M. V.)
- Environmental Healthcare Unit, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK. E-Mail:
(N. A.)
- Author to whom correspondence should be addressed; E-Mail:
; Tel. +351-253605413; Fax: +351-253678986
| | - Carina Almeida
- IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal. E-Mails:
(L. C.);
(C. A.);
(T. J.);
(M. V.)
- Environmental Healthcare Unit, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK. E-Mail:
(N. A.)
| | - Tatiana Jardim
- IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal. E-Mails:
(L. C.);
(C. A.);
(T. J.);
(M. V.)
| | - Charles William Keevil
- Environmental Healthcare Unit, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK. E-Mail:
(N. A.)
| | - Maria J. Vieira
- IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal. E-Mails:
(L. C.);
(C. A.);
(T. J.);
(M. V.)
| |
Collapse
|
12
|
Allen TC, Cagle PT, Popper HH. Basic Concepts of Molecular Pathology. Arch Pathol Lab Med 2008; 132:1551-6. [DOI: 10.5858/2008-132-1551-bcomp] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2008] [Indexed: 11/06/2022]
Affiliation(s)
- Timothy Craig Allen
- From the Department of Pathology, The University of Texas Health Science Center at Tyler (Dr Allen); the Department of Pulmonary Pathology, The Methodist Hospital, Houston, Tex (Dr Cagle); and the Institute of Pathology, Medical University of Graz, Graz, Austria (Dr Popper)
| | - Philip T. Cagle
- From the Department of Pathology, The University of Texas Health Science Center at Tyler (Dr Allen); the Department of Pulmonary Pathology, The Methodist Hospital, Houston, Tex (Dr Cagle); and the Institute of Pathology, Medical University of Graz, Graz, Austria (Dr Popper)
| | - Helmut H. Popper
- From the Department of Pathology, The University of Texas Health Science Center at Tyler (Dr Allen); the Department of Pulmonary Pathology, The Methodist Hospital, Houston, Tex (Dr Cagle); and the Institute of Pathology, Medical University of Graz, Graz, Austria (Dr Popper)
| |
Collapse
|
13
|
|
14
|
Morozova O, Marra MA. From cytogenetics to next-generation sequencing technologies: advances in the detection of genome rearrangements in tumorsThis paper is one of a selection of papers published in this Special Issue, entitled CSBMCB — Systems and Chemical Biology, and has undergone the Journal's usual peer review process. Biochem Cell Biol 2008; 86:81-91. [PMID: 18443621 DOI: 10.1139/o08-003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Genome rearrangements have long been recognized as hallmarks of human tumors and have been used to diagnose cancer. Techniques used to detect genome rearrangements have evolved from microscopic examinations of chromosomes to the more recent microarray-based approaches. The availability of next-generation sequencing technologies may provide a means for scrutinizing entire cancer genomes and transcriptomes at unparalleled resolution. Here we review the methods that have been used to detect genome rearrangements and discuss the scope and limitations of each approach. We end with a discussion of the potential that next-generation sequencing technologies may offer to the field.
Collapse
Affiliation(s)
- Olena Morozova
- BC Cancer Agency Genome Sciences Centre, Suite 100-570 West 7th Avenue, Vancouver, BC V5Z 4S6, Canada
| | - Marco A. Marra
- BC Cancer Agency Genome Sciences Centre, Suite 100-570 West 7th Avenue, Vancouver, BC V5Z 4S6, Canada
| |
Collapse
|
15
|
Sugimura H. Detection of chromosome changes in pathology archives: an application of microwave-assisted fluorescence in situ hybridization to human carcinogenesis studies. Carcinogenesis 2008; 29:681-7. [DOI: 10.1093/carcin/bgn046] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
Fluorescence and chromogenic in situ hybridization to detect genetic aberrations in formalin-fixed paraffin embedded material, including tissue microarrays. Nat Protoc 2008; 3:220-34. [DOI: 10.1038/nprot.2007.534] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|