1
|
Furutake Y, Yamaguchi K, Yamanoi K, Kitamura S, Takamatsu S, Taki M, Ukita M, Hosoe Y, Murakami R, Abiko K, Horie A, Hamanishi J, Baba T, Matsumura N, Mandai M. YAP1 Suppression by ZDHHC7 Is Associated with Ferroptosis Resistance and Poor Prognosis in Ovarian Clear Cell Carcinoma. Mol Cancer Ther 2024; 23:1652-1665. [PMID: 38958503 DOI: 10.1158/1535-7163.mct-24-0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/16/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Ovarian clear cell carcinoma (OCCC), which has unique clinical characteristics, arises from benign endometriotic cysts, forming an oxidative stress environment because of excess iron accumulation, and exhibits poor prognosis, particularly in advanced stages owing to resistance to conventional therapeutics. Ferroptosis is an iron-dependent form of programmed cell death induced by lipid peroxidation and controlled by Hippo signaling. We hypothesized that overcoming ferroptosis resistance is an attractive strategy because OCCC acquires oxidative stress resistance during its development and exhibits chemoresistant features indicative of ferroptosis resistance. This study aimed to determine whether OCCC is resistant to ferroptosis and clarify the mechanism underlying resistance. Unlike ovarian high-grade serous carcinoma cells, OCCC cells were exposed to oxidative stress. However, OCCC cells remained unaffected by lipid peroxidation. Cell viability assays revealed that OCCC cells exhibited resistance to the ferroptosis inducer erastin. Moreover, Samroc analysis showed that the Hippo signaling pathway was enriched in OCCC cell lines and clinical samples. Furthermore, patients with low expression of nuclear yes-associated protein 1 (YAP1) exhibited a significantly poor prognosis of OCCC. Moreover, YAP1 activation enhanced ferroptosis in OCCC cell lines. Furthermore, suppression of zinc finger DHHC-type palmitoyltransferase 7 (ZDHHC7) enhanced ferroptosis by activating YAP1 in OCCC cell lines. Mouse xenograft models demonstrated that ZDHHC7 inhibition suppressed tumor growth via YAP1 activation by erastin treatment. In conclusion, YAP1 activation regulated by ZDHHC7 enhanced ferroptosis in OCCC. Thus, overcoming ferroptosis resistance is a potential therapeutic strategy for OCCC.
Collapse
MESH Headings
- Ferroptosis
- Humans
- Female
- Animals
- Mice
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/genetics
- Prognosis
- YAP-Signaling Proteins/metabolism
- Acyltransferases
- Adenocarcinoma, Clear Cell/metabolism
- Adenocarcinoma, Clear Cell/pathology
- Adenocarcinoma, Clear Cell/drug therapy
- Adenocarcinoma, Clear Cell/genetics
- Cell Line, Tumor
- Transcription Factors/metabolism
- Xenograft Model Antitumor Assays
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Gene Expression Regulation, Neoplastic
- Mice, Nude
- Cell Proliferation
- Drug Resistance, Neoplasm
- Signal Transduction
Collapse
Affiliation(s)
- Yoko Furutake
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Yamaguchi
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Yamanoi
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Sachiko Kitamura
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Shiro Takamatsu
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Mana Taki
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Masayo Ukita
- Department of Obstetrics and Gynecology, Shizuoka General Hospital, Shizuoka, Japan
| | - Yuko Hosoe
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Ryusuke Murakami
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Kaoru Abiko
- Department of Obstetrics and Gynecology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Akihito Horie
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Tsukasa Baba
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Lin TY, Gu SY, Lin YH, Shih JH, Lin JH, Chou TY, Lee YC, Chang SF, Lang YD. Paclitaxel-resistance facilitates glycolytic metabolism via Hexokinase-2-regulated ABC and SLC transporter genes in ovarian clear cell carcinoma. Biomed Pharmacother 2024; 180:117452. [PMID: 39341074 DOI: 10.1016/j.biopha.2024.117452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Ovarian clear cell carcinoma (OCCC) frequently develops resistance to platinum-based therapies, which is regarded as an aggressive subtype. However, metabolic changes in paclitaxel resistance remain unclear. Herein, we present the metabolic alternations of paclitaxel resistance in bioenergetic profiling in OCCC. Paclitaxel-resistant OCCC cells were developed and metabolically active with oxygen consumption rates (OCR) compared to parental cells. Metabolite profiling analysis revealed that paclitaxel-resistant OCCC cells reduced intracellular ATP and GTP influx rates, increasing the NADH/NAD+ ratio. We further demonstrated that paclitaxel-resistant OCCC cells led to characteristic alternations of metabolite levels in energy-requiring and energy-releasing steps of glycolysis and their corresponding glycolytic enzymes. Copy number alterations and RNA sequencing analysis demonstrated that ATP-binding cassette (ABC) transporters and solute carrier (SLC) transporter genes involved in glycolysis metabolism and molecular transport were enriched in paclitaxel-resistant OCCC cells. We first identified that Hexokinase 2 (HK2) expression is upregulated in paclitaxel-resistant OCCC cells to determine the quantity of glucose entering glycolysis. Utilizing proteolysis-targeting chimera (PROTAC) HK2 degraders, we also found that paclitaxel sensitivity, viability, and oxygen consumption rates under paclitaxel treatment were restored by HK2 degraders treatment, and decreased downstream expression of the ABC and SLC transporters was shown in OCCC cells. Taken together, these findings highlight the paclitaxel resistance in OCCC elucidates metabolic alternation, including ABC- and SLC- drug transporters, thereby affecting glycolysis metabolism in response to paclitaxel resistance, and HK2 may become a novel potential therapeutic target for paclitaxel resistance.
Collapse
Affiliation(s)
- Tsai-Yu Lin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Shin-Yuan Gu
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan; Department of Pathology and Precision Medicine Research Center, Taipei Medical University Hospital and Precision Health Center, Taipei Medical University, Taipei, Taiwan
| | - Yi-Hui Lin
- Department of Obstetrics and Gynecology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Jou-Ho Shih
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jiun-Han Lin
- Department of Industrial Technology, Ministry of Economic Affairs, Taipei, Taiwan; Food Industry Research and Development Institute, Hsinchu City, Taiwan
| | - Teh-Ying Chou
- Department of Pathology and Precision Medicine Research Center, Taipei Medical University Hospital and Precision Health Center, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ching Lee
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| | - Shwu-Fen Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yaw-Dong Lang
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan; Department of Pathology and Precision Medicine Research Center, Taipei Medical University Hospital and Precision Health Center, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
3
|
Hoshiba N, Kayahashi K, Hayashi S, Nomura S, Nakayama M, Iizuka T, Fujiwara H. Occult clear cell carcinoma arising from oxidative stress‑exposed cystic adenomyosis: A case report. Mol Clin Oncol 2024; 21:50. [PMID: 38872950 PMCID: PMC11170329 DOI: 10.3892/mco.2024.2748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Although adenomyosis is a benign uterine disease, it can turn malignant in rare instances. Cystic adenomyosis is a rare variation of adenomyosis, arising from which 8 cases of clear cell carcinoma have been reported. However, to the best of our knowledge, there have been no previous reports describing the mechanism by which clear cell carcinoma develops from cystic adenomyosis. The present report documents a case of a 73-year-old woman who was referred to Kanazawa University Hospital (Kanazawa, Japan) because of cystic adenomyosis, with a solid part inside the cyst. The patient was diagnosed with cystic adenomyosis at Shonan Obstetrics and Gynecology Hospital (Hakusan, Japan) 17 years prior; however, the size of the cyst increased after menopause. Therefore, malignant transformation was suspected, which warranted simple abdominal hysterectomy and bilateral salpingo-oophorectomy. The final diagnosis of the present case was uterine corpus cancer, clear cell carcinoma, stage IA. Immunohistochemical staining revealed that the normal and transitional atypical epithelial cells lining the cyst wall, in addition to the clear cell carcinoma cells (which were inside mural nodules located on the cyst wall), were positive for 8-hydroxy-20-deoxyguanosine. This observation suggested the presence of chronic oxidative stress around the cystic adenomyosis. Therefore, the present case suggests the possible involvement of chronic oxidative stress in the malignant transformation of cystic adenomyosis to clear cell carcinoma. This mechanism of malignant transformation of cystic adenomyosis appears to be similar to that of the malignant transformation of endometriotic cysts. Therefore, if the size of the cystic adenomyosis increases after menopause or if the solid part appears in the cyst in future cases, then the possibility of malignant transformation should be considered.
Collapse
Affiliation(s)
- Nao Hoshiba
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Kayo Kayahashi
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Sakura Hayashi
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Satoshi Nomura
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Midori Nakayama
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Takashi Iizuka
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Hiroshi Fujiwara
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| |
Collapse
|
4
|
Hou DY, Lu JJ, Zhang X, Abudukeyoumu A, Li MQ, Zhu XY, Xie F. Heme metabolism and HO-1 in the pathogenesis and potential intervention of endometriosis. Am J Reprod Immunol 2024; 91:e13855. [PMID: 38745499 DOI: 10.1111/aji.13855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Endometriosis (EM) is one of the diseases related to retrograded menstruation and hemoglobin. Heme, released from hemoglobin, is degraded by heme oxygenase-1 (HO-1). In EM lesions, heme metabolites regulate processes such as inflammation, redox balance, autophagy, dysmenorrhea, malignancy, and invasion, where macrophages (Mø) play a fundamental role in their interactions. Regulation occurs at molecular, cellular, and pathological levels. Numerous studies suggest that heme is an indispensable component in EM and may contribute to its pathogenesis. The regulatory role of heme in EM encompasses cytokines, signaling pathways, and kinases that mediate cellular responses to external stimuli. HO-1, a catalytic enzyme in the catabolic phase of heme, mitigates heme's cytotoxicity in EM due to its antioxidant, anti-inflammatory, and anti-proliferative properties. Certain compounds may intervene in EM by targeting heme metabolism, guiding the development of appropriate treatments for all stages of endometriosis.
Collapse
Affiliation(s)
- Ding-Yu Hou
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Jia-Jing Lu
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Xing Zhang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Ayitila Abudukeyoumu
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Jiading District, Shanghai, People's Republic of China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Xiao-Yong Zhu
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Feng Xie
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Kobayashi H. Clinicopathological characteristics, molecular features and novel diagnostic strategies for the detection of malignant transformation of endometriosis (Review). Exp Ther Med 2023; 25:279. [PMID: 37206546 PMCID: PMC10189589 DOI: 10.3892/etm.2023.11978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 01/20/2023] [Indexed: 05/21/2023] Open
Abstract
Endometriosis is a benign gynecological disease that affects women of reproductive age. Although malignant transformation of endometriosis is rare, physicians must be aware of this due to the high incidence of clear cell carcinoma of the ovary (CCC) in Japan. The most prevalent histological subtype of ovarian cancer is CCC (~70%) followed by endometrioid carcinoma (30%). The present review discusses the clinicopathological and molecular features of endometriosis-associated ovarian cancer (EAOC) as well as prospects for novel diagnostic strategies. Papers published between 2000 and 2022 in the PubMed and Google Scholar databases were included. Contents of the endometriotic cyst fluid may be involved in carcinogenesis, although the underlying mechanisms are largely unknown. Some studies have proposed a possible mechanism wherein excessive hemoglobin, heme and iron could cause an imbalance in intracellular redox homeostasis in endometriotic cells. Combined with DNA damage and mutations, the imbalances may induce the development of EAOC. Endometriotic cells evolve to adapt to the prolonged unfavorable oxidative microenvironmental stress. On the other hand, macrophages enhance the antioxidative defense mechanism and protect endometriotic cells against oxidative damage through intercellular crosstalk and signaling pathways. Therefore, changes in redox signaling, energy metabolism and the tumor immune microenvironment could be the key elements in the malignant transformation of certain endometriotic cell clones. Additionally, non-invasive bioimaging (i.e., magnetic resonance relaxometry) and biomarkers (i.e., tissue factor pathway inhibitor 2) may be promising tools for early-stage detection of the disease. In conclusion, the present review summarizes the latest advancements in research on the biological characteristics and early diagnosis of malignant transformation of endometriosis.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology, Ms.Clinic MayOne, Kashihara, Nara 634-0813, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
- Correspondence to: Dr Hiroshi Kobayashi, Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| |
Collapse
|
6
|
Shukla P, Singh KK. The mitochondrial landscape of ovarian cancer: emerging insights. Carcinogenesis 2021; 42:663-671. [PMID: 33928357 PMCID: PMC8163040 DOI: 10.1093/carcin/bgab033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/18/2021] [Accepted: 04/20/2021] [Indexed: 02/02/2023] Open
Abstract
Ovarian cancer (OC) is known to be the most lethal cancer in women worldwide, and its etiology is poorly understood. Recent studies show that mitochondrial DNA (mtDNA) content as well as mtDNA and nuclear genes encoding mitochondrial proteins influence OC risk. This review presents an overview of role of mitochondrial genetics in influencing OC development and discusses the contribution of mitochondrial proteome in OC development, progression and therapy. A role of mitochondrial genetics in racial disparity is also highlighted. In-depth understanding of role of mitochondria in OC will help develop strategies toward prevention and treatment and improving overall survival in women with OC.
Collapse
Affiliation(s)
- Pallavi Shukla
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Molecular Endocrinology, Indian Council of Medical Research-National Institute for Research in Reproductive Health (ICMR-NIRRH), Mumbai, India
| | - Keshav K Singh
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
7
|
Mandai M, Osuga Y, Hirata T, Enomoto T, Nakai H, Honda R, Taniguchi F, Katabuchi H. Cancers associated with extraovarian endometriosis at less common/rare sites: A nationwide survey in Japan. J Obstet Gynaecol Res 2020; 46:917-923. [PMID: 32212420 DOI: 10.1111/jog.14244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/20/2020] [Accepted: 03/07/2020] [Indexed: 12/14/2022]
Abstract
AIM Endometriosis mostly affects the ovary but can also be present outside of the ovary including the pelvic peritoneum, intestine, urinary tract and lung. In case of ovarian endometriotic cyst, an increased risk of ovarian cancer, especially of clear cell and endometrioid histology, has been reported. However, because of the rarity, cancer occurrence from endometriosis at less common sites/rare sites is poorly understood. METHODS We conducted a nationwide survey on the less common/rare site endometriosis in 3539 authorized facilities in Japan. We requested to complete a case report form for each case, including information on the history of endometriosis, treatment for endometriosis, type of surgery, involved site(s) of cancer and endometriosis, histology of cancer, chemotherapy and outcome. RESULTS Out of 1397 confirmed cases of less common/rare site endometriosis, 11 cases of rare site endometriosis-associated cancer (RSEAC) were reported: seven of them were associated with intestinal endometriosis, three were associated with urinary tract endometriosis and one was associated with umbilical endometriosis. Interestingly, the histology was endometrioid in seven (64%) cases, and serous, seromucinous borderline, clear cell and mucinous in one case each (10%), differing from the case of ovarian endometriosis-associated cancer, in which clear cell carcinoma are more common. CONCLUSION Our nationwide survey on RSEAC has revealed that: (i) the incidence of malignant transformation may be lower than ovarian endometriosis, (ii) malignant transformation from endometriosis outside the abdominal cavity may be extremely rare and (iii) the histology of RSEAC is predominantly endometrioid type, suggesting an association of a hormonal effect.
Collapse
Affiliation(s)
- Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Tetsuya Hirata
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Takayuki Enomoto
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hidekatsu Nakai
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Ritsuo Honda
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Fuminori Taniguchi
- Department of Obstetrics and Gynecology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Hidetaka Katabuchi
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
8
|
Marí-Alexandre J, Carcelén AP, Agababyan C, Moreno-Manuel A, García-Oms J, Calabuig-Fariñas S, Gilabert-Estellés J. Interplay Between MicroRNAs and Oxidative Stress in Ovarian Conditions with a Focus on Ovarian Cancer and Endometriosis. Int J Mol Sci 2019; 20:ijms20215322. [PMID: 31731537 PMCID: PMC6862266 DOI: 10.3390/ijms20215322] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022] Open
Abstract
Ovarian cancer and endometriosis are two distinct gynaecological conditions that share many biological aspects incuding proliferation, invasion of surrounding tissue, inflammation, inhibition of apoptosis, deregulation of angiogenesis and the ability to spread at a distance. miRNAs are small non-coding RNAs (19–22 nt) that act as post-transcriptional modulators of gene expression and are involved in several of the aforementioned processes. In addition, a growing body of evidence supports the contribution of oxidative stress (OS) to these gynaecological diseases: increased peritoneal OS due to the decomposition of retrograde menstruation blood facilitates both endometriotic lesion development and fallopian tube malignant transformation leading to high-grade serous ovarian cancer (HGSOC). Furthermore, as HGSOC develops, increased OS levels are associated with chemoresistance. Finally, continued bleeding within ovarian endometrioma raises OS levels and contributes to the development of endometriosis-associated ovarian cancer (EAOC). Therefore, this review aims to address the need for a better understanding of the dialogue between miRNAs and oxidative stress in the pathophysiology of ovarian conditions: endometriosis, EAOC and HGSOC.
Collapse
Affiliation(s)
- Josep Marí-Alexandre
- Research Laboratory in Biomarkers in Reproduction, Gynaecology and Obstetrics, Fundación Hospital General Universitario de Valencia, 46014 València, Spain; (C.A.); (J.G.-O.); (J.G.-E.)
- Correspondence: ; Tel.: +34-96-313-1893 (ext. 437211)
| | | | - Cristina Agababyan
- Research Laboratory in Biomarkers in Reproduction, Gynaecology and Obstetrics, Fundación Hospital General Universitario de Valencia, 46014 València, Spain; (C.A.); (J.G.-O.); (J.G.-E.)
- Comprehensive Multidisciplinary Endometriosis Unit, Consorcio Hospital General Universitario de València, 46014 València, Spain
| | - Andrea Moreno-Manuel
- Molecular Oncology Laboratory, Fundación para la Investigación del Hospital General Universitario de València, 46014, València, Spain; (A.M.-M.); (S.C.-F.)
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de València, 46014 València, Spain
| | - Javier García-Oms
- Research Laboratory in Biomarkers in Reproduction, Gynaecology and Obstetrics, Fundación Hospital General Universitario de Valencia, 46014 València, Spain; (C.A.); (J.G.-O.); (J.G.-E.)
- Comprehensive Multidisciplinary Endometriosis Unit, Consorcio Hospital General Universitario de València, 46014 València, Spain
| | - Silvia Calabuig-Fariñas
- Molecular Oncology Laboratory, Fundación para la Investigación del Hospital General Universitario de València, 46014, València, Spain; (A.M.-M.); (S.C.-F.)
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de València, 46014 València, Spain
- Department of Pathology, Universitat de València, 46010 València, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), 46014 València, Spain
| | - Juan Gilabert-Estellés
- Research Laboratory in Biomarkers in Reproduction, Gynaecology and Obstetrics, Fundación Hospital General Universitario de Valencia, 46014 València, Spain; (C.A.); (J.G.-O.); (J.G.-E.)
- Comprehensive Multidisciplinary Endometriosis Unit, Consorcio Hospital General Universitario de València, 46014 València, Spain
- Department of Paediatrics, Obstetrics and Gynaecology, University of València, 46010 València, Spain
| |
Collapse
|
9
|
Wendel JRH, Wang X, Hawkins SM. The Endometriotic Tumor Microenvironment in Ovarian Cancer. Cancers (Basel) 2018; 10:cancers10080261. [PMID: 30087267 PMCID: PMC6115869 DOI: 10.3390/cancers10080261] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 12/15/2022] Open
Abstract
Women with endometriosis are at increased risk of developing ovarian cancer, specifically ovarian endometrioid, low-grade serous, and clear-cell adenocarcinoma. An important clinical caveat to the association of endometriosis with ovarian cancer is the improved prognosis for women with endometriosis at time of ovarian cancer staging. Whether endometriosis-associated ovarian cancers develop from the molecular transformation of endometriosis or develop because of the endometriotic tumor microenvironment remain unknown. Additionally, how the presence of endometriosis improves prognosis is also undefined, but likely relies on the endometriotic microenvironment. The unique tumor microenvironment of endometriosis is composed of epithelial, stromal, and immune cells, which adapt to survive in hypoxic conditions with high levels of iron, estrogen, and inflammatory cytokines and chemokines. Understanding the unique molecular features of the endometriotic tumor microenvironment may lead to impactful precision therapies and/or modalities for prevention. A challenge to this important study is the rarity of well-characterized clinical samples and the limited model systems. In this review, we will describe the unique molecular features of endometriosis-associated ovarian cancers, the endometriotic tumor microenvironment, and available model systems for endometriosis-associated ovarian cancers. Continued research on these unique ovarian cancers may lead to improved prevention and treatment options.
Collapse
Affiliation(s)
- Jillian R Hufgard Wendel
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Xiyin Wang
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Shannon M Hawkins
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
10
|
Wei W, Giulia F, Luffer S, Kumar R, Wu B, Tavallai M, Bekele RT, Birrer MJ. How can molecular abnormalities influence our clinical approach. Ann Oncol 2018; 28:viii16-viii24. [PMID: 29232470 DOI: 10.1093/annonc/mdx447] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Despite improvements in diagnostics and treatment, the clinical outcome of epithelial ovarian cancer remains poor over the last three decades. Recent high-throughput genomic studies have demonstrated ovarian cancer as a highly heterogeneous entity with distinctive molecular signatures among different or even within the same histotype. In this article, we review the molecular genetics of epithelial ovarian cancer and how they have been translated into modern clinical trials, as well as their implications in patient stratification for more targeted and personalized approaches. Patients and methods Multiple genomic studies were collected to summarize the major advances in understanding ovarian cancer-associated molecular abnormalities with emphasis on their potential clinical applicability to rationalize the design of recent clinical trials. Results The clinical management of ovarian cancer can significantly benefit from comprehensive molecular profiling studies, which have uncovered the distinctiveness of ovarian cancer subsets bearing characteristic genomic aberrance and consequentially dysregulated genes and pathways underlying the tumor progression and chemoresistance. Genomics studies have demonstrated a powerful tool to delineate the molecular basis responsible for diverse clinical behaviors associated with tumor histology and grade. In addition, molecular signatures obtained by integrated 'omics' analyses have promised opportunities for novel therapeutic or stratification biomarkers to tailor current clinical management as well as novel predictive tools of clinical end points including patient prognosis and therapeutic efficacy. Conclusions Recent progress in understanding the molecular landscape of ovarian cancer has profoundly shifted the design of clinical trials from empirical, unitary paradigms to more rationalized and personalized regimes. Correspondingly, a promising prospective has emerged for ovarian cancer patients to have considerably improved outcome upon careful alignment of patient characteristics, therapeutic biomarkers and targeting approaches. Nevertheless, extensive validation and inference of potential biomarkers are pressing demands on both bioinformatic and biological levels to warrant sufficient clinical relevance for potential translation, so that the performance of related clinical trial can be well predicted and achieved.
Collapse
Affiliation(s)
- W Wei
- Center for Cancer Research, The Gillette Center for Gynecologic Oncology, Massachusetts General Hospital, Boston, USA
| | - F Giulia
- Center for Cancer Research, The Gillette Center for Gynecologic Oncology, Massachusetts General Hospital, Boston, USA
| | - S Luffer
- Center for Cancer Research, The Gillette Center for Gynecologic Oncology, Massachusetts General Hospital, Boston, USA
| | - R Kumar
- Center for Cancer Research, The Gillette Center for Gynecologic Oncology, Massachusetts General Hospital, Boston, USA
| | - B Wu
- Center for Cancer Research, The Gillette Center for Gynecologic Oncology, Massachusetts General Hospital, Boston, USA
| | - M Tavallai
- Center for Cancer Research, The Gillette Center for Gynecologic Oncology, Massachusetts General Hospital, Boston, USA
| | - R T Bekele
- Center for Cancer Research, The Gillette Center for Gynecologic Oncology, Massachusetts General Hospital, Boston, USA
| | - M J Birrer
- Center for Cancer Research, The Gillette Center for Gynecologic Oncology, Massachusetts General Hospital, Boston, USA
| |
Collapse
|
11
|
Koshiyama M, Matsumura N, Konishi I. Subtypes of Ovarian Cancer and Ovarian Cancer Screening. Diagnostics (Basel) 2017; 7:diagnostics7010012. [PMID: 28257098 PMCID: PMC5373021 DOI: 10.3390/diagnostics7010012] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 01/04/2023] Open
Abstract
Ovarian cancer is the foremost cause of gynecological cancer death in the developed world, as it is usually diagnosed at an advanced stage. In this paper we discuss current issues, the efficacy and problems associated with ovarian cancer screening, and compare the characteristics of ovarian cancer subtypes. There are two types of ovarian cancer: Type I carcinomas, which are slow-growing, indolent neoplasms thought to arise from a precursor lesion, which are relatively common in Asia; and Type II carcinomas, which are clinically aggressive neoplasms that can develop de novo from serous tubal intraepithelial carcinomas (STIC) and/or ovarian surface epithelium and are common in Europe and the USA. One of the most famous studies on the subject reported that annual screening using CA125/transvaginal sonography (TVS) did not reduce the ovarian cancer mortality rate in the USA. In contrast, a recent study in the UK showed an overall average mortality reduction of 20% in the screening group. Another two studies further reported that the screening was associated with decreased stage at detection. Theoretically, annual screening using CA125/TVS could easily detect precursor lesions and could be more effective in Asia than in Europe and the USA. The detection of Type II ovarian carcinoma at an early stage remains an unresolved issue. The resolving power of CA125 or TVS screening alone is unlikely to be successful at resolving STICs. Biomarkers for the early detection of Type II carcinomas such as STICs need to be developed.
Collapse
Affiliation(s)
- Masafumi Koshiyama
- Department of Gynecology and Obstetrics, Kyoto University, Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan.
- Department of Women's Health, Graduate School of Human Nursing, The University of Shiga Prefecture, 2500 Hassakacho, Hikone, Shiga 522-8533, Japan.
| | - Noriomi Matsumura
- Department of Gynecology and Obstetrics, Kyoto University, Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Ikuo Konishi
- Department of Gynecology and Obstetrics, Kyoto University, Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan.
- Department of Obstetrics and Gynecology, National Hospital Organization Kyoto Medical Center, Fushimi-ku, Kyoto 612-8555, Japan.
| |
Collapse
|
12
|
Amano Y, Mandai M, Yamaguchi K, Matsumura N, Kharma B, Baba T, Abiko K, Hamanishi J, Yoshioka Y, Konishi I. Metabolic alterations caused by HNF1β expression in ovarian clear cell carcinoma contribute to cell survival. Oncotarget 2016; 6:26002-17. [PMID: 26318292 PMCID: PMC4694881 DOI: 10.18632/oncotarget.4692] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 07/20/2015] [Indexed: 12/13/2022] Open
Abstract
HNF1β is expressed exclusively in ovarian clear cell carcinoma (OCCC) and not in other ovarian cancers, regarded as a hallmark of this tumor. This implies its central role in the unique character of OCCC, including resistance to chemotherapy, but its exact role and influence in cancer biology or the molecular bases of its function are largely unknown. Using comprehensive metabolome analysis of HNF1β_shRNA-stable cell lines, we show here that HNF1β drastically alters intracellular metabolism, especially in direction to enhance aerobic glycolysis, so called the “Warburg effect”. The consequence of the metabolic change contributed cell survival under stresses such as hypoxia and chemo-reagent, only when sufficient glucose supply was available. Augmented cell survival was based on the reduced ROS activity derived from metabolic alteration such as shift from oxidative phosphorylation to glycolysis and increased intracellular anti-oxidant, glutathione (GSH). One of the cystine transporters, rBAT is likely to play a major role in this GSH increase. These data suggest that HNF1β, possibly induced by stressful microenvironment in the endometriotic cyst, confers survival advantage to the epithelial cells, which leads to the occurrence of OCCC, a chemo-resistant phenotype of ovarian cancer.
Collapse
Affiliation(s)
- Yasuaki Amano
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Obstetrics and Gynecology, Kinki University Faculty of Medicine, Osaka-Sayama, Japan
| | - Ken Yamaguchi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Noriomi Matsumura
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Budiman Kharma
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tsukasa Baba
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kaoru Abiko
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yumiko Yoshioka
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ikuo Konishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
13
|
Yamada Y, Miyamoto T, Kashima H, Kobara H, Asaka R, Ando H, Higuchi S, Ida K, Shiozawa T. Lipocalin 2 attenuates iron-related oxidative stress and prolongs the survival of ovarian clear cell carcinoma cells by up-regulating the CD44 variant. Free Radic Res 2016; 50:414-25. [PMID: 26729415 DOI: 10.3109/10715762.2015.1134795] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Ovarian clear cell carcinoma (CCC) arises from ovarian endometriosis. Intra-cystic fluid contains abundant amounts of free iron, which causes persistent oxidative stress, a factor that has been suggested to induce malignant transformation. However, the mechanisms linking oxidative stress and carcinogenesis in CCC currently remain unclear. Lipocalin 2 (LCN2), a multifunctional secretory protein, functions as an iron transporter as well as an antioxidant. Therefore, we herein examined the roles of LCN2 in the regulation of intracellular iron concentrations, oxidative stress, DNA damage, and antioxidative functions using LCN2-overexpressing (ES2), and LCN2-silenced (RMG-1) CCC cell lines. The results of calcein staining indicated that the up-regulated expression of LCN2 correlated with increases in intracellular iron concentrations. However, a DCFH-DA assay and 8OHdG staining revealed that LCN2 reduced intracellular levels of reactive oxygen species and DNA damage. Furthermore, the expression of LCN2 suppressed hydrogen peroxide-induced apoptosis and prolonged cell survival, suggesting an antioxidative role for LCN2. The expression of mRNAs and proteins for various oxidative stress-catalyzing enzymes, such as heme oxygenase (HO), superoxide dismutase (SOD), and glutathione peroxidase, was not affected by LCN2, whereas the intracellular concentration of the potent antioxidant, glutathione (GSH), was increased by LCN2. Furthermore, the expression of xCT, a cystine transporter protein, and CD44 variant 8-10 (CD44v), a stem cell marker, was up-regulated by LCN2. Although LCN2 increased intracellular iron concentrations, LCN2-induced GSH may catalyze and override oxidative stress via CD44v and xCT, and subsequently enhance the survival of CCC cells in oxidative stress-rich endometriosis.
Collapse
Affiliation(s)
- Yasushi Yamada
- a Department of Obstetrics and Gynecology , Shinshu University School of Medicine , Matsumoto , Japan
| | - Tsutomu Miyamoto
- a Department of Obstetrics and Gynecology , Shinshu University School of Medicine , Matsumoto , Japan
| | - Hiroyasu Kashima
- a Department of Obstetrics and Gynecology , Shinshu University School of Medicine , Matsumoto , Japan
| | - Hisanori Kobara
- a Department of Obstetrics and Gynecology , Shinshu University School of Medicine , Matsumoto , Japan
| | - Ryoichi Asaka
- a Department of Obstetrics and Gynecology , Shinshu University School of Medicine , Matsumoto , Japan
| | - Hirofumi Ando
- a Department of Obstetrics and Gynecology , Shinshu University School of Medicine , Matsumoto , Japan
| | - Shotaro Higuchi
- a Department of Obstetrics and Gynecology , Shinshu University School of Medicine , Matsumoto , Japan
| | - Koichi Ida
- a Department of Obstetrics and Gynecology , Shinshu University School of Medicine , Matsumoto , Japan
| | - Tanri Shiozawa
- a Department of Obstetrics and Gynecology , Shinshu University School of Medicine , Matsumoto , Japan
| |
Collapse
|
14
|
Mori M, Ito F, Shi L, Wang Y, Ishida C, Hattori Y, Niwa M, Hirayama T, Nagasawa H, Iwase A, Kikkawa F, Toyokuni S. Ovarian endometriosis-associated stromal cells reveal persistently high affinity for iron. Redox Biol 2015; 6:578-586. [PMID: 26498255 PMCID: PMC4633839 DOI: 10.1016/j.redox.2015.10.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/10/2015] [Indexed: 12/18/2022] Open
Abstract
Ovarian endometriosis is a recognized risk for infertility and epithelial ovarian cancer, presumably due to iron overload resulting from repeated hemorrhage. To find a clue for early detection and prevention of ovarian endometriosis-associated cancer, it is mandatory to evaluate catalytic (labile) ferrous iron (catalytic Fe(II)) and to study iron manipulation in ovarian endometriotic lesions. By the use of tissues from women of ovarian endometriosis as well as endometrial tissue from women with and without endometriosis, we for the first time performed histological analysis and cellular detection of catalytic Fe(II) with a specific fluorescent probe (HMRhoNox-M), and further evaluated iron transport proteins in the human specimens and in co-culture experiments using immortalized human eutopic/ectopic endometrial stromal cells (ESCs) in the presence or absence of epithelial cells (EpCs). The amounts of catalytic Fe(II) were higher in ectopic endometrial stromal cells (ecESCs) than in normal eutopic endometrial stromal cells (n-euESCs) both in the tissues and in the corresponding immortalized ESCs. ecESCs exhibited higher transferrin receptor 1 expression both in vivo and in vitro and lower ferroportin expression in vivo than n-euESCs, leading to sustained iron uptake. In co-culture experiments of ESCs with iron-loaded EpCs, ecESCs received catalytic ferrous iron from EpCs, but n-euESCs did not. These data suggest that ecESC play a protective role for cancer-target epithelial cells by collecting excess iron, and that these characteristics are retained in the immortalized ecESCs.
Collapse
Affiliation(s)
- Masahiko Mori
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumiya Ito
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Lei Shi
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yue Wang
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Chiharu Ishida
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuka Hattori
- Department of Obstetrics and Gynecology, Nagoya Ekisaikai Hospital, Nagoya, Japan
| | - Masato Niwa
- Laboratory of Pharmaceutical and Medical Chemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Tasuku Hirayama
- Laboratory of Pharmaceutical and Medical Chemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Hideko Nagasawa
- Laboratory of Pharmaceutical and Medical Chemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Akira Iwase
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
15
|
Mandai M, Amano Y, Yamaguchi K, Matsumura N, Baba T, Konishi I. Ovarian clear cell carcinoma meets metabolism; HNF-1β confers survival benefits through the Warburg effect and ROS reduction. Oncotarget 2015; 6:30704-14. [PMID: 26375553 PMCID: PMC4741562 DOI: 10.18632/oncotarget.5228] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/10/2015] [Indexed: 12/21/2022] Open
Abstract
Ovarian clear cell carcinoma (OCCC) constitutes one of the subtypes of ovarian cancers, but it has unique clinical, histological and biological characteristics, one of which is chemo-resistance. It is also known to develop from endometriotic cyst, a benign ovarian tumor, at relatively high frequency. Recently, it is becoming well known that most of OCCCs express HNF1β, a transcription factor, which is closely associated with the development of liver, pancreas and kidney, as well as occurrence of familial forms of type 2 diabetes. Expression of HNF1β is now regarded as a hallmark of this tumor. Nevertheless, exact biological function of this gene in OCCC has not been clarified. We have shown in previous studies that microenvironment in endometriotic cysts contains severe oxidative stress and OCCC develops under such stressful environment as stress-resistant tumor, which may lead to chemo-resistance. We also showed that increased expression of HNF1β facilitates glucose uptake and glycolysis, which is known as Warburg effect. In the previous issue of this journal, by using comprehensive metabolome analysis, we report that HNF1β actually reduces and protects themselves from internal oxidative stress by dramatically changing cellular metabolism. In this article, we review the relevance and significance of cancer-specific metabolism and how they are associated with biological characteristics of OCCC via expression of HNF1β, along with future clinical implications of targeting cancer-specific metabolism.
Collapse
Affiliation(s)
- Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Obstetrics and Gynecology, Kinki University Faculty of Medicine, Osaka-Sayama, Japan
| | - Yasuaki Amano
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ken Yamaguchi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Noriomi Matsumura
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tsukasa Baba
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ikuo Konishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
16
|
Katagiri H, Nakayama K, Razia S, Nakamura K, Sato E, Ishibashi T, Ishikawa M, Iida K, Ishikawa N, Otsuki Y, Nakayama S, Kyo S. Loss of autophagy-related protein Beclin 1 may define poor prognosis in ovarian clear cell carcinomas. Int J Oncol 2015; 47:2037-44. [PMID: 26458502 PMCID: PMC4665333 DOI: 10.3892/ijo.2015.3191] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/03/2015] [Indexed: 12/28/2022] Open
Abstract
The aim of the present study was to clarify the role of autophagy in cisplatin (CDDP) sensitivity in OCCCs and the role of Beclin 1 in OCCC progression. Autophagy was measured using: i) western blot analysis of LC3 and p62 and ii) microscopic observation of GFP-LC3 puncta. Autophagy was suppressed using chloroquine and Beclin 1 siRNA. Surgical specimens were examined for Beclin 1 protein expression by immunohistochemistry. The correlations between the loss of Beclin 1 expression and clinicopathological characteristics, prognosis and chemosensitivity were investigated. Inhibition of autophagy by chloroquine or Beclin 1 siRNA did not enhance the sensitivity of the ES2 and TOV-21G OCCC cell lines to CDDP. Loss of Beclin 1 expression was observed in 38.3% (23/60) of the analyzed tumors. There was no significant correlation between loss of Beclin 1 expression and FIGO stage, CA125 levels, patient age, status of endometriosis, Ki-67 labeling index, chemotherapy regimen or status of residual tumor. However, negative expression of Beclin 1 was associated with a shorter progression-free survival in comparison to positive Beclin 1 expression in OCCC who received cytoreductive surgery, followed by a standard platinum-based chemotherapy regimen (P=0.027, log-rank test). Beclin 1-negative tumors were no more resistant to primary adjuvant chemotherapy than were Beclin 1-positive tumors (50.0 vs. 66.7%, P=0.937). Beclin 1 knockdown using siRNA increased cell growth but not cell migration and invasion in ES2 and TOV-21G OCCC cell lines. Autophagy defects caused by loss of Beclin 1 are not related to chemoresistance and metastasis, but may be associated with malignant phenotype and poor prognosis of OCCC.
Collapse
Affiliation(s)
- Hiroshi Katagiri
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Kentaro Nakayama
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Sultana Razia
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Kohei Nakamura
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Emi Sato
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Tomoka Ishibashi
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Masako Ishikawa
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Kouji Iida
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Noriyoshi Ishikawa
- Department of Organ Pathology, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Yoshiro Otsuki
- Department of Pathology, Seirei Hamamatsu General Hospital, Hamamatsu 430-8558, Japan
| | - Satoru Nakayama
- Department of Obstetrics and Gynecology, Seirei Hamamatsu General Hospital, Hamamatsu 430-8558, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan
| |
Collapse
|
17
|
Hemachandra LPMP, Shin DH, Dier U, Iuliano JN, Engelberth SA, Uusitalo LM, Murphy SK, Hempel N. Mitochondrial Superoxide Dismutase Has a Protumorigenic Role in Ovarian Clear Cell Carcinoma. Cancer Res 2015; 75:4973-84. [PMID: 26359457 DOI: 10.1158/0008-5472.can-14-3799] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 08/19/2015] [Indexed: 12/29/2022]
Abstract
Epithelial ovarian cancer (EOC) is the fourth leading cause of death due to cancer in women and comprises distinct histologic subtypes, which vary widely in their genetic profiles and tissues of origin. It is therefore imperative to understand the etiology of these distinct diseases. Ovarian clear cell carcinoma (OCCC), a very aggressive subtype, comprises >10% of EOCs. In the present study, we show that mitochondrial superoxide dismutase (Sod2) is highly expressed in OCCC compared with other EOC subtypes. Sod2 is an antioxidant enzyme that converts highly reactive superoxide (O2 (•-)) to hydrogen peroxide (H2O2) and oxygen (O2), and our data demonstrate that Sod2 is protumorigenic and prometastatic in OCCC. Inhibiting Sod2 expression reduces OCCC ES-2 cell tumor growth and metastasis in a chorioallantoic membrane (CAM) model. Similarly, cell proliferation, migration, spheroid attachment and outgrowth on collagen, and Akt phosphorylation are significantly decreased with reduced expression of Sod2. Mechanistically, we show that Sod2 has a dual function in supporting OCCC tumorigenicity and metastatic spread. First, Sod2 maintains highly functional mitochondria, by scavenging O2 (•-), to support the high metabolic activity of OCCC. Second, Sod2 alters the steady-state ROS balance to drive H2O2-mediated migration. While this higher steady-state H2O2 drives prometastatic behavior, it also presents a doubled-edged sword for OCCC, as it pushed the intracellular H2O2 threshold to enable more rapid killing by exogenous sources of H2O2. Understanding the complex interaction of antioxidants and ROS may provide novel therapeutic strategies to pursue for the treatment of this histologic EOC subtype.
Collapse
Affiliation(s)
- L P Madhubhani P Hemachandra
- Nanobioscience Constellation, Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, State University of New York, Albany, New York
| | - Dong-Hui Shin
- Nanobioscience Constellation, Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, State University of New York, Albany, New York. Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Usawadee Dier
- Nanobioscience Constellation, Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, State University of New York, Albany, New York
| | - James N Iuliano
- Department of Chemistry, Stony Brook University, State University of New York, Stony Brook, New York
| | - Sarah A Engelberth
- Nanobioscience Constellation, Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, State University of New York, Albany, New York
| | - Larissa M Uusitalo
- Nanobioscience Constellation, Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, State University of New York, Albany, New York
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina
| | - Nadine Hempel
- Nanobioscience Constellation, Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, State University of New York, Albany, New York. Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania.
| |
Collapse
|
18
|
Kobayashi H, Shigetomi H, Yoshimoto C. Checkpoint kinase 1 inhibitors as targeted molecular agents for clear cell carcinoma of the ovary. Oncol Lett 2015; 10:571-576. [PMID: 26622535 DOI: 10.3892/ol.2015.3268] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 04/29/2015] [Indexed: 12/12/2022] Open
Abstract
In clear cell carcinoma of the ovary, chemoresistance frequently results in treatment failure. The present study aimed to review the potential association of transcription factor hepatocyte nuclear factor (HNF)-1β with cell cycle checkpoint machinery, as a mechanism for chemoresistance. The English-language literature on the subject was reviewed to identify genomic alterations and aberrant molecular pathways interacting with chemoresistance in clear cell carcinoma. Oxidative stress induced by repeated hemorrhage induces greater susceptibility of endometriotic cells to DNA damage, and subsequent malignant transformation results in endometriosis-associated ovarian cancer. Molecular changes, including those in HNF-1β and checkpoint kinase 1 (Chk1), may be a manifestation of essential alterations in cell cycle regulation, detoxification and chemoresistance in clear cell carcinoma. Chk1 is a critical signal transducer in the cell cycle checkpoint machinery. DNA damage, in turn, increases persistent phosphorylation of Chk1 and induction of G2/M phase cell cycle arrest in cells overexpressing HNF-1β. HNF-1β deletion induces apoptosis, suggesting that enhanced levels of HNF-1β may be associated with chemoresistance. Targeted therapy with Chk1 inhibitors may be explored as a potential treatment modality for patients with clear cell carcinoma. This provides a novel direction for combination therapy, including targeting of Chk1, which may overcome drug resistance and improve treatment efficacy.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Chiharu Yoshimoto
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| |
Collapse
|
19
|
Abstract
Endometriosis is a frequent gynecological disease of unknown etiology and pathogenesis. It affects the gynecological organs and the peritoneum with varying frequency and can lead to severe symptoms, mainly pain and to infertility. Despite the fact that causal therapy is not feasible diagnostic and therapeutic procedures are necessary in many cases. In a small percentage of cases endometriosis is associated with neoplastic disease and in some cases it might develop into a neoplasm via the stage of atypical endometriosis, notably in the ovaries. Tumors which are most frequently associated with endometriosis are endometrioid carcinoma, clear cell carcinoma, and low grade serous carcinoma. According to some authors tumors associated with endometriosis have a better prognosis than those without. Other tumors are Mullerian adenosarcoma, endometrioid stromal sarcoma, and seromucinous borderline tumor. In addition to the morphological findings more recent molecular findings serve to demonstrate the origin of the different types of carcinoma from endometriosis. In both endometrioid and clear cell carcinoma, loss of heterozygosity (LOH) can be found in different gene loci. Mutations in CTNNB1 (beta catenin), PTEN, KRAS and ARID1a genes have been demonstrated in endometrioid carcinoma. Cases of clear cell carcinoma have been characterized by mutations of ARID1a gene, PIK3CA and less frequently PPP2R1A and KRAS.
Collapse
Affiliation(s)
- D Schmidt
- synlab MVZ Pathologie Mannheim GmbH, A2,2, 68159, Mannheim, Deutschland,
| | | |
Collapse
|
20
|
Yamaguchi K, Matsumura N, Mandai M, Baba T, Konishi I, Murphy SK. Epigenetic and genetic dispositions of ovarian carcinomas. Oncoscience 2014; 1:574-9. [PMID: 25594067 PMCID: PMC4278339 DOI: 10.18632/oncoscience.82] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 09/15/2014] [Indexed: 12/17/2022] Open
Abstract
Ovarian clear cell carcinoma has unique clinical characteristics with slow growth and a stress-resistant phenotype that is epigenetically induced during cancer progression in an inflammatory microenvironment. We refer to this as an epigenetic disposition, which is frequently associated with unique biomolecular features including prominent alterations in methylation, microsatellite instability and ARID1A mutations. This characteristic methylation profile also affects glucose metabolism, commonly known as the Warburg effect. In contrast, high-grade ovarian serous adenocarcinoma has a genetic disposition that is accompanied by rapid growth, TP53 mutations and chromosomal instability. The concept of epigenetic and genetic dispositions is applicable to various malignancies, including gastric and colorectal cancers. These disposition classifications are based on fundamental characteristics of malignancies and may provide a new vantage point for development of individualized therapies.
Collapse
Affiliation(s)
- Ken Yamaguchi
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507 Japan
| | - Noriomi Matsumura
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507 Japan
| | - Masaki Mandai
- Department of Obstetrics and Gynecology, Kinki University, Faculty of Medicine, Osakasayama, Osaka, 589-8511 Japan
| | - Tsukasa Baba
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507 Japan
| | - Ikuo Konishi
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507 Japan
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham NC, 27708 USA
| |
Collapse
|
21
|
Abstract
OBJECTIVES Despite improvements in the management of ovarian cancer patients over the last 30 years, there has been only a minimal improvement in overall survival. While targeted therapeutic approaches for the treatment of cancer have evolved, major challenges in ovarian cancer research persist, including the identification of predictive biomarkers with clinical relevance, so that empirical drug selection can be avoided. In this article, we review published genomic analysis studies including data generated in our laboratory and how they have been incorporated into modern clinical trials in a rational and effective way. METHODS Multiple published genomic analysis studies were collected for review and discussion with emphasis on their potential clinical applicability. RESULTS Genomic analysis has been shown to be a powerful tool to identify dysregulated genes, aberrantly activated pathways and to uncover uniqueness of subclasses of ovarian tumors. The application of this technology has provided a solid molecular basis for different clinical behaviors associated with tumor histology and grade. Genomic signatures have been obtained to predict clinical end points for patients with cancer, including response rates, progression-free survival, and overall survival. In addition, genomic analysis has provided opportunities to identify biomarkers, which either result in a modification of existing clinical management or to stratification of patients to novel therapeutic approaches designed as clinical trials. CONCLUSIONS Genomic analyses have accelerated the identification of relevant biomarkers and extended our understanding of the molecular biology of ovarian cancer. This in turn, will hopefully lead to a paradigm shift from empirical, uniform treatment to a more rational, personalized treatment of ovarian cancers. However, validation of potential biomarkers on both the statistical and biological levels is needed to confirm they are of clinical relevance, in order to increase the likelihood that the desired outcome can be predicted and achieved.
Collapse
Affiliation(s)
- W Wei
- Center for Cancer Research, Harvard Medical School
| | | | | | | |
Collapse
|
22
|
Zannoni GF, Improta G, Chiarello G, Pettinato A, Petrillo M, Scollo P, Scambia G, Fraggetta F. Mutational status of KRAS, NRAS, and BRAF in primary clear cell ovarian carcinoma. Virchows Arch 2014; 465:193-8. [PMID: 24889043 DOI: 10.1007/s00428-014-1599-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 03/31/2014] [Accepted: 05/22/2014] [Indexed: 12/24/2022]
Abstract
Ovarian clear cell carcinoma (OCCC) is a subtype of epithelial ovarian cancer with characteristic biological features and aggressive clinical behavior. OCCCs show a pattern of gene mutations different from other type I ovarian malignancies, notably a higher frequency of PIK3CA mutations. In low grade serous ovarian cancer, KRAS and BRAF mutations are frequent, but little data are available on the mutational status of these genes in OCCCs. To clarify this issue, we designed a clinicopathological study with the aim to establish the incidence of KRAS, NRAS, and BRAF hot spot mutations in OCCC. Between December 2006 and June 2012, 22 patients with a proven diagnosis of OCCC were admitted to our Institutions. In all cases, final diagnosis was established according to FIGO and WHO criteria. All women received complete surgical staging. The PyroMark Q24 system (Qiagen GmbH, Hilden, Germany) was used for pyrosequencing analysis of KRAS, NRAS, and BRAF hot spot regions on 2.5-μm sections of formalin-fixed paraffin-embedded tissue from primary OCCC. Pyrosequencing analysis of KRAS, NRAS, and BRAF hot spot regions revealed the presence of mutations only at codon 12 in exon 2 of KRAS in 3 of 22 (14 %) cases. We found no mutations in the hot spot regions of NRAF (exons 2, 3, 4) or BRAF (exon 15). The median age of women with a KRAS mutated OCCC was 74 years. These OCCC were unilateral FIGO stage IA lesions in two cases associated with foci of endometriosis. We conclude that in 14 % of OCCCs, a KRAS mutation occurs in codon 2 exon 2. NRAS and BRAF mutations were not found.
Collapse
Affiliation(s)
- Gian Franco Zannoni
- Department of Pathology, Catholic University of the Sacred Heart, Largo A. Gemelli, 8, Rome, Italy,
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Bioenergetic analysis of ovarian cancer cell lines: profiling of histological subtypes and identification of a mitochondria-defective cell line. PLoS One 2014; 9:e98479. [PMID: 24858344 PMCID: PMC4032324 DOI: 10.1371/journal.pone.0098479] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 05/02/2014] [Indexed: 12/17/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal of all gynecological cancers, and encompasses distinct histological subtypes that have specific genetic and tissues-of-origin differences. Ovarian clear cell carcinoma (OCCC) represents approximately 10% of cases and has been termed a stress responsive cancer. OCCC is characterized by increased expression of oxidative stress and glycolysis-related genes. In the present study, we hypothesized that bioenergetic profiling might uniquely distinguish OCCC from other EOC histological subtypes. Using an extracellular flux analyzer, OCCC lines (ES-2, TOV-21-G) were shown to be highly metabolically active, with high oxygen consumption rate (OCR) and high extracellular acidification rate (ECAR), indicative of enhanced mitochondrial oxidative phosphorylation and glycolytic rate, respectively. A high bioenergetics profile was associated with the cell lines' ability to form anchorage independent spheroids. Given their high glycolytic and mitochondrial activity, OCCC cells displayed strong sensitivity to 2-deoxy-D-glucose and Rotenone growth inhibition, although this chemosensitivity profile was not specific to only OCCC cells. Bioenergetic profiling also identified a non-OCCC cell line, OVCA420, to have severely compromised mitochondrial function, based on low OCR and a lack of stimulation of maximal respiration following application of the uncoupler FCCP. This was accompanied by mitochondrial morphology changes indicative of enhanced fission, increased expression of the mitochondrial fission protein Drp1, a loss of mitochondrial membrane potential and dependence on glycolysis. Importantly, this loss of mitochondrial function was accompanied by the inability of OVCA420 cells to cope with hypoxic stress, and a compromised ability to stabilize HIF-1α in response to 1% O2 hypoxia. This knowledge may be imperative for researchers planning to utilize this cell line for further studies of metabolism and hypoxia, and suggests that altered mitochondrial fission dynamics represents a phenotype of a subpopulation of EOCs.
Collapse
|
24
|
Recent concepts of ovarian carcinogenesis: type I and type II. BIOMED RESEARCH INTERNATIONAL 2014; 2014:934261. [PMID: 24868556 PMCID: PMC4017729 DOI: 10.1155/2014/934261] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/31/2014] [Indexed: 02/06/2023]
Abstract
Type I ovarian tumors, where precursor lesions in the ovary have clearly been described, include endometrioid, clear cell, mucinous, low grade serous, and transitional cell carcinomas, while type II tumors, where such lesions have not been described clearly and tumors may develop de novo from the tubal and/or ovarian surface epithelium, comprise high grade serous carcinomas, undifferentiated carcinomas, and carcinosarcomas. The carcinogenesis of endometrioid and clear cell carcinoma (CCC) arising from endometriotic cysts is significantly influenced by the free iron concentration, which is associated with cancer development through the induction of persistent oxidative stress. A subset of mucinous carcinomas develop in association with ovarian teratomas; however, the majority of these tumors do not harbor any teratomatous component. Other theories of their origin include mucinous metaplasia of surface epithelial inclusions, endometriosis, and Brenner tumors. Low grade serous carcinomas are thought to evolve in a stepwise fashion from benign serous cystadenoma to a serous borderline tumor (SBT). With regard to high grade serous carcinoma, the serous tubal intraepithelial carcinomas (STICs) of the junction of the fallopian tube epithelium with the mesothelium of the tubal serosa, termed the “tubal peritoneal junction” (TPJ), undergo malignant transformation due to their location, and metastasize to the nearby ovary and surrounding pelvic peritoneum. Other theories of their origin include the ovarian hilum cells.
Collapse
|
25
|
Brosseau JP, Lucier JF, Nwilati H, Thibault P, Garneau D, Gendron D, Durand M, Couture S, Lapointe E, Prinos P, Klinck R, Perreault JP, Chabot B, Abou-Elela S. Tumor microenvironment-associated modifications of alternative splicing. RNA (NEW YORK, N.Y.) 2014; 20:189-201. [PMID: 24335142 PMCID: PMC3895271 DOI: 10.1261/rna.042168.113] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Pre-mRNA alternative splicing is modified in cancer, but the origin and specificity of these changes remain unclear. Here, we probed ovarian tumors to identify cancer-associated splicing isoforms and define the mechanism by which splicing is modified in cancer cells. Using high-throughput quantitative PCR, we monitored the expression of splice variants in laser-dissected tissues from ovarian tumors. Surprisingly, changes in alternative splicing were not limited to the tumor tissues but were also found in the tumor microenvironment. Changes in the tumor-associated splicing events were found to be regulated by splicing factors that are differentially expressed in cancer tissues. Overall, ∼20% of the alternative splicing events affected by the down-regulation of the splicing factors QKI and RBFOX2 were altered in the microenvironment of ovarian tumors. Together, our results indicate that the tumor microenvironment undergoes specific changes in alternative splicing orchestrated by a limited number of splicing factors.
Collapse
Affiliation(s)
- Jean-Philippe Brosseau
- Laboratoire de Génomique Fonctionnelle de l'Université de Sherbrooke, Sherbrooke, Québec, Canada J1E 4K8
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada J1E 4K8
| | - Jean-François Lucier
- Laboratoire de Génomique Fonctionnelle de l'Université de Sherbrooke, Sherbrooke, Québec, Canada J1E 4K8
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada J1E 4K8
| | - Hanad Nwilati
- Laboratoire de Génomique Fonctionnelle de l'Université de Sherbrooke, Sherbrooke, Québec, Canada J1E 4K8
| | - Philippe Thibault
- Laboratoire de Génomique Fonctionnelle de l'Université de Sherbrooke, Sherbrooke, Québec, Canada J1E 4K8
| | - Daniel Garneau
- Laboratoire de Génomique Fonctionnelle de l'Université de Sherbrooke, Sherbrooke, Québec, Canada J1E 4K8
| | - Daniel Gendron
- Laboratoire de Génomique Fonctionnelle de l'Université de Sherbrooke, Sherbrooke, Québec, Canada J1E 4K8
| | - Mathieu Durand
- Laboratoire de Génomique Fonctionnelle de l'Université de Sherbrooke, Sherbrooke, Québec, Canada J1E 4K8
| | - Sonia Couture
- Laboratoire de Génomique Fonctionnelle de l'Université de Sherbrooke, Sherbrooke, Québec, Canada J1E 4K8
| | - Elvy Lapointe
- Laboratoire de Génomique Fonctionnelle de l'Université de Sherbrooke, Sherbrooke, Québec, Canada J1E 4K8
| | - Panagiotis Prinos
- Laboratoire de Génomique Fonctionnelle de l'Université de Sherbrooke, Sherbrooke, Québec, Canada J1E 4K8
| | - Roscoe Klinck
- Laboratoire de Génomique Fonctionnelle de l'Université de Sherbrooke, Sherbrooke, Québec, Canada J1E 4K8
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada J1E 4K8
| | - Jean-Pierre Perreault
- Laboratoire de Génomique Fonctionnelle de l'Université de Sherbrooke, Sherbrooke, Québec, Canada J1E 4K8
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada J1E 4K8
| | - Benoit Chabot
- Laboratoire de Génomique Fonctionnelle de l'Université de Sherbrooke, Sherbrooke, Québec, Canada J1E 4K8
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada J1E 4K8
| | - Sherif Abou-Elela
- Laboratoire de Génomique Fonctionnelle de l'Université de Sherbrooke, Sherbrooke, Québec, Canada J1E 4K8
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada J1E 4K8
- Corresponding authorE-mail
| |
Collapse
|
26
|
Taniguchi F, Harada T, Kobayashi H, Hayashi K, Momoeda M, Terakawa N. Clinical Characteristics of Patients in Japan with Ovarian Cancer Presumably Arising from Ovarian Endometrioma. Gynecol Obstet Invest 2014; 77:104-10. [DOI: 10.1159/000357819] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 11/18/2013] [Indexed: 11/19/2022]
|
27
|
Uekuri C, Shigetomi H, Ono S, Sasaki Y, Matsuura M, Kobayashi H. Toward an understanding of the pathophysiology of clear cell carcinoma of the ovary (Review). Oncol Lett 2013; 6:1163-1173. [PMID: 24179489 PMCID: PMC3813717 DOI: 10.3892/ol.2013.1550] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 07/29/2013] [Indexed: 12/12/2022] Open
Abstract
Endometriosis-associated ovarian cancers demonstrate substantial morphological and genetic diversity. The transcription factor, hepatocyte nuclear factor (HNF)-1β, may be one of several key genes involved in the identity of ovarian clear cell carcinoma (CCC). The present study reviews a considerably expanded set of HNF-1β-associated genes and proteins that determine the pathophysiology of CCC. The current literature was reviewed by searching MEDLINE/PubMed. Functional interpretations of gene expression profiling in CCC are provided. Several important CCC-related genes overlap with those known to be regulated by the upregulation of HNF-1β expression, along with a lack of estrogen receptor (ER) expression. Furthermore, the genetic expression pattern in CCC resembles that of the Arias-Stella reaction, decidualization and placentation. HNF-1β regulates a subset of progesterone target genes. HNF-1β may also act as a modulator of female reproduction, playing a role in endometrial regeneration, differentiation, decidualization, glycogen synthesis, detoxification, cell cycle regulation, implantation, uterine receptivity and a successful pregnancy. In conclusion, the present study focused on reviewing the aberrant expression of CCC-specific genes and provided an update on the pathological implications and molecular functions of well-characterized CCC-specific genes.
Collapse
Affiliation(s)
- Chiharu Uekuri
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Borghese B, Santulli P, Vaiman D, Alexandre J, Goldwasser F, Chapron C. Les cancers de l’ovaire associés à l’endométriose : physiopathologie et conséquences sur la pratique clinique. ACTA ACUST UNITED AC 2013; 42:325-33. [DOI: 10.1016/j.jgyn.2013.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/19/2013] [Accepted: 02/28/2013] [Indexed: 01/07/2023]
|
29
|
The oncofetal protein IMP3: a novel biomarker and triage tool for premalignant atypical endometriotic lesions. Fertil Steril 2013; 99:1974-9. [PMID: 23473990 DOI: 10.1016/j.fertnstert.2013.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/24/2013] [Accepted: 02/04/2013] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To determine whether the oncofetal protein IMP3 is detectable in endometriomas with or without histological atypia and whether IMP3 staining can be used as a triage tool to identify foci of atypical endometriosis in doubtful cases. DESIGN Retrospective study. SETTING Academic department and referral center for endometriosis. PATIENT(S) A consecutive series of 516 women who underwent excision of 874 endometriomas. INTERVENTION(S) Histological review by three expert pathologists and immunohistochemical staining for IMP3. MAIN OUTCOME MEASURE(S) Test performance of IMP3 immunohistochemistry versus first-round histology. RESULT(S) The prevalence of atypical endometriosis was 1.7% (95% confidence interval [CI], 0.9%-3.3%) based on the number of women and 1.0% (95% CI, 0.5%-1.9%) based on the number of cysts. Three cases of atypical endometriosis were identified at first-round histological examination. Immunohistochemistry detected seven of the eight cases diagnosed as preneoplastic atypia at second-round histology and one case diagnosed as reactive atypia at second-round histology. The sensitivity of first-round histology was 33.3%, compared with 88.9% of IMP3 immunohistochemistry. CONCLUSION(S) Immunohistochemical staining for IMP3 expression is a simple, inexpensive, and sensitive test that can be used in routine clinical practice as a triage tool to discriminate between cytological/structural atypia and confounding benign conditions.
Collapse
|
30
|
Kramer MW, Abbas M, Pertschy S, Becker JU, Kreipe HH, Kuczyk MA, Merseburger AS, Tezval H. Clear-cell variant urothelial carcinoma of the bladder: a case report and review of the literature. Rare Tumors 2013; 4:e48. [PMID: 23372912 PMCID: PMC3557562 DOI: 10.4081/rt.2012.e48] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 07/20/2012] [Indexed: 12/23/2022] Open
Abstract
Clear cell variants of transitional cell carcinomas (TCC) of the bladder are extremely rare tumors. Only 6 cases have been reported until now. We report of a 67 year old man who presented with fast growing tumor disease. While initial diagnosis showed localized bladder tumor, final histopathology revealed pT4, G3, L1 urothelial carcinoma with clear cell differentiation. No more than 14 weeks after initial diagnosis the patient died from multi-organ failure after unsuccessful salvage laparotomy which showed massive tumor burden within the pelvis and peritoneal carcinosis. This case demonstrated an extremely fast tumor growth. Therefore, patients with clear cell urothelial carcinoma should be treated vigorously and without time delay. We present a case of clear cell variant of TCC which exhibited an extremely aggressive behavior. To our knowledge this is the fifth report of this rare disease.
Collapse
|
31
|
Higashiura Y, Kajihara H, Shigetomi H, Kobayashi H. Identification of multiple pathways involved in the malignant transformation of endometriosis (Review). Oncol Lett 2012; 4:3-9. [PMID: 22807950 DOI: 10.3892/ol.2012.690] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 04/18/2012] [Indexed: 12/14/2022] Open
Abstract
The association between endometriosis and malignant transformation has often been described in the medical literature. A search was conducted between 1966 and 2010 through the English language literature (online Medline PubMed database) using the keywords endometriosis combined with malignant transformation. The search revealed an increase in reports describing endometriosis and malignancy. Approximately 1.0% of women with endometriosis have lesions that undergo malignant transformation. The malignant processes that are associated with endometriosis may be classified into three groups: i) epithelial ovarian cancers (endometrioid adenocarcinoma and clear cell carcinoma), ii) other Müllerian-type tumors, including Müllerian-type mucinous borderline tumor and serous borderline tumor and iii) sarcomas such as adenosarcoma and endometrial stromal sarcoma in the female pelvic cavity. Persistent oxidative stress induced by endometriosis-dependent hemorrhage may be associated with carcinogenesis. In conclusion, the malignant transformation of endometriosis has multiple pathways of development and may share a common pathogenic mechanism; iron-induced oxidative stress derived from repeated hemorrhage.
Collapse
Affiliation(s)
- Yumi Higashiura
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | | | | | | |
Collapse
|
32
|
del Carmen MG, Birrer M, Schorge JO. Clear cell carcinoma of the ovary: a review of the literature. Gynecol Oncol 2012; 126:481-90. [PMID: 22525820 DOI: 10.1016/j.ygyno.2012.04.021] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Different histologic types of epithelial ovarian cancer may represent different diseases with unique clinical and molecular characteristics. Clear cell carcinoma (CCC) of the ovary has been reported as having a worse prognosis than high grade serous epithelial ovarian cancer (EOC). This article critically reviews the literature pertinent to the pathology, pathogenesis, diagnosis, management, and outcome of patients with ovarian CCC. METHODS MEDLINE was searched for all research articles published in English between January 01, 1977 and January 30, 2012 which reported on patients diagnosed with ovarian CCC. Given the rarity of this tumor, studies were not limited by design or number of reported patients. RESULTS Ovarian CCC tumors represent 5-25% of ovarian cancers. Its histologic diagnosis can be challenging, resulting often times in misclassification of these tumors. Ovarian CCC tends to present at earlier stages and has been associated with endometriosis, ARID1A and PIK3CA mutations. When compared to stage-matched controls, patients with early-stage ovarian CCCs may have a better prognosis than patients with high-grade serous tumors. For those with advanced stage disease, high-grade serous histology confers a better prognosis than ovarian CCC. Patients with Stage IC-IV have a relatively poor prognosis and efforts should center in discovery of more effective treatment strategies. CONCLUSIONS Ovarian CCC is a biologically distinct entity, different from high-grade serous EOC. Future studies should explore the role of targeted therapies in the management of ovarian CCC.
Collapse
Affiliation(s)
- Marcela G del Carmen
- Division of Gynecologic Oncology, Vincent Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | | | | |
Collapse
|
33
|
Clinical Management of Ovarian Endometriotic Cyst (Chocolate Cyst): Diagnosis, Medical Treatment, and Minimally Invasive Surgery. CURRENT OBSTETRICS AND GYNECOLOGY REPORTS 2012. [DOI: 10.1007/s13669-011-0002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|