1
|
Portugal J. Mithramycin and its analogs: Molecular features and antitumor action. Pharmacol Ther 2024; 260:108672. [PMID: 38838821 DOI: 10.1016/j.pharmthera.2024.108672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/09/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
The antitumor antibiotic mithramycin A (MTA) binds to G/C-rich DNA sequences in the presence of dications. MTA inhibits transcription regulated by the Sp1 transcription factor, often enhanced during tumor development. It shows antitumor activity, but its clinical use was discontinued due to toxic side effects. However, recent observations have led to its use being reconsidered. The MTA biosynthetic pathways have been modified to produce mithramycin analogs (mithralogs) that encompass lower toxicity and improved pharmacological activity. Some mithralogs reduce gene expression in human ovarian and prostate tumors, among other types of cancer. They down-regulate gene expression in various cellular processes, including Sp1-responsive genes that control tumor development. Moreover, MTA and several mithralogs, such as EC-8042 (DIG-MSK) and EC-8105, effectively treat Ewing sarcoma by inhibiting transcription controlled by the oncogenic EWS-FLI1 transcription factor.
Collapse
Affiliation(s)
- José Portugal
- Instituto de Diagnóstico Ambiental y Estudios del Agua, CSIC, E-08034 Barcelona, Spain.
| |
Collapse
|
2
|
Leon-Martinez D, Robinson JF, Zdravkovic T, Genbacev O, Gormley M, Mcmaster M, Fisher SJ, Bianco K. Trisomy 21 is Associated with Caspase-2 Upregulation in Cytotrophoblasts at the Maternal-Fetal Interface. Reprod Sci 2020; 27:100-109. [PMID: 32046398 DOI: 10.1007/s43032-019-00002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 02/28/2019] [Indexed: 11/26/2022]
Abstract
Impaired placentation is implicated in poor perinatal outcomes associated with Trisomy 21. Earlier studies revealed abnormal cytotrophoblast differentiation along the invasive pathway as a contributing mechanism. To further elucidate the causes, we evaluated Caspase-2 expression at the protein level (immunolocalization and immunoblot) in samples from Trisomy 21 (n = 9) and euploid (n = 4) age-matched placentas. Apoptosis was investigated via the TUNEL assay. An immunolocalization approach was used to characterize Caspase-3, Fas (CD95), and Fas ligand in the same samples. Caspase-2 was significantly overexpressed in Trisomy 21 placentas, with the highest expression in villous cores and invasive cytotrophoblasts. Immunolocalization showed that Caspase-3 had a similar expression pattern as Caspase-2. Using the TUNEL approach, we observed high variability in the number of apoptotic cells in biopsies from different regions of the same placenta and among different placentas. However, Trisomy 21 placentas had more apoptotic cells, specifically in cell columns and basal plates. Furthermore, Caspase-2 co-immunolocalized with Fas (CD95) and FasL in TUNEL-positive extravillous cytotrophoblasts, but not in villous cores. These results help explain the higher levels of apoptosis among placental cells of Trisomy 21 pregnancies in molecular terms. Specifically, the co-expression of Caspase-2 and Caspase-3 with other regulators of the apoptotic process in TUNEL-positive cells suggests these molecules may cooperate in launching the observed apoptosis. Among trophoblasts, only the invasive subpopulation showed this pattern, which could help explain the higher rates of adverse outcomes in these pregnancies. In future experiments, this relationship will be further examined at a functional level in cultured human trophoblasts.
Collapse
Affiliation(s)
- Daisy Leon-Martinez
- Department of Obstetrics and Gynecology, Yale University, New Haven, CT, USA
| | - Joshua F Robinson
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, 94143, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Tamara Zdravkovic
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, 94143, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Olga Genbacev
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, 94143, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Matthew Gormley
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, 94143, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Michael Mcmaster
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, 94143, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Susan J Fisher
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, 94143, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Katherine Bianco
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Stanford University, 300 Pasteur Dr. HH333 MC 5317, Stanford, CA, 94305, USA.
| |
Collapse
|
3
|
Lahiri S, Panja A, Dasgupta D. Association of a Zn(2+) containing metallo β-lactamase with the anticancer antibiotic mithramycin. J Inorg Biochem 2014; 142:75-83. [PMID: 25450021 DOI: 10.1016/j.jinorgbio.2014.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 10/03/2014] [Accepted: 10/03/2014] [Indexed: 12/13/2022]
Abstract
Pathogenic bacteria that are resistant to β-lactam antibiotics mostly utilize serine β-lactamases to degrade the antibiotics. Current studies have shown that different subclasses of metallo β-lactamases (E[MBL]) are involved in the defense mechanism of drug resistant bacteria. Here we report that the Zn(2+) containing subclass B1 E[MBL] from Bacillus cereus binds to a naturally occurring anti-cancer drug mithramycin (MTR). Spectroscopic (CD and fluorescence) and isothermal titration calorimetry studies show that MTR forms a high affinity complex with the Zn(2+) ion containing E[MBL]. Abolished interaction of MTR with apo E[MBL] suggests that the formation of this high affinity complex occurs due to the potential of MTR to bind bivalent metal ions like Zn(2+). Furthermore, CD spectroscopy, dynamic light scattering and differential scanning calorimetry studies indicate that the strong association with sub-micromolar dissociation constant leads to an alteration in the enzyme conformation at both secondary and tertiary structural levels. The enzyme activity decreases as a consequence to this conformational disruption arising from the formation of a ternary complex involving MTR, catalytic Zn(2+) and the enzyme. Our results suggest that the naturally occurring antibiotic MTR, a generic drug, has the potential as an E[MBL] inhibitor.
Collapse
Affiliation(s)
- Shibojyoti Lahiri
- Biophysics Division, Saha Institute of Nuclear Physics, 1/AF Sector-1, Bidhannagar, Kolkata 700064, India.
| | - Amrita Panja
- Biophysics Division, Saha Institute of Nuclear Physics, 1/AF Sector-1, Bidhannagar, Kolkata 700064, India
| | - Dipak Dasgupta
- Biophysics Division, Saha Institute of Nuclear Physics, 1/AF Sector-1, Bidhannagar, Kolkata 700064, India.
| |
Collapse
|
4
|
Fernández-Guizán A, Mansilla S, Barceló F, Vizcaíno C, Núñez LE, Morís F, González S, Portugal J. The activity of a novel mithramycin analog is related to its binding to DNA, cellular accumulation, and inhibition of Sp1-driven gene transcription. Chem Biol Interact 2014; 219:123-32. [PMID: 24907531 DOI: 10.1016/j.cbi.2014.05.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/25/2014] [Accepted: 05/27/2014] [Indexed: 12/14/2022]
Abstract
DIG-MSK (demycarosyl-3D-β-D-digitoxosyl-mithramycin SK) is a recently isolated compound of the mithramycin family of antitumor antibiotics, which includes mithramycin A (MTA) and mithramycin SK (MSK). Here, we present evidence that the binding of DIG-MSK to DNA shares the general features of other mithramycins such as the preference for C/G-rich tracts, but there are some differences in the strength of binding and the DNA sequence preferentially recognized by DIG-MSK. We aimed at gaining further insights into the DIG-MSK mechanism of action by direct comparison with the effects of the parental MTA. Similar to MTA, MSK and DIG-MSK accumulated rapidly in A2780, IGROV1 and OVCAR3 human ovarian cancer cell lines, and DIG-MSK was a potent inhibitor of both basal and induced expression of an Sp1-driven luciferase vector. This inhibitory activity was confirmed for the endogenous Sp1 gene and a set of Sp-responsive genes, and compared to that of MTA and MSK. Furthermore, DIG-MSK was stronger than MTA as inhibitor of Sp3-driven transcription and endogenous Sp3 gene expression. Differences in the effects of MTA, MSK and DIG-MSK on gene expression may have a large influence on their biological activities.
Collapse
Affiliation(s)
- Azahara Fernández-Guizán
- Departamento de Biología Funcional, Facultad de Medicina, Universidad de Oviedo, E-33006 Oviedo, Spain
| | - Sylvia Mansilla
- Instituto de Biología Molecular de Barcelona, CSIC, Parc Cientíific de Barcelona, E-08028 Barcelona, Spain
| | - Francisca Barceló
- Departament de Biologia Fundamental i Ciencies de la Salut, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
| | - Carolina Vizcaíno
- Instituto de Biología Molecular de Barcelona, CSIC, Parc Cientíific de Barcelona, E-08028 Barcelona, Spain
| | - Luz-Elena Núñez
- EntreChem SL, Edificio Científico Tecnológico, Campus El Cristo, E-33006 Oviedo, Spain
| | - Francisco Morís
- EntreChem SL, Edificio Científico Tecnológico, Campus El Cristo, E-33006 Oviedo, Spain
| | - Segundo González
- Departamento de Biología Funcional, Facultad de Medicina, Universidad de Oviedo, E-33006 Oviedo, Spain
| | - José Portugal
- Instituto de Biología Molecular de Barcelona, CSIC, Parc Cientíific de Barcelona, E-08028 Barcelona, Spain.
| |
Collapse
|
6
|
Llovera L, Mansilla S, Portugal J. Apoptotic-like death occurs through a caspase-independent route in colon carcinoma cells undergoing mitotic catastrophe. Cancer Lett 2012; 326:114-21. [PMID: 22885806 DOI: 10.1016/j.canlet.2012.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 06/29/2012] [Accepted: 08/01/2012] [Indexed: 01/11/2023]
Abstract
We have examined the relationship between chemotherapy-induced mitotic catastrophe and cell death by apoptosis in both wild-type and p53(-/-) HCT116 human colon carcinoma cells treated with nanomolar concentrations of paclitaxel (PTX), a drug that acts on tubulin altering the normal development of mitosis. After treatment, HCT116 cells entered mitosis regardless of the presence of functional p53, which resulted in changes in the distribution of cells in the different phases of the cell cycle, and in cell death. In the presence of PTX, the percentage of polyploid cells observed was higher in p53-deficient cells, indicating that mitotic slippage was favored compared to wild-type cells, with the presence of large multinucleate cells. PTX caused mitotic catastrophe and about 50-60% cells that were entering an aberrant mitosis died through an apoptotic-like pathway characterized by the presence of phosphatidylserine in the outer cell membrane, which occurred in the absence of significant activation of caspases. Lack of p53 facilitated endoreduplication and polyploidy in PTX-treated cells, but cells were still killed with similar efficacy through the same apoptotic-like mechanism in the absence of caspase activity.
Collapse
Affiliation(s)
- Laia Llovera
- Instituto de Biologia Molecular de Barcelona, CSIC, Parc Cientific de Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
7
|
Olano C, Méndez C, Salas JA. Molecular insights on the biosynthesis of antitumour compounds by actinomycetes. Microb Biotechnol 2010; 4:144-64. [PMID: 21342461 PMCID: PMC3818856 DOI: 10.1111/j.1751-7915.2010.00231.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Natural products are traditionally the main source of drug leads. In particular, many antitumour compounds are either natural products or derived from them. However, the search for novel antitumour drugs active against untreatable tumours, with fewer side-effects or with enhanced therapeutic efficiency, is a priority goal in cancer chemotherapy. Microorganisms, particularly actinomycetes, are prolific producers of bioactive compounds, including antitumour drugs, produced as secondary metabolites. Structural genes involved in the biosynthesis of such compounds are normally clustered together with resistance and regulatory genes, which facilitates the isolation of the gene cluster. The characterization of these clusters has represented, during the last 25 years, a great source of genes for the generation of novel derivatives by using combinatorial biosynthesis approaches: gene inactivation, gene expression, heterologous expression of the clusters or mutasynthesis. In addition, these techniques have been also applied to improve the production yields of natural and novel antitumour compounds. In this review we focus on some representative antitumour compounds produced by actinomycetes covering the genetic approaches used to isolate and validate their biosynthesis gene clusters, which finally led to generating novel derivatives and to improving the production yields.
Collapse
Affiliation(s)
- Carlos Olano
- Departamento de Biología Funcional and Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| | | | | |
Collapse
|
8
|
Barceló F, Ortiz-Lombardía M, Martorell M, Oliver M, Méndez C, Salas JA, Portugal J. DNA binding characteristics of mithramycin and chromomycin analogues obtained by combinatorial biosynthesis. Biochemistry 2010; 49:10543-52. [PMID: 21067184 DOI: 10.1021/bi101398s] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The antitumor antibiotics mithramycin A and chromomycin A(3) bind reversibly to the minor groove of G/C-rich regions in DNA in the presence of dications such as Mg(2+), and their antiproliferative activity has been associated with their ability to block the binding of certain transcription factors to gene promoters. Despite their biological activity, their use as anticancer agents is limited by severe side effects. Therefore, in our pursuit of new structurally related molecules showing both lower toxicity and higher biological activity, we have examined the binding to DNA of six analogues that we have obtained by combinatorial biosynthetic procedures in the producing organisms. All these molecules bear a variety of changes in the side chain attached to C-3 of the chromophore. The spectroscopic characterization of their binding to DNA followed by the evaluation of binding parameters and associated thermodynamics revealed differences in their binding affinity. DNA binding was entropically driven, dominated by the hydrophobic transfer of every compound from solution into the minor groove of DNA. Among the analogues, mithramycin SDK and chromomycin SDK possessed the higher DNA binding affinities.
Collapse
Affiliation(s)
- Francisca Barceló
- Departament de Biologia Fundamental i Ciencies de la Salut, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | | | | | | | | | | | | |
Collapse
|