1
|
Zhang L, Gao M, Wu Y, Liu H, Zhuang X, Zhou Y, Song Q, Bi S, Zhang W, Cui Y. MST1 interactomes profiling across cell death in esophageal squamous cell carcinoma. MEDICAL REVIEW (2021) 2024; 4:531-543. [PMID: 39664081 PMCID: PMC11629308 DOI: 10.1515/mr-2024-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/27/2024] [Indexed: 12/13/2024]
Abstract
Objectives Resistance to apoptosis in esophageal squamous cell carcinoma (ESCC) constitutes a significant impediment to treatment efficacy. Exploring alternative cell death pathways and their regulatory factors beyond apoptosis is crucial for overcoming drug resistance and enhancing therapeutic outcomes in ESCC. Methods Mammalian Ste 20-like kinase 1 (MST1) is implicated in regulating various cell deaths, including apoptosis, autophagy, and pyroptosis. Employing enhanced ascorbate peroxidase 2 (APEX2) proximity labeling coupled with immunoprecipitation-mass spectrometry (IP-MS), we elucidated the interactomes of MST1 across these three cell death paradigms. Results Proteomic profiling unveiled the functional roles and subcellular localization of MST1 and its interacting proteins during normal proliferation and various cell death processes. Notably, MST1 exhibited an expanded interactome during cell death compared to normal proliferation and chromosome remodeling functions consistently. In apoptosis, there was a notable increase of mitosis-associated proteins such as INCENP, ANLN, KIF23, SHCBP1 and SUPT16H, which interacted with MST1, alongside decreased expression of the pre-apoptotic protein STK3. During autophagy, the bindings of DNA repair-related proteins CBX8 and m6A reader YTHDC1 to MST1 were enhanced. In pyroptosis, LRRFIP2 and FLII which can inhibit pyroptosis increasingly binding to MST1. Conclusions Our findings delineate potential mechanisms through which MST1 and its interactomes regulate cell death, paving the way for further investigation to validate and consolidate these observations.
Collapse
Affiliation(s)
- Li Zhang
- Cancer Institute, Shenzhen-Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Mingwei Gao
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yueguang Wu
- Cancer Institute, Shenzhen-Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Huijuan Liu
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Xuehan Zhuang
- Cancer Institute, Shenzhen-Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Yan Zhou
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Qiqin Song
- Cancer Institute, Shenzhen-Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Shanshan Bi
- Cancer Institute, Shenzhen-Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Weimin Zhang
- Cancer Institute, Shenzhen-Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Yongping Cui
- Cancer Institute, Shenzhen-Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Mangalaparthi KK, Patel K, Khan AA, Nair B, Kumar RV, Prasad TSK, Sidransky D, Chatterjee A, Pandey A, Gowda H. Molecular Characterization of Esophageal Squamous Cell Carcinoma Using Quantitative Proteomics. Cancers (Basel) 2023; 15:3302. [PMID: 37444412 DOI: 10.3390/cancers15133302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 07/15/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a heterogeneous cancer associated with a poor prognosis in advanced stages. In India, it is the sixth most common cause of cancer-related mortality. In this study, we employed high-resolution mass spectrometry-based quantitative proteomics to characterize the differential protein expression pattern associated with ESCC. We identified several differentially expressed proteins including PDPN, TOP2A, POSTN and MMP2 that were overexpressed in ESCC. In addition, we identified downregulation of esophagus tissue-enriched proteins such as SLURP1, PADI1, CSTA, small proline-rich proteins such as SPRR3, SPRR2A, SPRR1A, KRT4, and KRT13, involved in squamous cell differentiation. We identified several overexpressed proteins mapped to the 3q24-29 chromosomal region, aligning with CNV alterations in this region reported in several published studies. Among these, we identified overexpression of SOX2, TP63, IGF2BP2 and RNF13 that are encoded by genes in the 3q26 region. Functional enrichment analysis revealed proteins involved in cell cycle pathways, DNA replication, spliceosome, and DNA repair pathways. We identified the overexpression of multiple proteins that play a major role in alleviating ER stress, including SYVN1 and SEL1L. The SYVN1/SEL1L complex is an essential part of the ER quality control machinery clearing misfolded proteins from the ER. SYVN1 is an E3 ubiquitin ligase that ubiquitinates ER-resident proteins. Interestingly, there are also other non-canonical substrates of SYVN1 which are known to play a crucial role in tumor progression. Thus, SYVN1 could be a potential therapeutic target in ESCC.
Collapse
Affiliation(s)
- Kiran K Mangalaparthi
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 691001, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Krishna Patel
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 691001, India
| | - Aafaque Ahmad Khan
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
| | - Bipin Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 691001, India
| | - Rekha V Kumar
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore 560066, India
| | - Thottethodi Subrahmanya Keshav Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 691001, India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - David Sidransky
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 691001, India
- Manipal Academy of Higher Education, Manipal 576104, India
| | - Akhilesh Pandey
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
- Manipal Academy of Higher Education, Manipal 576104, India
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore 560029, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 691001, India
- Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
3
|
Ma N, Hua R, Yang Y, Liu ZC, Pan J, Yu BY, Sun YF, Xie D, Wang Y, Li ZG. PES1 reduces CD8 + T cell infiltration and immunotherapy sensitivity via interrupting ILF3-IL15 complex in esophageal squamous cell carcinoma. J Biomed Sci 2023; 30:20. [PMID: 36959575 PMCID: PMC10037800 DOI: 10.1186/s12929-023-00912-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/11/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Although immune checkpoint blockade (ICB) therapy has brought survival benefits to patients with specific cancer types, most of cancer patients remain refractory to the ICB therapy, which is largely attributed to the immunosuppressive tumor microenvironment. Thereby, it is urgent to profile key molecules and signal pathways responsible for modification of tumor microenvironment. METHODS Multiple databases of esophageal squamous cell carcinoma (ESCC) were integratively analyzed to screen candidate genes responsible for infiltration of CD8+ T cells. Expression of pescadillo ribosomal biogenesis factor 1 (PES1) in clinical ESCC samples was examined by qRT-PCR, western blotting, and immunohistochemistry. The mechanisms of PES1 were investigated via RNA sequencing and mass spectrometry followed by immunoprecipitation and proximity ligation assay. The clinical and therapeutic significance of PES1 in ESCC was comprehensively investigated using ESCC cells and mouse model. RESULTS PES1 was significantly upregulated and correlated with poor prognosis in ESCC patients. PES1 knockdown decreased ESCC cell growth in vitro and in vivo and enhanced the efficacy of ICB therapy in mouse model, which was established through subcutaneous inoculation with ESCC cells. Analyses on RNA sequencing and mass spectrometry suggested that PES1 expression was negatively correlated with IL15 and ILF3 was one of the PES1-associated proteins. It has been known that ILF3 interacts with and stabilizes IL15 mRNA to increase IL15 protein level. Our data further indicated that PES1 interfered with the interaction between ILF3 and IL15 mRNA and impaired ILF3-mediated stabilization of IL15 mRNA, which eventually reduced the protein level of IL15. Interestingly, the inhibitory effect of ICB therapy boosted by PES1 knockdown dramatically antagonized by knockdown of IL15, which suppressed the tumor-infiltrated CD8+ T cells in ESCC. Finally, we confirmed the relationships among PES1, IL15, and CD8+ T cell infiltration in 10 locally advanced ESCC patients receiving ICB neoadjuvant therapy and demonstrated that ICB therapy would be more effective in those with low expression of PES1. CONCLUSIONS Altogether, our findings herein provided novel insights on biological function and clinical significance of PES1 and suggested that high expression of PES1 could suppress ILF3-IL15 axis-mediated immunosurveillance and promote resistance to ICB through restraining tumor-infiltrated CD8+ T cells.
Collapse
Affiliation(s)
- Ning Ma
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Hua
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Chao Liu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Pan
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo-Yao Yu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Feng Sun
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong Xie
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yan Wang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Zhi-Gang Li
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Levi L, Hikri E, Popovtzer A, Dayan A, Levi A, Bachar G, Mizrachi A, Shoffel-Havakuk H. Effect of Opioid Receptor Activation and Blockage on the Progression and Response to Treatment of Head and Neck Squamous Cell Carcinoma. J Clin Med 2023; 12:jcm12041277. [PMID: 36835812 PMCID: PMC9967316 DOI: 10.3390/jcm12041277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Recent studies suggest that opioids have a role in the progression of HNSCC mediated by mu opioid receptors (MOR), however, the effects of their activation or blockage remains unclear. Expression of MOR-1 was explored in seven HNSCC cell lines using Western blotting (WB). XTT cell proliferation and cell migration assays were performed on four selected cell lines (Cal-33, FaDu, HSC-2, and HSC-3), treated with opiate receptor agonist (morphine), antagonist (naloxone), alone and combined with cisplatin. All four selected cell lines display an increased cell proliferation and upregulation of MOR-1 when exposed to morphine. Furthermore, morphine promotes cell migration, while naloxone inhibits it. The effects on cell signaling pathways were analyzed using WB, demonstrating morphine activation of AKT and S6, key proteins in the PI3K/AKT/mTOR axis. A significant synergistic cytotoxic effect between cisplatin and naloxone in all cell lines is observed. In vivo studies of nude mice harboring HSC3 tumor treated with naloxone demonstrate a decrease in tumor volume. The synergistic cytotoxic effect between cisplatin and naloxone is observed in the in vivo studies as well. Our findings suggest that opioids may increase HNSCC cell proliferation via the activation of the PI3K/Akt/mTOR signaling pathway. Moreover, MOR blockage may chemo-sensitize HNSCC to cisplatin.
Collapse
Affiliation(s)
- Lirit Levi
- Department of Otorhinolaryngology—Head and Neck Surgery, Rabin Medical Center, Petach Tikva 49100, Israel
- Translational Research in Head and Neck Cancer, Felsenstein Medical Research Center, Rabin Medical Center, Tel Aviv University, Tel Aviv 6997801, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Elad Hikri
- Department of Otorhinolaryngology—Head and Neck Surgery, Rabin Medical Center, Petach Tikva 49100, Israel
- Translational Research in Head and Neck Cancer, Felsenstein Medical Research Center, Rabin Medical Center, Tel Aviv University, Tel Aviv 6997801, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Aron Popovtzer
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Avraham Dayan
- Department of Otorhinolaryngology—Head and Neck Surgery, Rabin Medical Center, Petach Tikva 49100, Israel
- Translational Research in Head and Neck Cancer, Felsenstein Medical Research Center, Rabin Medical Center, Tel Aviv University, Tel Aviv 6997801, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Amir Levi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gideon Bachar
- Department of Otorhinolaryngology—Head and Neck Surgery, Rabin Medical Center, Petach Tikva 49100, Israel
- Translational Research in Head and Neck Cancer, Felsenstein Medical Research Center, Rabin Medical Center, Tel Aviv University, Tel Aviv 6997801, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Aviram Mizrachi
- Department of Otorhinolaryngology—Head and Neck Surgery, Rabin Medical Center, Petach Tikva 49100, Israel
- Translational Research in Head and Neck Cancer, Felsenstein Medical Research Center, Rabin Medical Center, Tel Aviv University, Tel Aviv 6997801, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence: ; Tel.: +972-3-9376456; Fax: +972-3-9372717
| | - Hagit Shoffel-Havakuk
- Department of Otorhinolaryngology—Head and Neck Surgery, Rabin Medical Center, Petach Tikva 49100, Israel
- Translational Research in Head and Neck Cancer, Felsenstein Medical Research Center, Rabin Medical Center, Tel Aviv University, Tel Aviv 6997801, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
5
|
Huang R, Dai Q, Yang R, Duan Y, Zhao Q, Haybaeck J, Yang Z. A Review: PI3K/AKT/mTOR Signaling Pathway and Its Regulated Eukaryotic Translation Initiation Factors May Be a Potential Therapeutic Target in Esophageal Squamous Cell Carcinoma. Front Oncol 2022; 12:817916. [PMID: 35574327 PMCID: PMC9096244 DOI: 10.3389/fonc.2022.817916] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/01/2022] [Indexed: 11/15/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a malignant tumor developing from the esophageal squamous epithelium, and is the most common histological subtype of esophageal cancer (EC). EC ranks 10th in morbidity and sixth in mortality worldwide. The morbidity and mortality rates in China are both higher than the world average. Current treatments of ESCC are surgical treatment, radiotherapy, and chemotherapy. Neoadjuvant chemoradiotherapy plus surgical resection is recommended for advanced patients. However, it does not work in the significant promotion of overall survival (OS) after such therapy. Research on targeted therapy in ESCC mainly focus on EGFR and PD-1, but neither of the targeted drugs can significantly improve the 3-year and 5-year survival rates of disease. Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway is an important survival pathway in tumor cells, associated with its aggressive growth and malignant progression. Specifically, proliferation, apoptosis, autophagy, and so on. Related genetic alterations of this pathway have been investigated in ESCC, such as PI3K, AKT and mTOR-rpS6K. Therefore, the PI3K/AKT/mTOR pathway seems to have the capability to serve as research hotspot in the future. Currently, various inhibitors are being tested in cells, animals, and clinical trials, which targeting at different parts of this pathway. In this work, we reviewed the research progress on the PI3K/AKT/mTOR pathway how to influence biological behaviors in ESCC, and discussed the interaction between signals downstream of this pathway, especially eukaryotic translation initiation factors (eIFs) and the development and progression of ESCC, to provide reference for the identification of new therapeutic targets in ESCC.
Collapse
Affiliation(s)
- Ran Huang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qiong Dai
- Department of Human Anatomy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Ruixue Yang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Duan
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qi Zhao
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
- Diagnostic & Research Center for Molecular BioMedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Zhihui Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
6
|
Luo Q, Du R, Liu W, Huang G, Dong Z, Li X. PI3K/Akt/mTOR Signaling Pathway: Role in Esophageal Squamous Cell Carcinoma, Regulatory Mechanisms and Opportunities for Targeted Therapy. Front Oncol 2022; 12:852383. [PMID: 35392233 PMCID: PMC8980269 DOI: 10.3389/fonc.2022.852383] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/03/2022] [Indexed: 12/15/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC), is the most common type of esophageal cancer worldwide, mainly occurring in the Asian esophageal cancer belt, including northern China, Iran, and parts of Africa. Phosphatidlinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway is one of the most important cellular signaling pathways, which plays a crucial role in the regulation of cell growth, differentiation, migration, metabolism and proliferation. In addition, mutations in some molecules of PI3K/Akt/mTOR pathway are closely associated with survival and prognosis in ESCC patients. A large number of studies have found that there are many molecules in ESCC that can regulate the PI3K/Akt/mTOR pathway. Overexpression of these molecules often causes aberrant activation of PI3K/Akt/mTOR pathway. Currently, several effective PI3K/Akt/mTOR pathway inhibitors have been developed, which can play anticancer roles either alone or in combination with other inhibitors. This review mainly introduces the general situation of ESCC, the composition and function of PI3K/Akt/mTOR pathway, and regulatory factors that interact with PI3K/Akt/mTOR signaling pathway. Meanwhile, mutations and inhibitors of PI3K/Akt/mTOR pathway in ESCC are also elucidated.
Collapse
Affiliation(s)
- Qian Luo
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Ruijuan Du
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Wenting Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Guojing Huang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| | - Xiang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Lu Z, Zhang Y, Xu Y, Wei H, Zhao W, Wang P, Li Y, Hou G. mTOR inhibitor PP242 increases antitumor activity of sulforaphane by blocking Akt/mTOR pathway in esophageal squamous cell carcinoma. Mol Biol Rep 2021; 49:451-461. [PMID: 34731371 DOI: 10.1007/s11033-021-06895-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Sulforaphane (SFN) is a kind of isothiocyanate from cruciferous vegetables with extensive anti-tumor activity. Esophageal squamous cell carcinoma (ESCC) is a popular malignancy in East Asia, East and South Africa, while the more efficient medicines and therapeutic strategies are still lack. This study aims to explore the anti-tumor activity of SFN alone and combined with Akt/mTOR pathway inhibitors as well as the potential molecular mechanism in ESCC. METHODS AND RESULTS Cell proliferation, migration, cell cycle phase, apoptosis and protein expression were detected with MTT assay, clone formation experiment, wound healing assays, flow cytometry and Western blot, respectively, after ESCC cells ECa109 and EC9706 treated with SFN alone or combined with Akt/mTOR inhibitors. Xenograft models were used to evaluate the efficiency and mechanism of SFN combined with PP242 in vivo. The results showed that SFN significantly inhibited the viability and induced apoptosis of ECa109 and EC9706 cells by increasing expression of Cleaved-caspase 9. SFN combined with PP242, but not MK2206 and RAD001, synergetic inhibited proliferation of ESCC cells. Moreover, compared to SFN alone, combination of SFN and PP242 had stronger inhibiting efficiency on clone formation, cell migratory, cell cycle phase and growth of xenografts, as well as the more powerful apoptosis-inducing effects on ESCC. The mechanism was that PP242 abrogated the promoting effects of SFN on p-p70S6K (Thr389) and p-Akt (Ser473) in ESCC. CONCLUSIONS Our findings demonstrate that PP242 enhances the anti-tumor activity of SFN by blocking SFN-induced activation of Akt/mTOR pathway in ESCC, which provides a rationale for treating ESCC using SFN combined with Akt/mTOR pathway inhibitors.
Collapse
Affiliation(s)
- Zhaoming Lu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.,Collaborative Innovation Center of Cancer Chemoprevention, Zhengzhou, 450001, Henan Province, China
| | - Yalin Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yujia Xu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Huiyun Wei
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wen Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450052, China
| | - Pengju Wang
- Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Yan Li
- Center of Advanced Analysis & Gene Sequencing, Zhengzhou University, Zhengzhou, 450001, China.
| | - Guiqin Hou
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China. .,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
8
|
Liu T, Liang X, Sun Y, Yang S. Rapamycin suppresses the PI3K/AKT/mTOR signaling pathway by targeting SIRT1 in esophageal cancer. Exp Ther Med 2021; 22:1190. [PMID: 34475980 PMCID: PMC8406672 DOI: 10.3892/etm.2021.10624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Rapamycin, a secondary metabolite produced by Streptomyces hygroscopicus, is known for its pharmacological effects, especially antitumor and immunosuppressive activities. However, the antitumoral effects of rapamycin in human esophageal cancer (EC) are still poorly understood. To investigate the potential of rapamycin in EC treatment, sirtuin 1 (SIRT1) mRNA expression was quantified in the tissue of patients with EC or in EC cell lines using reverse transcription-quantitative PCR. The protein levels of SIRT1 and PI3K/AKT/mTOR were measured via western blotting. Furthermore, cell viability, migration and invasion were investigated by Cell Counting Kit-8, wound healing and Transwell assays, respectively. The present results suggested that SIRT1 expression was upregulated in EC. In vitro, the inhibitory effect of rapamycin on cell viability in EC was strengthened or weakened after small interfering (si)-SIRT1 or pcDNA3.1/SIRT1 transfection. Furthermore, SIRT1 rescued the inhibitory effect of rapamycin on the migration and invasion of EC cells. In vivo, si-SIRT1 or SIRT1 overexpression in mice could enhance or rescue the inhibitory effects of rapamycin on tumor growth. In addition, SIRT1 transfection rescued the decreased level of phosphorylated (p)-PI3K, p-AKT and p-mTOR induced by rapamycin treatment. Taken together, the present results suggested that rapamycin suppressed the cell viability, migration, invasion and PI3K/AKT/mTOR signaling pathway in EC by negatively regulating SIRT1.
Collapse
Affiliation(s)
- Tao Liu
- Department of Cardiothoracic Surgery, Guangxi International Zhuang Medical Hospital, Nanning, Guangxi 530201, P.R. China
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Xiangsen Liang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Yu Sun
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Shengzhuang Yang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| |
Collapse
|
9
|
Lu Z, Ren Y, Yang L, Jia A, Hu Y, Zhao Y, Zhao W, Yu B, Zhao W, Zhang J, Hou G. Inhibiting autophagy enhances sulforaphane-induced apoptosis via targeting NRF2 in esophageal squamous cell carcinoma. Acta Pharm Sin B 2021; 11:1246-1260. [PMID: 34094831 PMCID: PMC8148075 DOI: 10.1016/j.apsb.2020.12.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/31/2020] [Accepted: 10/13/2020] [Indexed: 12/26/2022] Open
Abstract
Sulforaphane (SFN), a natural anti-tumor compound from cruciferous vegetables, has been reported to induce protective autophagy to cancer cells, which might impair the anti-tumor efficiency of SFN. However, the accurate function and mechanism of SFN inducing autophagy in cancers are still obscure, especially in esophageal squamous cell carcinoma (ESCC), one of malignancies with high incidence in North China. Here, we mainly explored the potential function of autophagy upon SFN treatment in ESCC and molecular mechanism. We demonstrated that SFN could inhibit cell proliferation and induce apoptosis by activating caspase pathway. Moreover, we found activation of NRF2 pathway by SFN was responsible for the induction of autophagy and also a disadvantage element to the anti-tumor effects of SFN on ESCC, indicating that SFN might induce protective autophagy in ESCC. We, therefore, investigated effects of autophagy inhibition on sensitivity of ESCC cells to SFN and found that chloroquine (CQ) could neutralize the activation of SFN on NRF2 and enhance the activation of SFN on caspase pathway, thus improved the anti-tumor efficiency of SFN on ESCC in vitro and in vivo. Our study provides a preclinical rationale for development of SFN and its analogs to the future treatment of ESCC.
Collapse
|
10
|
Hou G, Jia A, Yang L, Zhao Y, Hu Y, Zhao W, Zhao W, Liu HM, Lu Z. OP16 induces deadly autophagy and apoptosis of cells by inhibiting Akt in esophageal squamous cell carcinoma. Mol Cell Biochem 2020; 472:219-230. [PMID: 32671513 DOI: 10.1007/s11010-020-03800-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/15/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND OP16, a derivative of the novel ent-kaurene diterpenoid compound separated from Rabdosia rubescens, has been confirmed for its efficacy and safety in the treatment of esophageal squamous cell carcinoma (ESCC) in our previous study. However, the precise mechanisms of tumor lethality mediated by OP16 have not yet been fully characterized. AIMS To investigate the effects and molecular mechanism of OP16 on autophagy and apoptosis of ESCC cells. METHODS Effects and mechanism of OP16 on autophagy of ESCC cells were first detected by Western blot, immunofluorescence, mRFP-GFP-LC3 adenovirus infection and transmission electron microscope. Next, function of autophagy and apoptosis induced by OP16 on cell death was investigated by flow cytometry and CCK-8 assay. Finally, molecular mechanism of OP16 affecting autophagy and apoptosis of ESCC cells was explored by Western blot. RESULTS We demonstrated that OP16 could induce autophagy by promoting the formation of autophagosome and autolysosome, and promote autophagic cell death in ESCC. Furthermore, we also found that OP16 could promote cell apoptosis by activating mitochondria apoptosis pathway in ESCC. Finally, we demonstrated that OP16 affecting autophagy and mitochondria apoptosis pathway was mediated by phosphorylation of Akt. CONCLUSION Our data show that OP16 could promote cell death through affecting autophagy and mitochondria apoptosis pathway mediated by Akt in ESCC, which enriches the theoretical mechanism of anti-tumor effects of OP16 and provides a basis for treatment of OP16 on ESCC.
Collapse
Affiliation(s)
- Guiqin Hou
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ang Jia
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Li Yang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yu Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yi Hu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wuduo Zhao
- Center of Advanced Analysis & Gene Sequencing, Zhengzhou University, Zhengzhou, 450001, China
| | - Wen Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhaoming Lu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Collaborative Innovation Center of Cancer Chemoprevention, Henan Province, Zhengzhou, 450001, China.
| |
Collapse
|
11
|
Lu Z, Shi X, Gong F, Li S, Wang Y, Ren Y, Zhang M, Yu B, Li Y, Zhao W, Zhang J, Hou G. RICTOR/mTORC2 affects tumorigenesis and therapeutic efficacy of mTOR inhibitors in esophageal squamous cell carcinoma. Acta Pharm Sin B 2020; 10:1004-1019. [PMID: 32642408 PMCID: PMC7332809 DOI: 10.1016/j.apsb.2020.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/01/2019] [Accepted: 12/24/2019] [Indexed: 02/06/2023] Open
Abstract
Dysregulation of mTORC1/mTORC2 pathway is observed in many cancers and mTORC1 inhibitors have been used clinically in many tumor types; however, the mechanism of mTORC2 in tumorigenesis is still obscure. Here, we mainly explored the potential role of mTORC2 in esophageal squamous cell carcinoma (ESCC) and its effects on the sensitivity of cells to mTOR inhibitors. We demonstrated that RICTOR, the key factor of mTORC2, and p-AKT (Ser473) were excessively activated in ESCC and their overexpression is related to lymph node metastasis and the tumor-node-metastasis (TNM) phase of ESCC patients. Furthermore, we found that mTORC1/ mTORC2 inhibitor PP242 exhibited more efficacious anti-proliferative effect on ESCC cells than mTORC1 inhibitor RAD001 due to RAD001-triggered feedback activation of AKT signal. Another, we demonstrated that down-regulating expression of RICTOR in ECa109 and EC9706 cells inhibited proliferation and migration as well as induced cell cycle arrest and apoptosis. Noteworthy, knocking-down stably RICTOR significantly suppresses RAD001-induced feedback activation of AKT/PRAS40 signaling, and enhances inhibition efficacy of PP242 on the phosphorylation of AKT and PRAS40, thus potentiates the antitumor effect of RAD001 and PP242 both in vitro and in vivo. Our findings highlight that selective targeting mTORC2 could be a promising therapeutic strategy for future treatment of ESCC.
Collapse
Key Words
- 4EBP-1, E binding protein-1
- AKT
- AKT, protein kinase B (PKB)
- ESCC, esophageal squamous cell carcinoma
- Esophageal squamous cell carcinoma
- FDA, U.S. Food and Drug Administration
- H&E staining, hematoxylin and eosin staining
- IC50, half maximal inhibitory concentration
- PI3K, phosphatidylinositol 3 kinase
- RAD001
- RICTOR
- RICTOR, rapamycin-insensitive companion of mTOR
- TNM, tumor-node-metastasis
- TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling
- mTOR, mammalian target of rapamycin
- mTORC1, mTOR complex 1
- mTORC2, mTOR complex 2
- p70S6K, p70 ribosomal S6 kinase-1
- pp242
- rapalogs, rapamycin and its analogs
Collapse
|
12
|
Old wine in new bottles: Drug repurposing in oncology. Eur J Pharmacol 2020; 866:172784. [DOI: 10.1016/j.ejphar.2019.172784] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023]
|
13
|
Hou G, Zhao Q, Zhang M, Fan T, Liu M, Shi X, Ren Y, Wang Y, Zhou J, Lu Z. Down-regulation of Rictor enhances cell sensitivity to PI3K inhibitor LY294002 by blocking mTORC2-medicated phosphorylation of Akt/PRAS40 in esophageal squamous cell carcinoma. Biomed Pharmacother 2018; 106:1348-1356. [DOI: 10.1016/j.biopha.2018.07.075] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/11/2018] [Accepted: 07/14/2018] [Indexed: 12/17/2022] Open
|
14
|
Lu Z, Ren Y, Zhang M, Fan T, Wang Y, Zhao Q, Liu HM, Zhao W, Hou G. FLI-06 suppresses proliferation, induces apoptosis and cell cycle arrest by targeting LSD1 and Notch pathway in esophageal squamous cell carcinoma cells. Biomed Pharmacother 2018; 107:1370-1376. [PMID: 30257352 DOI: 10.1016/j.biopha.2018.08.140] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 12/15/2022] Open
Abstract
Aberrant activation of the Notch signaling plays an important role in progression of esophageal squamous cell carcinoma (ESCC) and may represent a potential therapeutic target for ESCC. FLI-06 is a novel Notch inhibitor, preventing the early secretion of Notch signaling. However, little information about the antitumor activity of FLI-06 has been reported so far. To evaluate the anti-tumor activity and possible molecular mechanism of FLI-06 to ESCC cells, the effects of FLI-06 on cell viability, apoptosis and cell cycle were evaluated by CCK-8 and flow cytometry assays, respectively, in ESCC cell lines ECa109 and EC9706, and the expressions of proteins in Notch signaling pathway and LSD1 were investigated after cells were treated with FLI-06 by Western blotting. The results showed that FLI-06 blocked proliferation, induced apoptosis and G1 phase arrest of ESCC cells in a dose-dependent manner. Mechanistically, we found FLI-06 could inhibit Notch signaling pathway by decreasing the expressions of Notch3, DTX1 and Hes1. Interestingly, we also found that the expression of LSD1 (histone lysine specific demethylase 1), which is dysregulated in multiple tumors, was also inhibited by FLI-06. In addition, inhibition of Notch pathway by γ-secretase inhibitor GSI-DAPT could also inhibit LSD1 expression. The current study demonstrated that FLI-06 exerts antitumor activity on ESCC by inhibiting both LSD1 and Notch pathway, which provides the theory support for the treatment of ESCC with FLI-06.
Collapse
Affiliation(s)
- Zhaoming Lu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of Cancer Chemoprevention, Henan Province, Zhengzhou 450001, China
| | - Yandan Ren
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mengying Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tianli Fan
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yang Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qi Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University, Zhengzhou, China
| | - Wen Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University, Zhengzhou, China
| | - Guiqin Hou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
15
|
Subcellular localization of Klf4 in non-small cell lung cancer and its clinical significance. Biomed Pharmacother 2018; 99:480-485. [PMID: 29665649 DOI: 10.1016/j.biopha.2018.01.090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 01/02/2018] [Accepted: 01/16/2018] [Indexed: 12/18/2022] Open
Abstract
Kruppel-like factor 4 (Klf4) was reported to have both tumor suppressive and oncogenic roles on tumorigenesis, which is depend on its subcellular localization. In this study, the expression and subcellular localization of Klf4 in non-small cell lung cancer (NSCLC) patients as well as its clinical significance were analyzed, and the expression and subcellular localization of Klf4 in A549 cells and A549/DDP cells were detected. The results showed that the expression of Klf4 in nucleus was related to the histological grade and clinical stage of NSCLC patients. Moreover, the subcellular localization of Klf4 is the independent risk factor for NSCLC, and the high expression of Klf4 in nucleus could lead to a poor prognosis, while the high expression of Klf4 in cytoplasm could lead to a prominent prognosis for NSCLC patients. In addition, the nuclear Klf4 expression in A549/DDP cells was higher than that in A549 cells, while the cytoplasmic Klf4 expression in A549/DDP cells was lower than that in A549 cells, indicating that the subcellular localization of Klf4 might be related to the resistance of A549 cells to cisplatin. The study indicates that Klf4 could be a potential therapeutic target in NSCLC.
Collapse
|
16
|
Ji YM, Zhou XF, Zhang J, Zheng X, Li SB, Wei ZQ, Liu T, Cheng DL, Liu P, Song K, Tan T, Zhu H, Guo JL. DEPTOR suppresses the progression of esophageal squamous cell carcinoma and predicts poor prognosis. Oncotarget 2017; 7:14188-98. [PMID: 26893358 PMCID: PMC4924707 DOI: 10.18632/oncotarget.7420] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/29/2016] [Indexed: 01/14/2023] Open
Abstract
As a naturally occurring inhibitor of mTOR, accumulated evidence has suggested that DEPTOR plays a pivotal role in suppressing the progression of human malignances. However, the function of DEPTOR in the development of esophageal squamous cell carcinoma (ESCC) is still unclear. Here we report that the expression of DEPTOR is significantly reduced in tumor tissues derived from human patients with ESCC, and the downregulation of DEPTOR predicts a poor prognosis of ESCC patients. In addition, we found that the expression of DEPTOR negatively regulates the tumorigenic activities of ESCC cell lines (KYSE150, KYSE510 and KYSE190). Furthermore, ectopic DEPTOR expression caused a significant suppression of the cellular proliferation, migration and invasion of KYSE150 cells, which has the lowest expression level of DEPTOR in the three cell lines. Meanwhile, CRISPR/Cas9 mediated knockout of DEPTOR in KYSE-510 cells significantly promoted cellular proliferation, migration and invasion. In addition, in vivo assays further revealed that tumor growth was significantly inhibited in xenografts with ectopic DEPTOR expression as compared to untreated KYSE150 cells, and was markedly enhanced in DEPTOR knockout KYSE-510 cells. Biochemical studies revealed that overexpression of DEPTOR led to the suppression of AKT/mTOR pathway as evidenced by reduced phosphorylation of AKT, mTOR and downstream SGK1, indicating DEPTOR might control the progression of ESCC through AKT/mTOR signaling pathway. Thus, these findings, for the first time, demonstrated that DEPTOR inhibits the tumorigenesis of ESCC cells and might serve as a potential therapeutic target or prognostic marker for human patients with ESCC.
Collapse
Affiliation(s)
- Yan-Mei Ji
- Department of Intensive Care Unit, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Xue-Feng Zhou
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Jun Zhang
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Xiang Zheng
- Department of Intensive Care Unit, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Sheng-Bao Li
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Zhi-Qiang Wei
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Tao Liu
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Dong-Liang Cheng
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Ping Liu
- Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Kuncheng Song
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jia-Long Guo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| |
Collapse
|
17
|
OP16, a novel ent-kaurene diterpenoid, potentiates the antitumor effect of rapamycin by inhibiting rapamycin-induced feedback activation of Akt signaling in esophageal squamous cell carcinoma. Biochem Pharmacol 2017; 140:16-27. [PMID: 28539264 DOI: 10.1016/j.bcp.2017.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/17/2017] [Indexed: 11/22/2022]
Abstract
Hyperactivation of mTOR signaling pathway has been viewed as a significant molecular pathogenesis of cancer. However, inhibition of mTOR by rapamycin and its analogs could induce numerous negative feedback loops to attenuate their therapeutic efficacy. As a traditional Chinese herbal medicine, Rabdosia rubescens has been used to treat esophageal squamous cell carcinoma (ESCC) for hundreds of years, and its major effective component is oridonin. Here we reported that OP16, a novel analog of oridonin, showed potent inhibition of cell proliferation and Akt phosphorylation in ESCC cells. The combination of OP16 and rapamycin possesses synergistic anti-proliferative and pro-apoptotic effects both in ESCC cells and ESCC xenografts, and no obvious adverse effect was observed in vivo. Mechanistic analysis revealed that OP16 could inhibit rapamycin-induced Akt activation through the p70S6K-mediated negative feedback loops, and the combination of OP16 and rapamycin was more effective in activating caspase-dependent apoptotic signaling cascade. This study supports the combined use of OP16 with rapamycin as a feasible and effective therapeutic approach for future treatment of ESCC.
Collapse
|
18
|
Lu Z, Wang J, Zheng Y, Yang S, Liu M, Chen X, Wang C, Hou G. Wild-type phosphatase and tensin homolog deleted on chromosome 10 improved the sensitivity of cells to rapamycin through regulating phosphorylation of Akt in esophageal squamous cell carcinoma. Dis Esophagus 2017; 30:1-8. [PMID: 26725440 DOI: 10.1111/dote.12448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most frequently diagnosed cancers in China, but the etiology and mode of carcinogenesis of this disease remain poorly understood. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN), as a negative regulator of Akt/mTOR pathway, frequently mutates or is inactive in many cancers. Although mTOR has been thought a promising cancer therapeutic target, the sensitivity of tumor cells to rapamycin was still to be revaluated. In this study, we measured the effects of rapamycin on cell proliferation and phosphorylation of Akt in ESCC cells with varying degrees of differentiation. And then, the relationship between PTEN status and the sensitivity of cells to rapamycin was investigated in EC9706 cells with or without wild-type PTEN in vitro and in vivo. The results demonstrated ESCC cells with poor differentiation were insensitive to rapamycin of high concentration and rapamycin obviously promoted the phosphorylation of Akt in these cells, but it had no obvious effects on p-Akt in cells with well differentiation. Also, we showed that wild-type PTEN improved the sensitivity of poor differentiation cells to rapamycin through inhibiting phosphorylation of Akt in vitro and in vivo. This study explored the possible molecular mechanism of some ESCC cells insensitive to rapamycin and provided a measure for treating ESCC patients with PTEN inactivation using mTOR inhibitors.
Collapse
Affiliation(s)
- Z Lu
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Zhengzhou University, China
| | - J Wang
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Zhengzhou University, China
| | - Y Zheng
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Zhengzhou University, China
| | - S Yang
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Zhengzhou University, China
| | - M Liu
- Oncology Department, People's Hospital of Henan Province, China
| | - X Chen
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Zhengzhou University, China
| | - C Wang
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Zhengzhou University, China.,New Drug Research and Development Centre of Zhengzhou University, Zhengzhou, China
| | - G Hou
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Zhengzhou University, China.,New Drug Research and Development Centre of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Li Q, Yang L, Han K, Zhu L, Zhang Y, Ma S, Zhang K, Yang B, Guan F. Ets2 knockdown inhibits tumorigenesis in esophageal squamous cell carcinoma in vivo and in vitro. Oncotarget 2016; 7:61458-61468. [PMID: 27556183 PMCID: PMC5308664 DOI: 10.18632/oncotarget.11369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 08/08/2016] [Indexed: 01/13/2023] Open
Abstract
Increased expression of Ets2 is reported upregulated in esophageal squamous cell carcinoma tissue. However, the function of Ets2 in carcinogenesis of ESCC is poorly understood. Here, the rise of Ets2 was confirmed in ESCC cells and Ets2 depletion by RNA interference promotes cell apoptosis, inhibits cell proliferation, attenuates cell invasion and induces cell cycle G0/G1 arrest in vitro. Moreover, in vivo, Xenograft mouse model studies showed Ets2 knockdown inhibits tumor formation and metastasis significantly. Furthermore, Ets2 depletion inactivates the mTOR/p70S6K signaling pathway both in vitro and in vivo. Taken together, these findings strongly suggest that a critical role of Ets2 in human ESCC pathogenesis via the inactivation of the mTOR/p70S6K signaling pathway.
Collapse
Affiliation(s)
- Qinghua Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China.,School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Lu Yang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Kang Han
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Liqiang Zhu
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, Henan Province, China
| | - Yanting Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Kun Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Bo Yang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Fangxia Guan
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China.,School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
20
|
Downregulation of p70S6K Enhances Cell Sensitivity to Rapamycin in Esophageal Squamous Cell Carcinoma. J Immunol Res 2016; 2016:7828916. [PMID: 27595116 PMCID: PMC4993948 DOI: 10.1155/2016/7828916] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 07/13/2016] [Indexed: 12/26/2022] Open
Abstract
It has been demonstrated that mTOR/p70S6K pathway was abnormally activated in many cancers and rapamycin and its analogs can restrain tumor growth through inhibiting this pathway, but some tumors including esophageal squamous cell carcinoma (ESCC) appear to be insensitive to rapamycin in recent studies. In the present study, we explored the measures to improve the sensitivity of ESCC cells to rapamycin and identified the clinical significance of the expression of phosphorylated p70S6K (p-p70S6K). The results showed that, after downregulating the expression of p70S6K and p-p70S6K by p70S6K siRNA, the inhibitory effects of rapamycin on cell proliferation, cell cycle, and tumor growth were significantly enhanced in vitro and in vivo. Furthermore, p-p70S6K had strong positive expression in ESCC tissues and its expression was closely related to lymph node metastasis and the TNM staging. These results indicated that p-p70S6K may participate in the invasion and metastasis in the development of ESCC and downregulation of the expression of p-p70S6K could improve the sensitivity of cells to rapamycin in ESCC.
Collapse
|
21
|
Jiang S, Zhao C, Yang X, Li X, Pan Q, Huang H, Wen X, Shan H, Li Q, Du Y, Zhao Y. miR-1 suppresses the growth of esophageal squamous cell carcinoma in vivo and in vitro through the downregulation of MET, cyclin D1 and CDK4 expression. Int J Mol Med 2016; 38:113-22. [PMID: 27247259 PMCID: PMC4899011 DOI: 10.3892/ijmm.2016.2619] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 05/10/2016] [Indexed: 12/28/2022] Open
Abstract
Several aberrant microRNAs (miRNAs or miRs) have been implicated in esophageal cancer (EC), which is widely prevalent in China. However, their role in EC tumorigenesis has not yet been fully elucidated. In the present study, we determined that miR-1 was downregulated in esophageal squamous cell carcinoma (ESCC) tissues compared with adjacent non-neoplastic tissues using RT-qPCR, and confirmed this using an ESCC cell line. Using a nude mouse xenograft model, we confirmed that the re-expression of miR-1 significantly inhibited ESCC tumor growth. A tetrazolium assay and a trypan blue exclusion assay revealed that miR-1 suppressed ESCC cell proliferation and increased apoptosis, whereas the silencing of miR-1 promoted cell proliferation and decreased apoptosis, suggesting that miR-1 is a novel tumor suppressor. To elucidate the molecular mechanisms of action of miR-1 in ESCC, we investigated putative targets using bioinformatics tools. MET, cyclin D1 and cyclin-dependent kinase 4 (CDK4), which are involved in the hepatocyte growth factor (HGF)/MET signaling pathway, were found to be targets of miR-1. miR-1 expression inversely correlated with MET, cyclin D1 and CDK4 expression in ESCC cells. miR-1 directly targeted MET, cyclin D1 and CDK4, suppressing ESCC cell growth. The newly identified miR-1/MET/cyclin D1/CDK4 axis provides new insight into the molecular mechanisms of ESCC pathogenesis and indicates a novel strategy for the diagnosis and treatment of ESCC.
Collapse
Affiliation(s)
- Sen Jiang
- The 82nd Hospital of the People's Liberation Army, Huaian, Jiangsu 223001, P.R. China
| | - Chao Zhao
- The 82nd Hospital of the People's Liberation Army, Huaian, Jiangsu 223001, P.R. China
| | - Xiaodi Yang
- Department of Gastroenterology, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, P.R. China
| | - Xiangyang Li
- The 82nd Hospital of the People's Liberation Army, Huaian, Jiangsu 223001, P.R. China
| | - Qing Pan
- Department of Laboratory Medicine, Huaiyin Hospital of Huaian city, Huaian, Jiangsu 233004, P.R. China
| | - Haijin Huang
- The 82nd Hospital of the People's Liberation Army, Huaian, Jiangsu 223001, P.R. China
| | - Xuyang Wen
- The 82nd Hospital of the People's Liberation Army, Huaian, Jiangsu 223001, P.R. China
| | - Husheng Shan
- The 82nd Hospital of the People's Liberation Army, Huaian, Jiangsu 223001, P.R. China
| | - Qianwen Li
- The 82nd Hospital of the People's Liberation Army, Huaian, Jiangsu 223001, P.R. China
| | - Yunxiang Du
- The 82nd Hospital of the People's Liberation Army, Huaian, Jiangsu 223001, P.R. China
| | - Yaping Zhao
- The 82nd Hospital of the People's Liberation Army, Huaian, Jiangsu 223001, P.R. China
| |
Collapse
|
22
|
Bretz AC, Gittler MP, Charles JP, Gremke N, Eckhardt I, Mernberger M, Mandic R, Thomale J, Nist A, Wanzel M, Stiewe T. ΔNp63 activates the Fanconi anemia DNA repair pathway and limits the efficacy of cisplatin treatment in squamous cell carcinoma. Nucleic Acids Res 2016; 44:3204-18. [PMID: 26819410 PMCID: PMC4838363 DOI: 10.1093/nar/gkw036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/18/2015] [Accepted: 01/12/2016] [Indexed: 12/30/2022] Open
Abstract
TP63, a member of the p53 gene family gene, encodes the ΔNp63 protein and is one of the most frequently amplified genes in squamous cell carcinomas (SCC) of the head and neck (HNSCC) and lungs (LUSC). Using an epiallelic series of siRNAs with intrinsically different knockdown abilities, we show that the complete loss of ΔNp63 strongly impaired cell proliferation, whereas partial ΔNp63 depletion rendered cells hypersensitive to cisplatin accompanied by an accumulation of DNA damage. Expression profiling revealed wide-spread transcriptional regulation of DNA repair genes and in particular Fanconi anemia (FA) pathway components such as FANCD2 and RAD18 - known to be crucial for the repair of cisplatin-induced interstrand crosslinks. In SCC patients ΔNp63 levels significantly correlate with FANCD2 and RAD18 expression confirming ΔNp63 as a key activator of the FA pathway in vivo Mechanistically, ΔNp63 bound an upstream enhancer of FANCD2 inactive in primary keratinocytes but aberrantly activated by ΔNp63 in SCC. Consistently, depletion of FANCD2 sensitized to cisplatin similar to depletion of ΔNp63. Together, our results demonstrate that ΔNp63 directly activates the FA pathway in SCC and limits the efficacy of cisplatin treatment. Targeting ΔNp63 therefore would not only inhibit SCC proliferation but also sensitize tumors to chemotherapy.
Collapse
Affiliation(s)
- Anne Catherine Bretz
- Institute of Molecular Oncology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Miriam P Gittler
- Institute of Molecular Oncology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Joël P Charles
- Institute of Molecular Oncology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Niklas Gremke
- Institute of Molecular Oncology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Ines Eckhardt
- Institute of Molecular Oncology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Marco Mernberger
- Institute of Molecular Oncology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Robert Mandic
- Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital Giessen and Marburg, Philipps-University, 35033 Marburg, Germany
| | - Jürgen Thomale
- Institute of Cell Biology, University Duisburg-Essen, 45122 Essen, Germany
| | - Andrea Nist
- Genomics Core Facility, Philipps-University Marburg, 35043 Marburg, Germany
| | - Michael Wanzel
- Institute of Molecular Oncology, Philipps-University Marburg, 35043 Marburg, Germany Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), 35043 Marburg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Philipps-University Marburg, 35043 Marburg, Germany Genomics Core Facility, Philipps-University Marburg, 35043 Marburg, Germany Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), 35043 Marburg, Germany
| |
Collapse
|
23
|
Zhang D, Xiang J, Gu Y, Xu W, Xu H, Zu M, Pei D, Zheng J. Inhibition of mammalian target of rapamycin by rapamycin increases the radiosensitivity of esophageal carcinoma Eca109 cells. Oncol Lett 2014; 8:575-581. [PMID: 25009644 PMCID: PMC4081413 DOI: 10.3892/ol.2014.2186] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 04/24/2014] [Indexed: 01/18/2023] Open
Abstract
The aim of the present study was to investigate whether radiation induces the mammalian target of rapamycin (Rap) (mTOR) signaling pathway in esophageal carcinoma Eca109 cells, and whether mTOR inhibition by rapamycin increases Eca109 cell radiosensitivity. Changes in the levels of mTOR signaling pathway and DNA damage-repair proteins in Eca109 cells prior to and following radiation were determined. The Eca109 cells were treated with Rap (0, 100, 200 and 400 nmol/l) in combination with radiation (0, 2, 4 and 6 Gy). The cell proliferation inhibition rate was determined by MTT assay. The optimum Rap concentration and radiation dose, which appropriately inhibited cell proliferation, were then selected for further study. An appropriate combination of Rap and radiation for the Eca109 cells was also selected and changes in the mTOR signaling pathway, apoptosis and DNA damage-repair proteins, as well as in cell clone formation, survival curves, the apoptosis rate and radiation-induced DNA damage were determined. The expression of the mTOR signaling pathway and DNA damage-repair proteins were found to increase following the irradiation of the Eca109 cells. In addition, Rap was found to inhibit the mTOR signaling pathway and the expression of the DNA damage-repair proteins. At the same radiation dose, with increasing Rap concentration, the proliferation inhibition rates of the Eca109 cells were found to improve. The clone formation and survival curves of the experimental group were less than those of the control groups. Furthermore, the cell apoptosis rate and expression of cleaved caspase-3 and bax in the experimental group were higher than those of the control groups, whereas the expression of bcl-2 was less than that of the control groups. The radiation-induced DNA damage of the experimental group was greater than that of the control group. The inhibition of mTOR by Rap was found to effectively inhibit the proliferation, survival and radiation-induced DNA damage repair of the Eca109 cells following irradiation, as well as promoting radiation-induced apoptosis, thereby increasing the radiosensitivity of the esophageal carcinoma Eca109 cells.
Collapse
Affiliation(s)
- Dejun Zhang
- Department of Interventional Radiology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Jie Xiang
- Department of Rehabilitation Medicine, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Yuming Gu
- Department of Interventional Radiology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Wei Xu
- Department of Interventional Radiology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Hao Xu
- Department of Interventional Radiology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Maoheng Zu
- Department of Interventional Radiology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Dongsheng Pei
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Junnian Zheng
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
24
|
Tiam1 siRNA enhanced the sensitivity of sorafenib on esophageal squamous cell carcinoma in vivo. Tumour Biol 2014; 35:8249-58. [DOI: 10.1007/s13277-014-2083-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 05/08/2014] [Indexed: 10/25/2022] Open
|
25
|
Targeted inhibition of mTOR signaling improves sensitivity of esophageal squamous cell carcinoma cells to cisplatin. J Immunol Res 2014; 2014:845763. [PMID: 24818169 PMCID: PMC4003759 DOI: 10.1155/2014/845763] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/27/2014] [Indexed: 11/22/2022] Open
Abstract
mTOR is an evolutionarily conserved serine-threonine kinase with a central role in cell growth, invasion, and metastasis of tumors, and is activated in many cancers. The aims of this study were to investigate the expression of mTOR in ESCC tissues and its relationship with progression of ESCC and measure the changes of sensitivity of ESCC cells to cisplatin after cells were treated with mTOR siRNA by WST-8 assays, TUNEL, RT-PCR, and western blots in vitro and in vivo. The results showed that the expression of mTOR was higher in ESCC specimens than that in normal esophageal tissues and its expression was closely correlated with the TNM stage of ESCC. mTOR siRNA significantly increased the sensitivity of the EC9706 cells to cisplatin at proliferation in vitro and in vivo. The growth of ESCC xenografts was significantly inhibited by mTOR siRNA or cisplatin, and the cell number of apoptosis was obviously increased after xenografts were treated with mTOR siRNA or cisplatin alone, especially when mTOR siRNA combined with cisplatin. The present study demonstrates that the expression of mTOR has important clinical significance and inhibition of mTOR pathway by mTOR siRNA can improve the sensitivity of ESCC cells to cisplatin.
Collapse
|
26
|
Overexpression of S-adenosylhomocysteine hydrolase (SAHH) in esophageal squamous cell carcinoma (ESCC) cell lines: effects on apoptosis, migration and adhesion of cells. Mol Biol Rep 2014; 41:2409-17. [DOI: 10.1007/s11033-014-3095-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 01/04/2014] [Indexed: 01/02/2023]
|
27
|
Zhu ML, Yu H, Shi TY, He J, Wang MY, Li QX, Sun MH, Jin L, Yang YJ, Wang JC, Xiang JQ, Wei QY. Polymorphisms in mTORC1 genes modulate risk of esophageal squamous cell carcinoma in eastern Chinese populations. J Thorac Oncol 2013; 8:788-95. [PMID: 23524405 DOI: 10.1097/jto.0b013e31828916c6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Mammalian target of rapamycin complex 1 (mTORC1) is an evolutionary conserved multiprotein complex that functions as a key regulator of gene transcription, protein translation, and autophagy. No studies have assessed associations between functional single nucleotide polymorphisms (SNPs) in mTORC1 genes and risk of esophageal squamous cell carcinoma (ESCC). METHODS : In a case-control study of 1126 ESCC patients and 1131 cancer-free controls, we genotyped eight SNPs in mTORC1 (mTOR rs1883965 G>A and rs2536 T>C, mLST8 rs3160 C>T and rs26865 G>A, RPTOR rs3751934 C>A, rs1062935 T>C, rs3751932 T>C and rs12602885 G>A) and assessed their associations with risk of ESCC. RESULTS In the single-locus analyses, we found a significantly altered risk of ESCC associated with mTOR rs1883965 A variant genotypes (adjusted OR = 1.27 and 1.26; 95% confidence interval = 1.01-1.60 and 1.01-1.58 for GA and GA/AA, respectively, compared with GG) but not with other SNPs. In the combined analysis of the eight SNPs, we found individuals with two or more unfavorable genotypes exhibited an increased risk for ESCC (adjusted OR = 1.35; 95% confidence interval = 1.20-1.62), compared with those with less than two unfavorable genotypes. Such a cumulative effect was dose-dependent (ptrend = 0.004). In the multiple dimension reduction analysis, mTOR rs1883965 was consistently suggested as the strongest individual factor for ESCC risk, and the model including all SNPs yielded the lowest prediction error of 17.66% for model validation. CONCLUSIONS These findings suggest that functional SNPs of mTORC1 genes may individually or collectively contribute to ESCC risk. Further validation of these findings is warranted.
Collapse
Affiliation(s)
- Mei-Ling Zhu
- Cancer Institute, Fudan University Shanghai Cancer Center, and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Xia J, Wang F, Wang L, Fan Q. Elevated serine protease HtrA1 inhibits cell proliferation, reduces invasion, and induces apoptosis in esophageal squamous cell carcinoma by blocking the nuclear factor-κB signaling pathway. Tumour Biol 2013; 34:317-28. [PMID: 23079781 DOI: 10.1007/s13277-012-0553-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/03/2012] [Indexed: 01/08/2023] Open
Abstract
Emerging evidence has demonstrated that high-temperature requirement protein A1 (HtrA1) appears to be involved in several important biological processes in mammals such as growth, apoptosis, embryogenesis, invasion, metastasis, and cancer and has been verified to be reduced in a variety of human tumors. However, its precise functions and molecular mechanisms in esophageal squamous cell carcinoma (ESCC) remain unclear. Here, we detected HtrA1 level in ESCC tissues and cells and investigated the biological roles of HtrA1 in ESCC. We found that expressions of HtrA1 mRNA and protein in ESCC tissues and cells were significantly lower than those in normal esophageal epithelial tissues and cells (P < 0.05). Expressions of HtrA1 mRNA and protein were closely associated with TNM staging and lymph node metastasis (P < 0.05). Additionally, the survival rate of patients with low HtrA1 level was lower than those patients with high HtrA1 level (P < 0.05). Elevated HtrA1 level markedly inhibited cell proliferation in vitro and in vivo, reduced cell invasion in vitro, and induced cell apoptosis. Notably, HtrA1 overexpression inhibited phosphorylation levels of IκBα and p65 subunit of the NF-κB signaling pathway, but increased total IκBα level, coupled with decreases of Ki-67, Bcl-2, Bcl-xL, cyclin D1, and MMP-9 proteins and increase of caspase-3 activity. Overall, these data suggest that HtrA1 may play critical roles in the tumorgenesis and progression of ESCC, and HtrA1 overexpression exerts its anti-tumor effect by blocking the NF-κB signaling pathway; thus, manipulation of HtrA1 may be an effective molecular target for ESCC treatment.
Collapse
Affiliation(s)
- Jin Xia
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, Henan, 450052, People's Republic of China
| | | | | | | |
Collapse
|
29
|
Tian F, Fan T, Zhang Y, Jiang Y, Zhang X. Curcumin potentiates the antitumor effects of 5-FU in treatment of esophageal squamous carcinoma cells through downregulating the activation of NF-κB signaling pathway in vitro and in vivo. Acta Biochim Biophys Sin (Shanghai) 2012; 44:847-55. [PMID: 23017833 DOI: 10.1093/abbs/gms074] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Although constitutive activation of nuclear factor-kappaB (NF-κB) signaling pathway has been reported in multiple different human tumors, the role of NF-κB pathway in esophageal squamous cell carcinoma (ESCC) remains ill-defined. Abundant sources have provided interesting insights into the multiple mechanisms by which curcumin may mediate chemotherapy and chemopreventive effects on cancer. In this study, we first analyzed the status of NF-κB pathway in the two ESCC cell lines Eca109 and EC9706, and then further investigated whether curcumin alone or in combination with 5-fluorouracil (5-FU) could modulate NF-κB pathway in vitro and in vivo. The results showed that NF-κB signaling pathway was constitutively activated in the ESCC cell lines. Curcumin suppressed the activation of NF-κB via the inhibition of IκBα phosphorylation, and downregulated the expressions of Bcl-2 and CyclinD1 in ESCC cell lines. Curcumin combined with 5-FU led to the lower cell viability and higher apoptosis than 5-FU treated alone. In a human ESCC xenograft model, curcumin or 5-FU alone reduced the tumor volume, but their combination had the strongest anticancer effects. Besides, curcumin could also inhibit NF-κB signaling pathway through downregulation of the IκBα phosphorylation and induction of cell apoptosis in vivo. Overall, our results indicated that constitutively activated NF-κB signaling pathway exists in the two ESCC cells and the chemopreventive effects of curcumin were associated with downregulation of NF-κB signaling pathway and its downstream genes.
Collapse
Affiliation(s)
- Fang Tian
- Department of Pathophysiology, School of Basic Medicine, Zhengzhou University, China.
| | | | | | | | | |
Collapse
|
30
|
Rico C, Laguë MN, Lefèvre P, Tsoi M, Dodelet-Devillers A, Kumar V, Lapointe E, Paquet M, Nadeau MÈ, Boerboom D. Pharmacological targeting of mammalian target of rapamycin inhibits ovarian granulosa cell tumor growth. Carcinogenesis 2012; 33:2283-92. [PMID: 22871496 DOI: 10.1093/carcin/bgs263] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Few targeted therapies have been developed for ovarian granulosa cell tumor (GCT), even though it represents 5% of all malignant ovarian tumors in women. As misregulation of PI3K/AKT signaling has been implicated in GCT development, we hypothesized that the AKT signaling effector mammalian target of rapamycin (mTOR) may play a role in the pathogenesis of GCT and could represent a therapeutic target. Analyses of human GCT samples showed an increase in protein levels of mTOR and its downstream effectors RPS6KB1, RPS6, eIF4B and PPARG relative to normal granulosa cells, suggestive of an increase in mTOR pathway activity and increased translational activity and/or protein stability. We next sought to evaluate mTOR as a GCT therapeutic target using the Pten (tm1Hwu/tmiHwu);Ctnnb1 (tm1Mmt/+);Amhr2 (tm3(cre)Bhr/+) (PCA) mouse model, in which mTOR, RPS6KB1, eIF4B and PPARG are upregulated in tumor cells in a manner similar to human GCT. Treatment of PCA mice with the mTOR-specific inhibitor everolimus reduced tumor growth rate (1.5-fold; P < 0.05) and also reduced total tumor burden (4.7-fold; P < 0.05) and increased survival rate (78 versus 44% in the vehicle group) in a PCA surgical model of GCT peritoneal carcinomatosis. Everolimus decreased tumor cell proliferation and tumor cell volume relative to controls (P < 0.05), whereas apoptosis was unaffected. Phosphorylation of RPS6KB1 and RPS6 were decreased (P < 0.05) by everolimus, but RPS6KB1, RPS6, eIF4B and PPARG expressions were not affected. These results suggest that mTOR is a valid and clinically useful pharmacological target for the treatment of GCT, although its inhibition does not reverse all consequences of aberrant PI3K/AKT signaling in the PCA model.
Collapse
Affiliation(s)
- Charlène Rico
- Centre de Recherche en Reproduction animale, Université de Montréal, St-Hyacinthe, Québec J2S 7C6, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Phosphorylated mammalian target of rapamycin expression is associated with the response to chemoradiotherapy in patients with esophageal squamous cell carcinoma. J Thorac Cardiovasc Surg 2012; 144:1352-9, 1359.e1. [PMID: 22841170 DOI: 10.1016/j.jtcvs.2012.06.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 05/18/2012] [Accepted: 06/18/2012] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The mammalian target of rapamycin signaling pathway has been implicated in therapeutic resistance in several types of cancer. However, the significance of mammalian target of rapamycin activation in chemoradiotherapy sensitivity and its effect on the prognosis of esophageal squamous cell carcinoma treated with chemoradiotherapy remain unknown. However, this pathway is of particular interest because an effective inhibitor is available. METHODS By using immunohistochemistry, phosphorylated mammalian target of rapamycin expression was examined in 77 patients with esophageal squamous cell carcinoma treated with preoperative chemoradiotherapy followed by surgery between 1999 and 2009, and correlated with treatment outcome. With the use of CE81T/VGH and TE2 cell lines, cells were treated with chemotherapy, temsirolimus (mammalian target of rapamycin inhibitor), or a combination of chemotherapy and temsirolimus, and investigated by 3-(4.5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. RESULTS Pathologic complete response rates were 42% and 16% in patients with negative and positive phosphorylated mammalian target of rapamycin expression, respectively (P = .01). The 3-year overall survivals were 57% and 30% in patients with negative and positive phosphorylated mammalian target of rapamycin expression, respectively (P = .005). Positive phosphorylated mammalian target of rapamycin expression was independently associated with inferior overall and disease-free survival. In patients who did not achieve pathologic complete response, postchemoradiotherapy esophagectomy specimens showed significantly higher phosphorylated mammalian target of rapamycin expression than pretreatment biopsy specimens. In cell lines, concomitant administration of temsirolimus enhanced the effect of chemotherapy. CONCLUSIONS Phosphorylated mammalian target of rapamycin expression is independently associated with the response to chemoradiotherapy and prognosis of patients with esophageal squamous cell carcinoma treated with preoperative chemoradiotherapy. Mammalian target of rapamycin inhibition can sensitize esophageal cancer cells to chemotherapy. Our results suggest the potential for mammalian target of rapamycin as a therapeutic target for patients with esophageal squamous cell carcinoma who receive multimodality treatment.
Collapse
|
32
|
Wang C, Gao D, Guo K, Kang X, Jiang K, Sun C, Li Y, Sun L, Shu H, Jin G, Sun H, Wu W, Liu Y. Novel synergistic antitumor effects of rapamycin with bortezomib on hepatocellular carcinoma cells and orthotopic tumor model. BMC Cancer 2012; 12:166. [PMID: 22559167 PMCID: PMC3469344 DOI: 10.1186/1471-2407-12-166] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 05/04/2012] [Indexed: 12/31/2022] Open
Abstract
Background Despite recent advances in the treatment of hepatocellular carcinoma (HCC), the chemotherapy efficacy against HCC is still unsatisfactory. The mammalian target of rapamycin (mTOR) has been emerged as an important cancer therapeutic target. However, HCC cells often resistant to rapamycin because of the paradoxical activation of Akt by rapamycin. In this study, we investigated whether bortezomib could enhance the antitumor effects of rapamycin. Methods The effects of rapamycin and bortezomib on HCC proliferation, apoptosis, migration, and invasiveness in vitro were assessed by CCK-8 analysis, flow cytometry, Hoechst 33342 staining and transwell assays, respectively. Total and phosphorylated protein levels of Akt were detected by Western blotting. The effects of rapamycin and/or bortezomib on the mRNA expression levels of p53, p27, p21 and Bcl-2 family in HCCLM3 cells were evaluated by RT-PCR. The roles of rapamycin and bortezomib on HCC growth and metastasis in xenograft models were evaluated by tumor volumes and fluorescent signals. The effects of rapamycin and bortezomib on cell proliferation and apoptosis in vivo were test by PCNA and TUNEL staining. Results Bortezomib synergized with rapamycin to reduce cell growth, induce apoptosis, and inhibit cell mobility in vitro. Further mechanistic studies showed that bortezomib inhibited rapamycin-induced phosphorylated Akt, which in turn enhanced apoptosis of HCC cell lines. The alteration of the mRNA expression of cell cycle inhibitors p53, p27, p21 and apoptosis associated genes Bcl-2, Bax were also involved in the synergistic antitumor effects of rapamycin and bortezomib. P53 inhibitor PFT-α significantly attenuate the effect of rapamycin and bortezomib on cell apoptosis, which indicated that the pro-apoptotic effect of rapamycin and bortezomib may be p53-dependent. Treatment of HCCLM3-R bearing nude mice with rapamycin and bortezomib significantly enhanced tumor growth inhibition (72.4%), comparing with either rapamycin- (54.7%) or bortezomib-treated mice (22.4%). In addition, the lung metastasis was significantly suppressed in mice received the combination treatment (16.6%). The combination treatment of rapamycin and bortezomib significantly inhibited tumor cell proliferation and tumor angiogenesis in vivo. Conclusion The combination of rapamycin with bortezomib could be a novel and promising therapeutic approach to the treatment of HCC.
Collapse
Affiliation(s)
- Cun Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hou L, Xu B, Guo W, Ran FX, Liu JT, Yuan X, Fu HZ, Cui JR. Pseudolaric acid B inhibits inducible cyclooxygenase-2 expression via downregulation of the NF-κB pathway in HT-29 cells. J Cancer Res Clin Oncol 2012; 138:885-96. [PMID: 22314698 DOI: 10.1007/s00432-011-1120-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE Pseudolaric acid B (PAB) is a diterpene acid isolated from the root and trunk bark of Pseudolaric kaempferi Gordon. Previous work has found that PAB has anti-inflammatory and anti-tumor effects in xenograft models of human hepatocellular carcinoma. The aim of this study is to evaluate the correlation between anti-cancer and anti-inflammatory effects of PAB and its molecular mechanisms on HT-29 cells. METHODS Production of prostaglandin E2 (PGE2) in HT-29 cells was evaluated by ELISA. mRNA of cyclooxygenase-2 (COX-2) was analyzed by RT-PCR assay. High-content screening (HCS) method was adopted to detect the cytokine mixture (CM)-induced transcription activity of NF-κB and STAT3. Western blotting was used to evaluate the protein expression levels of inflammatory mediators induced by CM. After treatment with PAB in various concentrations, the inhibition rate of cell proliferation was measured with sulforhodamine B assays. For the in vivo studies, tumor-bearing models xenografted with HT-29 cells were developed in nude mice, and following oral administration with PAB, tumor inhibition rate was calculated. RESULTS PAB inhibited the PGE2 production in HT-29 cells significantly (P < 0.05) with similar results detected at the COX-2 mRNA level. Furthermore, PAB suppressed the COX-2 protein expression and significant nuclear translocation of NF-κB and STAT3 induced by CM, which correlated with a concomitant degradation of I-κB and a decrease in constitutive STAT3 phosphorylation (P < 0.05). Moreover, various concentrations of PAB inhibited the proliferation of HT-29 cells in a dose- and time-dependent manner. In vivo, after treatment with PAB for 17 days, the tumor weight of the 50 and 100 mg/kg treated groups was 0.62 ± 0.15 and 0.54 ± 0.06 g, respectively. When compared to the control group (0.82 ± 0.16 g), the inhibition rate of tumor weight was 24.2% at 50 mg/kg (P < 0.05) and 34.7% at 100 mg/kg (P < 0.001). CONCLUSIONS PAB shows potential anti-cancer activity in HT-29 cells, and its molecular mechanisms are related to the anti-inflammatory action.
Collapse
Affiliation(s)
- Li Hou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Aberrant activation of the mTOR pathway and anti-tumour effect of everolimus on oesophageal squamous cell carcinoma. Br J Cancer 2012; 106:876-82. [PMID: 22333597 PMCID: PMC3305959 DOI: 10.1038/bjc.2012.36] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background: The mammalian target of rapamycin (mTOR) protein is important for cellular growth and homeostasis. The presence and prognostic significance of inappropriate mTOR activation have been reported for several cancers. Mammalian target of rapamycin inhibitors, such as everolimus (RAD001), are in development and show promise as anti-cancer drugs; however, the therapeutic effect of everolimus on oesophageal squamous cell carcinoma (OSCC) remains unknown. Methods: Phosphorylation of mTOR (p-mTOR) was evaluated in 167 resected OSCC tumours and 5 OSCC cell lines. The effects of everolimus on the OSCC cell lines TE4 and TE11 in vitro and alone or in combination with cisplatin on tumour growth in vivo were evaluated. Results: Mammalian target of rapamycin phosphorylation was detected in 116 tumours (69.5%) and all the 5 OSCC cell lines. Everolimus suppressed p-mTOR downstream pathways, inhibited proliferation and invasion, and induced apoptosis in both TE4 and TE11 cells. In a mouse xenograft model established with TE4 and TE11 cells, everolimus alone or in combination with cisplatin inhibited tumour growth. Conclusion: The mTOR pathway was aberrantly activated in most OSCC tumours. Everolimus had a therapeutic effect both as a single agent and in combination with cisplatin. Everolimus could be a useful anti-cancer drug for patients with OSCC.
Collapse
|
35
|
Tian F, Fan T, Jiang Y, Zhang X, Wang X. A small interfering RNA targeting NF-κB p65 alone or combined with 5-FU inhibits growth of esophageal squamous cell carcinoma in nude mice. Pathol Res Pract 2011; 208:32-8. [PMID: 22186294 DOI: 10.1016/j.prp.2011.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 10/26/2011] [Accepted: 10/30/2011] [Indexed: 01/30/2023]
Abstract
NF-κB signaling pathway plays an important role in carcinogenesis. Although constitutive NF-κB activation has been reported in many human tumors, the effect of NF-κB signaling pathway in esophageal squamous cell carcinoma (ESCC) is still poorly understood. To explore the role of NF-κB signaling pathway in ESCC, RNA interference (RNAi) was used to knockdown the NF-κB p65 protein level in the ESCC cells and nude mice. 5-FU was used to investigate whether knockdown NF-κB p65 can potentiate 5-FU's antitumor effect. Animal results indicated that tumor growth was inhibited in p65 siRNA and p65 siRNA+5-FU groups as compared with the control group. Immunohistochemistry, RT-PCR and TUNEL assay showed that p65 siRNA downregulated the expression of p65 and enhanced the sensitivity of EC9706 cells to 5-FU treatment in vivo. Overall, our work indicates that downregulation of p65 can increase tumor apoptosis and potentiates the effects of 5-FU by suppressing NF-κB signaling pathway. Thus, p65 is an interesting target for ESCC treatment.
Collapse
Affiliation(s)
- Fang Tian
- Department of Pathophysiology, School of Basic Medicine, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | | | | | | | | |
Collapse
|
36
|
Hou G, Lu Z, Liu M, Liu H, Xue L. Mutational analysis of the PTEN gene and its effects in esophageal squamous cell carcinoma. Dig Dis Sci 2011; 56:1315-22. [PMID: 21116717 DOI: 10.1007/s10620-010-1474-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 10/20/2010] [Indexed: 01/22/2023]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most frequently diagnosed cancers in China, but the etiology and mode of carcinogenesis of this disease remain poorly understood. The phosphatase and tensin homolog deleted from chromosome 10 (PTEN) with putative tumor suppressing is frequently mutated in many cancers. AIMS The aim of this study was to investigate whether there exists a mutation in the PTEN gene of the ESCC cells, and the effects of the wild type and mutated PTEN genes on the proliferation and apoptosis of the ESCC cells. METHODS The wild type and mutated PTEN genes were cloned from human placenta and ESCC cells, respectively, and their effects on the proliferation and apoptosis of the ESCC cells were investigated. Also, the relationship between the PTEN gene status and sensitivity of the EC9706 cells to cisplatin was determined in the xenografts of nude mice. RESULTS There were mutations in the PTEN gene from ESCC cells. The proliferation of the EC9706 cells was clearly inhibited by the wild type PTEN gene, but not by the mutated PTEN gene in vitro. Furthermore, the wild type PTEN gene inhibited the growth of transplantable tumor, induced cell apoptosis, and improved the sensitivity of the EC9706 cells to cisplatin in vivo. CONCLUSION The findings of the present study demonstrate that there are mutations in the PTEN gene of the ESCC cells and that the wild type PTEN gene has important effects on the ESCC cells in vitro and in vivo.
Collapse
Affiliation(s)
- Guiqin Hou
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | | | | | | | | |
Collapse
|
37
|
A systematic study of gene mutations in urothelial carcinoma; inactivating mutations in TSC2 and PIK3R1. PLoS One 2011; 6:e18583. [PMID: 21533174 PMCID: PMC3077383 DOI: 10.1371/journal.pone.0018583] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 03/04/2011] [Indexed: 02/07/2023] Open
Abstract
Background Urothelial carcinoma (UC) is characterized by frequent gene mutations of which activating mutations in FGFR3 are the most frequent. Several downstream targets of FGFR3 are also mutated in UC, e.g., PIK3CA, AKT1, and RAS. Most mutation studies of UCs have been focused on single or a few genes at the time or been performed on small sample series. This has limited the possibility to investigate co-occurrence of mutations. Methodology/Principal Findings We performed mutation analyses of 16 genes, FGFR3, PIK3CA, PIK3R1 PTEN, AKT1, KRAS, HRAS, NRAS, BRAF, ARAF, RAF1, TSC1, TSC2, APC, CTNNB1, and TP53, in 145 cases of UC. We show that FGFR3 and PIK3CA mutations are positively associated. In addition, we identified PIK3R1 as a target for mutations. We demonstrate a negative association at borderline significance between FGFR3 and RAS mutations, and show that these mutations are not strictly mutually exclusive. We show that mutations in BRAF, ARAF, RAF1 rarely occurs in UC. Our data emphasize the possible importance of APC signaling as 6% of the investigated tumors either showed inactivating APC or activating CTNNB1 mutations. TSC1, as well as TSC2, that constitute the mTOR regulatory tuberous sclerosis complex were found to be mutated at a combined frequency of 15%. Conclusions/Significance Our data demonstrate a significant association between FGFR3 and PIK3CA mutations in UC. Moreover, the identification of mutations in PIK3R1 further emphasizes the importance of the PI3-kinase pathway in UC. The presence of TSC2 mutations, in addition to TSC1 mutations, underlines the involvement of mTOR signaling in UC.
Collapse
|
38
|
Fu X, Tao L, Rivera A, Zhang X. Rapamycin enhances the activity of oncolytic herpes simplex virus against tumor cells that are resistant to virus replication. Int J Cancer 2011; 129:1503-10. [PMID: 21128236 DOI: 10.1002/ijc.25808] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 11/05/2010] [Indexed: 12/12/2022]
Abstract
Oncolytic herpes simplex virus (HSV) is currently in phase III clinical trials for development as a novel therapeutic agent against a broad range of human tumors. Although results have been promising, clinical outcome is likely to be compromised by intrinsic and acquired resistance to HSV replication, leading us to test agents that may overcome this obstacle. We found that, despite showing no effect on HSV replication in tumor cells fully permissive to the virus growth, the mTOR inhibitor rapamycin markedly increased the yield and dissemination of oncolytic HSVs in semipermissive tumor cells. Similar results were obtained in tumor-bearing mice. Co-administration of rapamycin with an HSV-derived oncolytic virus either blocked or reversed the growth of tumor xenografts established from semipermissive human tumor cells, while use of either agent alone produced only transient inhibitory effect. Together, our results suggest that rapamycin could be used to potentiate the activity of oncolytic HSVs against difficult-to-treat human tumors or perhaps to prevent the emergence of resistant tumor cells during virotherapy.
Collapse
Affiliation(s)
- Xinping Fu
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX 77204, USA
| | | | | | | |
Collapse
|
39
|
Fang L, Wang H, Zhou L, Yu D. FOXO3a reactivation mediates the synergistic cytotoxic effects of rapamycin and cisplatin in oral squamous cell carcinoma cells. Toxicol Appl Pharmacol 2010; 251:8-15. [PMID: 21092744 DOI: 10.1016/j.taap.2010.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 11/08/2010] [Accepted: 11/09/2010] [Indexed: 11/15/2022]
Abstract
FOXO3a, a well-known transcriptional regulator, controls a wide spectrum of biological processes. The phosphoinositide-3-kinase (PI3K)/Akt signaling pathway inactivates FOXO3a via phosphorylation-induced nuclear exclusion and degradation. A loss or gain of FOXO3a activity has been correlated with efficiency of chemotherapies in various cancers including oral squamous cell carcinoma (OSCC). Therefore, in the current study, we have investigated the FOXO3a activity modulating and antitumor effects of rapamycin and cisplatin in OSCC cells. Cisplatin inhibited proliferation and induced apoptosis in a dose-dependent way in OSCC Tca8113 cells. Rapamycin alone had no effect on cell proliferation and apoptosis. Rapamycin downregulated the expression of S-phase kinase associated protein-2 (Skp2) and increased the FOXO3a protein stability but induced the upregulation of feedback Akt activation-mediated FOXO3a phosphorylation. Cisplatin decreased the phosphorylation of FOXO3a via Akt inhibition. Rapamycin combined with cisplatin as its feedback Akt activation inhibitor revealed the most dramatic FOXO3a nuclear localization and reactivation with the prevention of its feedback loop and exposed significant synergistic effects of decreased cell proliferation and increased apoptosis in vitro and decreased tumor size in vivo. Furthermore, the downstream effects of FOXO3a reactivation were found to be accumulation of p27 and Bim. In conclusion, rapamycin/cisplatin combination therapy boosts synergistic antitumor effects through the significant FOXO3a reactivation in OSCC cells. These results may represent a novel mechanism by which rapamycin/cisplatin combination therapy proves to be a potent molecular-targeted strategy for OSCC.
Collapse
Affiliation(s)
- Liang Fang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou 310003, PR China
| | | | | | | |
Collapse
|
40
|
High expression of phosphorylated 4E-binding protein 1 is an adverse prognostic factor in esophageal squamous cell carcinoma. Virchows Arch 2010; 458:171-8. [DOI: 10.1007/s00428-010-0994-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 09/30/2010] [Accepted: 10/03/2010] [Indexed: 01/17/2023]
|