1
|
Wu D, Sun Q, Tang H, Xiao H, Luo J, Ouyang L, Sun Q. Acquired resistance to tyrosine kinase targeted therapy: mechanism and tackling strategies. Drug Resist Updat 2025; 78:101176. [PMID: 39642660 DOI: 10.1016/j.drup.2024.101176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 12/09/2024]
Abstract
Over the past two decades, tyrosine kinase inhibitors (TKIs) have rapidly emerged as pivotal targeted agents, offering promising therapeutic prospects for patients. However, as the cornerstone of targeted therapies, an increasing number of TKIs have been found to develop acquired resistance during treatment, making the challenge of overcoming this resistance a primary focus of current research. This review comprehensively examines the evolution of TKIs from multiple perspectives, with particular emphasis on the mechanisms underlying acquired resistance, innovative drug design strategies, inherent challenges, and future directions.
Collapse
Affiliation(s)
- Defa Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Qian Sun
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China; West China Medical Publishers, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haolin Tang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Huan Xiao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Jiaxiang Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China.
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China; West China Medical Publishers, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Biswas S, Tikader B, Kar S, Viswanathan GA. Modulation of signaling cross-talk between pJNK and pAKT generates optimal apoptotic response. PLoS Comput Biol 2022; 18:e1010626. [PMID: 36240239 PMCID: PMC9604984 DOI: 10.1371/journal.pcbi.1010626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/26/2022] [Accepted: 10/03/2022] [Indexed: 01/25/2023] Open
Abstract
Tumor necrosis factor alpha (TNFα) is a well-known modulator of apoptosis by maintaining a balance between proliferation and cell-death in normal cells. Cancer cells often evade apoptotic response following TNFα stimulation by altering signaling cross-talks. Thus, varying the extent of signaling cross-talk could enable optimal TNFα mediated apoptotic dynamics. Herein, we use an experimental data-driven mathematical modeling to quantitate the extent of synergistic signaling cross-talk between the intracellular entities phosphorylated JNK (pJNK) and phosphorylated AKT (pAKT) that orchestrate the phenotypic apoptosis level by modulating the activated Caspase3 dynamics. Our study reveals that this modulation is orchestrated by the distinct dynamic nature of the synergism at early and late phases. We show that this synergism in signal flow is governed by branches originating from either TNFα receptor and NFκB, which facilitates signaling through survival pathways. We demonstrate that the experimentally quantified apoptosis levels semi-quantitatively correlates with the model simulated Caspase3 transients. Interestingly, perturbing pJNK and pAKT transient dynamics fine-tunes this accumulated Caspase3 guided apoptotic response. Thus, our study offers useful insights for identifying potential targeted therapies for optimal apoptotic response.
Collapse
Affiliation(s)
- Sharmila Biswas
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Baishakhi Tikader
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Sandip Kar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
- * E-mail: (SK); (GAV)
| | - Ganesh A. Viswanathan
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
- * E-mail: (SK); (GAV)
| |
Collapse
|
3
|
Mazumder K, Aktar A, Roy P, Biswas B, Hossain ME, Sarkar KK, Bachar SC, Ahmed F, Monjur-Al-Hossain ASM, Fukase K. A Review on Mechanistic Insight of Plant Derived Anticancer Bioactive Phytocompounds and Their Structure Activity Relationship. Molecules 2022; 27:3036. [PMID: 35566385 PMCID: PMC9102595 DOI: 10.3390/molecules27093036] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is a disorder that rigorously affects the human population worldwide. There is a steady demand for new remedies to both treat and prevent this life-threatening sickness due to toxicities, drug resistance and therapeutic failures in current conventional therapies. Researchers around the world are drawing their attention towards compounds of natural origin. For decades, human beings have been using the flora of the world as a source of cancer chemotherapeutic agents. Currently, clinically approved anticancer compounds are vincristine, vinblastine, taxanes, and podophyllotoxin, all of which come from natural sources. With the triumph of these compounds that have been developed into staple drug products for most cancer therapies, new technologies are now appearing to search for novel biomolecules with anticancer activities. Ellipticine, camptothecin, combretastatin, curcumin, homoharringtonine and others are plant derived bioactive phytocompounds with potential anticancer properties. Researchers have improved the field further through the use of advanced analytical chemistry and computational tools of analysis. The investigation of new strategies for administration such as nanotechnology may enable the development of the phytocompounds as drug products. These technologies have enhanced the anticancer potential of plant-derived drugs with the aim of site-directed drug delivery, enhanced bioavailability, and reduced toxicity. This review discusses mechanistic insights into anticancer compounds of natural origins and their structural activity relationships that make them targets for anticancer treatments.
Collapse
Affiliation(s)
- Kishor Mazumder
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (P.R.); (B.B.); (M.E.H.); (K.K.S.)
- School of Optometry and Vision Science, UNSW Medicine, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Asma Aktar
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (P.R.); (B.B.); (M.E.H.); (K.K.S.)
| | - Priyanka Roy
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (P.R.); (B.B.); (M.E.H.); (K.K.S.)
| | - Biswajit Biswas
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (P.R.); (B.B.); (M.E.H.); (K.K.S.)
| | - Md. Emran Hossain
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (P.R.); (B.B.); (M.E.H.); (K.K.S.)
| | - Kishore Kumar Sarkar
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (P.R.); (B.B.); (M.E.H.); (K.K.S.)
| | - Sitesh Chandra Bachar
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1207, Bangladesh; (S.C.B.); (F.A.)
| | - Firoj Ahmed
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1207, Bangladesh; (S.C.B.); (F.A.)
| | - A. S. M. Monjur-Al-Hossain
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka 1207, Bangladesh;
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
4
|
Das S. Therapeutic Efficacy of Roscovitine Against Cancer. HANDBOOK OF OXIDATIVE STRESS IN CANCER: THERAPEUTIC ASPECTS 2022:1005-1026. [DOI: 10.1007/978-981-16-5422-0_249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Chizenga EP, Abrahamse H. Biological Therapy with Complementary and Alternative Medicine in Innocuous Integrative Oncology: A Case of Cervical Cancer. Pharmaceutics 2021; 13:626. [PMID: 33924844 PMCID: PMC8145806 DOI: 10.3390/pharmaceutics13050626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
Good medicine is based on good science, inquiry driven and open to new paradigms. For a complex disease such as cancer, a complex treatment regime that is well structured and multifactorial is indispensable. In the present day, Complementary and Alternative Medicine (CAM) therapies are being used frequently for cancer, alongside modern biological therapies and allopathic medicine, in what is called integrative oncology. In all conscience, the use of natural, less invasive interventions whenever possible is ideal. However, a comprehensive understanding of not only the etiopathology of individual cancers, but also the detailed genetic and epigenetic characteristics, the cancer hallmarks, that clearly show the blueprint of the cancer phenotype is a requisite. Different tumors have a common behavioral pattern, but their specific features at the genetic and epigenetic levels vary to a great extent. Henceforth, with so many failed attempts to therapy, drug formulations and combinations need a focused pre-assessment of the inherent features of individual cancers to destroy the tumors holistically by targeting these features. This review therefore presents innocuous therapeutic regimes by means of CAM and integrative medicine approaches that can specifically target the hallmarks of cancer, using the case of cervical cancer.
Collapse
Affiliation(s)
| | - Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, Johannesburg 2028, South Africa;
| |
Collapse
|
6
|
Rodríguez ME, Arévalo DE, Milla Sanabria L, Cuello Carrión FD, Fanelli MA, Rivarola VA. Heat shock protein 27 modulates autophagy and promotes cell survival after photodynamic therapy. Photochem Photobiol Sci 2019; 18:546-554. [DOI: 10.1039/c8pp00536b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Photodynamic therapy (PDT) induces HSP27 over-expression which promotes autophagy and inhibits apoptosis.
Collapse
Affiliation(s)
| | - Daniela Elisa Arévalo
- Department of Molecular Biology
- National University of Río Cuarto
- Río Cuarto (5800)
- Argentina
| | - Laura Milla Sanabria
- Department of Molecular Biology
- National University of Río Cuarto
- Río Cuarto (5800)
- Argentina
| | | | - Mariel Andrea Fanelli
- Oncology Laboratory
- Institute of Experimental Medicine and Biology of Cuyo
- IMBECU-CRICYT
- Mendoza (5500)
- Argentina
| | | |
Collapse
|
7
|
Lichota A, Gwozdzinski K. Anticancer Activity of Natural Compounds from Plant and Marine Environment. Int J Mol Sci 2018; 19:E3533. [PMID: 30423952 PMCID: PMC6275022 DOI: 10.3390/ijms19113533] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023] Open
Abstract
This paper describes the substances of plant and marine origin that have anticancer properties. The chemical structure of the molecules of these substances, their properties, mechanisms of action, their structure⁻activity relationships, along with their anticancer properties and their potential as chemotherapeutic drugs are discussed in this paper. This paper presents natural substances from plants, animals, and their aquatic environments. These substances include the vinca alkaloids, mistletoe plant extracts, podophyllotoxin derivatives, taxanes, camptothecin, combretastatin, and others including geniposide, colchicine, artesunate, homoharringtonine, salvicine, ellipticine, roscovitine, maytanasin, tapsigargin, and bruceantin. Compounds (psammaplin, didemnin, dolastin, ecteinascidin, and halichondrin) isolated from the marine plants and animals such as microalgae, cyanobacteria, heterotrophic bacteria, invertebrates (e.g., sponges, tunicates, and soft corals) as well as certain other substances that have been tested on cells and experimental animals and used in human chemotherapy.
Collapse
Affiliation(s)
- Anna Lichota
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland.
| | - Krzysztof Gwozdzinski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland.
| |
Collapse
|
8
|
Huang CY, Ju DT, Chang CF, Muralidhar Reddy P, Velmurugan BK. A review on the effects of current chemotherapy drugs and natural agents in treating non-small cell lung cancer. Biomedicine (Taipei) 2017; 7:23. [PMID: 29130448 PMCID: PMC5682982 DOI: 10.1051/bmdcn/2017070423] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/20/2017] [Indexed: 12/20/2022] Open
Abstract
Lung cancer is the leading cause of cancer deaths worldwide, and this makes it an attractive disease to review and possibly improve therapeutic treatment options. Surgery, radiation, chemotherapy, targeted treatments, and immunotherapy separate or in combination are commonly used to treat lung cancer. However, these treatment types may cause different side effects, and chemotherapy-based regimens appear to have reached a therapeutic plateau. Hence, effective, better-tolerated treatments are needed to address and hopefully overcome this conundrum. Recent advances have enabled biologists to better investigate the potential use of natural compounds for the treatment or control of various cancerous diseases. For the past 30 years, natural compounds have been the pillar of chemotherapy. However, only a few compounds have been tested in cancerous patients and only partial evidence is available regarding their clinical effectiveness. Herein, we review the research on using current chemotherapy drugs and natural compounds (Wortmannin and Roscovitine, Cordyceps militaris, Resveratrol, OSU03013, Myricetin, Berberine, Antroquinonol) and the beneficial effects they have on various types of cancers including non-small cell lung cancer. Based on this literature review, we propose the use of these compounds along with chemotherapy drugs in patients with advanced and/or refractory solid tumours.
Collapse
Affiliation(s)
- Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan - Graduate Institute of Chinese Medical Science, China Medical University, Taichung 404, Taiwan - Department of Biological Science and Technology, Asia University, Taichung 413, Taiwan
| | - Da-Tong Ju
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chih-Fen Chang
- Department of Internal Medicine, Division of Cardiology, Armed Forces Taichung General Hospital, Taichung 406, Taiwan
| | - P Muralidhar Reddy
- Department of Chemistry, Nizam College, Osmania University, Hyderabad-500001, India
| | - Bharath Kumar Velmurugan
- Faculty of Applied Sciences, Ton Duc Thang University, Tan Phong Ward, District 7, 700000 Ho Chi Minh City, Vietnam
| |
Collapse
|
9
|
Fu X, Wen H, Jing L, Yang Y, Wang W, Liang X, Nan K, Yao Y, Tian T. MicroRNA-155-5p promotes hepatocellular carcinoma progression by suppressing PTEN through the PI3K/Akt pathway. Cancer Sci 2017; 108:620-631. [PMID: 28132399 PMCID: PMC5406601 DOI: 10.1111/cas.13177] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/17/2017] [Accepted: 01/24/2017] [Indexed: 12/12/2022] Open
Abstract
MicroRNA‐155‐5p (miR‐155‐5p) has been reported to play an oncogenic role in different human malignancies; however, its role in hepatocellular carcinoma (HCC) progression is not clearly understood. In this study, we used real‐time PCR in 20 rats with chemically‐induced HCC, 28 human HCC tissues, and the matched paracarcinoma tissues, and HCC cell lines to determine the expression patterns of miR‐155‐5p and PTEN mRNA. Algorithm‐based and experimental strategies, such as dual luciferase gene reporter assays, real‐time PCR and western blots were used to identify PTEN as a candidate miR‐155‐5p target. Gain‐ and loss‐of‐function experiments and administration of a PI3K/Akt pathway inhibitor (wortmannin) were used to identify the effects of miR‐155‐5p and PTEN in MTT assays, flow cytometric analysis, wound healing assays and transwell assays. The results showed that miR‐155‐5p was highly overexpressed; however, PTEN was underexpressed in the HCC rat models, human HCC tissues and cell lines. In addition, miR‐155‐5p upregulation and PTEN downregulation were significantly associated with TNM stage (P < 0.05). Through in vitro experiments, we found that miR‐155‐5p promoted proliferation, invasion and migration, but inhibited apoptosis in HCC by directly targeting the 3′‐UTR of PTEN. Western blots showed that miR‐155‐5p inactivated Bax and caspase‐9, but activated Bcl‐2 to inhibit apoptosis, and it activated MMP to promote migration and invasion via the PI3K/Akt pathway. A xenograft tumor model was used to demonstrate that miR‐155‐5p targets PTEN and activates the PI3K/Akt pathway in vivo as well. Our study highlighted the importance of miR‐155‐5p and PTEN associated with aggressive HCC both in vitro and in vivo.
Collapse
Affiliation(s)
- Xiao Fu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hongqing Wen
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Respiratory, Third Hospital of Xi'an, Xi'an, Shaanxi, China
| | - Li Jing
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yujuan Yang
- The third Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Wenjuan Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xuan Liang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Kejun Nan
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yu Yao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tao Tian
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
10
|
Sun Q, Chen X, Zhou Q, Burstein E, Yang S, Jia D. Inhibiting cancer cell hallmark features through nuclear export inhibition. Signal Transduct Target Ther 2016; 1:16010. [PMID: 29263896 PMCID: PMC5661660 DOI: 10.1038/sigtrans.2016.10] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/28/2016] [Accepted: 05/31/2016] [Indexed: 02/05/2023] Open
Abstract
Treating cancer through inhibition of nuclear export is one of the best examples of basic research translation into clinical application. Nuclear export factor chromosomal region maintenance 1 (CRM1; Xpo1 and exportin-1) controls cellular localization and function of numerous proteins that are critical for the development of many cancer hallmarks. The diverse actions of CRM1 are likely to explain the broad ranging anti-cancer potency of CRM1 inhibitors observed in pre-clinical studies and/or clinical trials (phase I–III) on both advanced-stage solid and hematological tumors. In this review, we compare and contrast the mechanisms of action of different CRM1 inhibitors, and discuss the potential benefit of unexplored non-covalent CRM1 inhibitors. This emerging field has uncovered that nuclear export inhibition is well poised as an attractive target towards low-toxicity broad-spectrum potent anti-cancer therapy.
Collapse
Affiliation(s)
- Qingxiang Sun
- State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China.,Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Xueqin Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiao Zhou
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Ezra Burstein
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA.,Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Da Jia
- State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China.,West China 2nd University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Abstract
Phosphatidylinositol 3-kinases (PI3Ks) include members of a unique and conserved family of intracellular lipid kinases that phosphorylate the 3-hydroxyl group of phosphatidylinositols and phosphoinositides. The resultant activation of many intracellular signalling pathways regulates various biological functions such as cell metabolism, survival, growth, proliferation, polarity, and apoptosis. PI3Ks are classified into three types: class I, II, and III. Of them, class I PI3K is most widely studied and plays an important role in the development and progression of tumours. In this review, we describe PI3K family members and their functions, especially the subunits of class I PI3K, their alterations in cancers, as well as PI3K inhibitors and their clinical trial status in cancer-targeted therapy.
Collapse
Affiliation(s)
- Wenli Cui
- 1Department of Pathology, Fudan University Shanghai Cancer Center 2Department of Oncology, Shanghai Medical College, Fudan University 3Institute of Pathology, Fudan University, Shanghai 4Department of Pathology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, PR China
| | | | | |
Collapse
|
12
|
Manzo-Merino J, Contreras-Paredes A, Vázquez-Ulloa E, Rocha-Zavaleta L, Fuentes-Gonzalez AM, Lizano M. The Role of Signaling Pathways in Cervical Cancer and Molecular Therapeutic Targets. Arch Med Res 2014; 45:525-39. [DOI: 10.1016/j.arcmed.2014.10.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/29/2014] [Indexed: 12/24/2022]
|
13
|
Sun Y, Gao C, Luo M, Wang W, Gu C, Zu Y, Li J, Efferth T, Fu Y. Aspidin PB, a phloroglucinol derivative, induces apoptosis in human hepatocarcinoma HepG2 cells by modulating PI3K/Akt/GSK3β pathway. Chem Biol Interact 2013. [DOI: 10.1016/j.cbi.2012.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Chen C, Xu P, Wang J, Lou XL. Effect of PI3K inhibitor wortmannin on cytokine levels and pancreatic histopathological scores in rats with severe acute pancreatitis. Shijie Huaren Xiaohua Zazhi 2012; 20:3663-3669. [DOI: 10.11569/wcjd.v20.i36.3663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of the PI3K/Akt signaling transduction pathway inhibitor wortmannin on the levels of cytokines [tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6] and pancreatic histopathological changes in rats with severe acute pancreatitis (SAP).
METHODS: Sixty male Sprague-Dawley (SD) rats were randomly divided into five groups, including SAP group, sham operation group, normal saline group, DMSO control group, and wortmannin group. The modified Aho's method was used to reproduce the SAP model. The rats were sacrificed 3 and 6 h after treatment. The levels of inflammatory cytokines TNF-α, IL-1β and IL-6 in serum were determined by ELISA. Transcription levels of these inflammatory cytokines in pancreatic tissue were determined by real-time PCR. In addition, the amount of ascites, the activities of serum amylase and ascites amylase, and the pathological scores of pancreatic tissue were also measured.
RESULTS: At 3 and 6 h after treatment, all parameters tested, including the amount of ascites, the levels of serum and ascites amylase, the pathological scores of pancreatic tissue, serum levels of TNF-α, IL-1β and IL-6, and the transcription levels of TNF-α, IL-1β and IL-6 mRNAs in the pancreatic tissue, in the SAP group and DMSO group were significantly higher than those in the normal saline group and sham operation group (all P < 0.05). Compared to the SAP group and DMSO group, the above parameters decreased significantly in the wortmannin group (all P < 0.05).
CONCLUSION: Wortmannin exerts a protective effect against SAP possibly by down-regulating the levels of TNF-α, IL-1β and IL-6 and reducing pathological injury of pancreatic tissue in rats.
Collapse
|
15
|
Arısan ED, Coker A, Palavan-Ünsal N. Polyamine depletion enhances the roscovitine-induced apoptosis through the activation of mitochondria in HCT116 colon carcinoma cells. Amino Acids 2011; 42:655-65. [PMID: 21809075 DOI: 10.1007/s00726-011-1040-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 05/24/2011] [Indexed: 12/15/2022]
Abstract
Small molecule inhibitors of cyclin-dependent kinases (CDKs) show high therapeutic potential in various cancer types which are characterized by the accumulation of transformed cells due to impaired apoptotic machinery. Roscovitine, a CDK inhibitor showed to be a potent apoptotic inducer in several cancer cells. Polyamines, putrescine, spermidine and spermine, are biogenic amines involved in many cellular processes, including apoptosis. In this study, we explored the potential role of polyamines in roscovitine-induced apoptosis in HCT116 colon cancer cells. Roscovitine induced apoptosis by activating mitochondrial pathway caspases and modulating the expression of Bcl-2 family members. Depletion of polyamines by treatment with difluoromethylornithine (DFMO) increased roscovitine-induced apoptosis. Transient silencing of ornithine decarboxylase, polyamine biosynthesis enzyme and special target of DFMO also increased roscovitine-induced apoptosis in HCT116 cells. Interestingly, additional putrescine treatment was found pro-apoptotic due to the presence of non-functional ornithine decarboxylase (ODC). Finally, roscovitine altered polyamine catabolic pathway and led to decrease in putrescine and spermidine levels. Therefore, the metabolic regulation of polyamines may dictate the power of roscovitine induced apoptotic responses in HCT116 colon cancer cells.
Collapse
Affiliation(s)
- Elif Damla Arısan
- Molecular Biology and Genetics Department, Istanbul Kultur University, Science and Literature Faculty, Atakoy Campus, 34156, Istanbul, Turkey
| | | | | |
Collapse
|
16
|
Sathya S, Sudhagar S, Vidhya Priya M, Bharathi Raja R, Muthusamy VS, Niranjali Devaraj S, Lakshmi BS. 3β-hydroxylup-20(29)-ene-27,28-dioic acid dimethyl ester, a novel natural product from Plumbago zeylanica inhibits the proliferation and migration of MDA-MB-231 cells. Chem Biol Interact 2010; 188:412-20. [PMID: 20670616 DOI: 10.1016/j.cbi.2010.07.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 07/20/2010] [Accepted: 07/20/2010] [Indexed: 10/19/2022]
Abstract
Plumbago zeylanica, a traditional Indian herb is being used for the therapy of rheumatism and has been approved for anti-tumor activity. However, the molecular mechanisms involved in the biological action are not very well understood. In this study, the anti-invasive activities of P. zeylanica methanolic extract (PME) and pure compound 3β-hydroxylup-20(29)-ene-27,28-dioic acid (PZP) isolated from it are investigated in vitro. PME and PZP were noted to have the ability to induce apoptosis as assessed by flow cytometry. Further, the molecular mechanism of apoptosis induced by PME and PZP was found by the loss of mitochondrial membrane potential with the down regulation of Bcl-2, increased expression of Bad, release of cytochrome c, activation of caspase-3 and cleavage of PARP leading to DNA fragmentation. Importantly, both PME and PZP were observed to suppress MDA-MB-231 cells adhesion to the fibronectin-coated substrate and also inhibited the wound healing migration and invasion of MDA-MB-231 cells through the reconstituted extracellular matrix. Gelatin zymography revealed that PME and PZP decreased the secretion of matrix metalloproteinases-2 (MMP-2) and metalloproteinases-9 (MMP-9). Interestingly both PME and PZP exerted an inhibitory effect on the protein levels of p-PI3K, p-Akt, p-JNK, p-ERK1/2, MMP-2, MMP-9, VEGF and HIF-1α that are consistent with the observed anti-metastatic effect. Collectively, these data provide the molecular basis of the anti-proliferative and anti-metastatic effects of PME and PZP.
Collapse
|