1
|
Ouyang B, Bi M, Jadhao M, Bick G, Zhang X. miR-205 Regulates Tamoxifen Resistance by Targeting Estrogen Receptor Coactivator MED1 in Human Breast Cancer. Cancers (Basel) 2024; 16:3992. [PMID: 39682180 DOI: 10.3390/cancers16233992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: Estrogen receptor-α coactivator MED1 is overexpressed in 40-60% of human breast cancers, and its high expression correlates with poor disease-free survival of patients undergoing anti-estrogen therapy. However, the molecular mechanism underlying MED1 upregulation and activation in breast cancer treatment resistance remains elusive. Methods: miRNA and mRNA expression analysis was performed using the NCBI GEO database. MED1 targeting and its impact on therapy resistance was evaluated in control and tamoxifen-resistant breast cancer cell lines by miR-205 overexpression and inhibition. Immunoblotting, chromatin immunoprecipitation, and luciferase reporter assays were used to understand the molecular mechanism of MED1-mediated tamoxifen resistance. Mice xenograft models were used to validate treatment efficacy and molecular mechanisms in vivo. Results: miR-205 was found to directly target and suppress the expression of MED1 through bioinformatic analyses and experimental validations. An inverse correlation of miR-205 and MED1 was observed in breast cancer patients with high MED1/low miR-205, indicative of poor prognosis in long-term anti-estrogen treatment. Furthermore, the depletion of miR-205 was observed in tamoxifen-resistant breast cancer cells overexpressing MED1. The restoration of miR-205 expression attenuated MED1 expression and re-sensitized cells to tamoxifen both in vitro and in vivo. Interestingly, miR205 was also found to target another key regulatory gene, HER3, which drives PI3K/Akt signaling and MED1 activation by phosphorylation. Importantly, we found ER target gene transcription and promoter cofactor recruitment by tamoxifen can be reversed by induced miR205 expression. Conclusions: Altogether, miR-205 functions as a negative regulator of MED1 and HER3, affecting the regulation of the HER3-PI3K/Akt-MED1 axis in anti-estrogen resistance, and could serve as a potential therapeutic regime to overcome treatment resistance.
Collapse
Affiliation(s)
- Bin Ouyang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Mingjun Bi
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Mahendra Jadhao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Gregory Bick
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xiaoting Zhang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Breast Cancer Research Program, University of Cincinnati Cancer Center, Cincinnati, OH 45267, USA
| |
Collapse
|
2
|
Kavishahi NN, Rezaee A, Jalalian S. The Impact of miRNAs on the Efficacy of Tamoxifen in Breast Cancer Treatment: A Systematic Review. Clin Breast Cancer 2024; 24:341-350. [PMID: 38413339 DOI: 10.1016/j.clbc.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/29/2024]
Abstract
Seventy percent of breast cancer patients have an active estrogen receptor. Tamoxifen interferes with estrogen's ability to bind to cancer cells. The most challenging aspect of tamoxifen, however, is that breast cancer cells become resistant to its effects. Some studies have shown that alterations in miRNA expression contribute significantly to drug resistance in breast cancer. Therefore, the present systematic review aims to investigate miRNAs that significantly influence the response to tamoxifen treatment. The present study follows the PRISMA instructions. The Web of Science, PubMed, and Scopus databases were searched to retrieve English articles. The searches were conducted up to September 11, 2022. The search strategy included the terms "Tamoxifen", "Breast Neoplasm", and "MicroRNA". The inclusion criteria of this study are English, original, and experimental studies investigating miRNAs that are effective in the treatment efficacy of tamoxifen. A total of 565 articles were retrieved. After screening, 75 studies met our inclusion criteria. This systematic review study examined 105 miRNAs, of which 44 have a positive effect, and 47 miRNAs inhibit tamoxifen function. Fourteen miRNAs have a controversial effect, ie, some studies show positive and negative effects. The study of miRNAs affecting tamoxifen function in breast cancer patients may facilitate the identification of individuals at higher risk of disease recurrence. Conversely, it can potentially utilize appropriate interventions to defeat drug resistance effectively.
Collapse
Affiliation(s)
- Nima Nikbin Kavishahi
- Department of Medical Genetics, Student Research Committee, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sara Jalalian
- Medical Doctor Student, Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| |
Collapse
|
3
|
Sukocheva OA, Lukina E, Friedemann M, Menschikowski M, Hagelgans A, Aliev G. The crucial role of epigenetic regulation in breast cancer anti-estrogen resistance: Current findings and future perspectives. Semin Cancer Biol 2022; 82:35-59. [PMID: 33301860 DOI: 10.1016/j.semcancer.2020.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/22/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer (BC) cell de-sensitization to Tamoxifen (TAM) or other selective estrogen receptor (ER) modulators (SERM) is a complex process associated with BC heterogeneity and the transformation of ER signalling. The most influential resistance-related mechanisms include modifications in ER expression and gene regulation patterns. During TAM/SERM treatment, epigenetic mechanisms can effectively silence ER expression and facilitate the development of endocrine resistance. ER status is efficiently regulated by specific epigenetic tools including hypermethylation of CpG islands within ER promoters, increased histone deacetylase activity in the ER promoter, and/or translational repression by miRNAs. Over-methylation of the ER α gene (ESR1) promoter by DNA methyltransferases was associated with poor prognosis and indicated the development of resistance. Moreover, BC progression and spreading were marked by transformed chromatin remodelling, post-translational histone modifications, and expression of specific miRNAs and/or long non-coding RNAs. Therefore, targeted inhibition of histone acetyltransferases (e.g. MYST3), deacetylases (e.g. HDAC1), and/or demethylases (e.g. lysine-specific demethylase LSD1) was shown to recover and increase BC sensitivity to anti-estrogens. Indicated as a powerful molecular instrument, the administration of epigenetic drugs can regain ER expression along with the activation of tumour suppressor genes, which can in turn prevent selection of resistant cells and cancer stem cell survival. This review examines recent advances in the epigenetic regulation of endocrine drug resistance and evaluates novel anti-resistance strategies. Underlying molecular mechanisms of epigenetic regulation will be discussed, emphasising the utilization of epigenetic enzymes and their inhibitors to re-program irresponsive BCs.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Elena Lukina
- Discipline of Biology, College of Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Markus Friedemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Albert Hagelgans
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia; Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russia; Federal State Budgetary Institution «Research Institute of Human Morphology», 3, Tsyurupy Str., Moscow, 117418, Russian Federation; GALLY International Research Institute, San Antonio, TX, 78229, USA.
| |
Collapse
|
4
|
Rossi V, Govoni M, Farabegoli F, Di Stefano G. Lactate is a potential promoter of tamoxifen resistance in MCF7 cells. Biochim Biophys Acta Gen Subj 2022; 1866:130185. [PMID: 35661802 DOI: 10.1016/j.bbagen.2022.130185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/05/2022] [Accepted: 05/31/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Tamoxifen is a widely used estrogen receptor inhibitor, whose clinical success is limited by the development of acquired resistance. This compound was also found to inhibit mitochondrial function, causing increased glycolysis and lactate production. Lactate has been widely recognized as a signaling molecule, showing the potential of modifying gene expression. These metabolic effects of tamoxifen can by hypothesized to contribute in driving drug resistance. METHODS To test this hypothesis, we used MCF7 cells together with a tamoxifen resistant cell line (MCF7-TAM). Experiments were aimed at verifying whether enhanced lactate exposure can affect the phenotype of MCF7 cells, conferring them features mirroring those observed in the tamoxifen resistant culture. RESULTS The obtained results suggested that enhanced lactate in MCF7 cells medium can increase the expression of tafazzin (TAZ) and telomerase complex (TERC, TERT) genes, reducing the cells' attitude to undergo senescence. In long term lactate-exposed cells, signs of EGFR activation, a pathway related to acquired tamoxifen resistance, was also observed. CONCLUSIONS The obtained results suggested lactate as a potential promoter of tamoxifen resistance. The off-target effects of this compound could play a role in hindering its therapeutic efficacy. GENERAL SIGNIFICANCE The features of acquired tamoxifen resistance have been widely characterized at the molecular level; in spite of their heterogeneity, poorly responsive cells were often found to display upregulated glycolysis. Our results suggest that this metabolic asset is not simply a result of neoplastic progression, but can play an active part in driving this process.
Collapse
Affiliation(s)
- Valentina Rossi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| | - Marzia Govoni
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| | - Fulvia Farabegoli
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| | - Giuseppina Di Stefano
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| |
Collapse
|
5
|
Grimes JA, Lourenço BN, Coleman AE, Rissi DR, Schmiedt CW. MicroRNAs are differentially expressed in the serum and renal tissues of cats with experimentally induced chronic kidney disease: a preliminary study. Am J Vet Res 2022; 83:426-433. [PMID: 35239506 DOI: 10.2460/ajvr.21.08.0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To identify differentially expressed microRNA in the serum and renal tissues of cats with experimentally induced chronic kidney disease (CKD). SAMPLE Banked renal tissues and serum from 4 cats. PROCEDURES Cats previously underwent 90-minute unilateral ischemia with delayed contralateral nephrectomy 3 months after ischemia. Tissues were collected from the contralateral kidney at the time of nephrectomy and from the ischemic kidney 6 months after nephrectomy (study end). Serum was collected prior to ischemia (baseline serum) and at study end (end point serum). Total RNA was isolated from tissues and serum, and microRNA sequencing was performed with differential expression analysis between the contralateral and ischemic kidney and baseline and end point serum. RESULTS 20 microRNAs were differentially expressed between ischemic and contralateral kidneys, and 52 microRNAs were differentially expressed between end point and baseline serum. Five microRNAs were mutually differentially expressed between ischemic and contralateral kidneys and baseline and end point serum, with 4 (mir-21, mir-146, mir-199, and mir-235) having increased expression in both the ischemic kidney and end point serum and 1 (mir-382) having increased expression in the ischemic kidney and decreased expression in end point serum. Predicted target search for these microRNA revealed multiple genes previously shown to be involved in the pathogenesis of feline CKD, including hypoxia-inducible factor-1α, transforming growth factor-β, hepatocyte growth factor, fibronectin, and vascular endothelial growth factor A. CLINICAL RELEVANCE MicroRNAs were differentially expressed after CKD induction in this preliminary study. Regulation of renal fibrosis in feline CKD may occur through microRNA regulation of mRNAs of pro- and anti-fibrotic genes.
Collapse
Affiliation(s)
- Janet A Grimes
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Bianca N Lourenço
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Amanda E Coleman
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Daniel R Rissi
- Athens Veterinary Diagnostic Laboratory, Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Chad W Schmiedt
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA
| |
Collapse
|
6
|
Amiruddin A, Massi MN, Islam AA, Patellongi I, Pratama MY, Sutandyo N, Natzir R, Hatta M, Md Latar NH, Wahid S. microRNA-221 and tamoxifen resistance in luminal-subtype breast cancer patients: A case-control study. Ann Med Surg (Lond) 2022; 73:103092. [PMID: 35079352 PMCID: PMC8767262 DOI: 10.1016/j.amsu.2021.103092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 02/07/2023] Open
Abstract
Background Around 70% of breast cancers (BCs) are estrogen receptor-α (ERα)-positive. Adjuvant endocrine therapy is used to reduce estrogen levels and inhibit signal transduction through the ER. The anti-estrogen drugs that are most commonly used in endocrine therapy belong to the selective ER modulator (SERM) class and include tamoxifen. Although it has been used for three decades in cases of early-stage and ERα-positive BC, resistance to tamoxifen is a common problem. microRNAs (miRNAs) have a potential role in demonstrating BC resistance to tamoxifen therapy. Hence, there is a need to investigate the expression of miRNA-221 (miR-221) in luminal-subtype BC patients receiving tamoxifen therapy. Methods This case-control study investigated luminal-subtype BC patients who had undergone endocrine therapy for at least 1 year. The case group comprised patients with local or metastatic recurrence, and the control group comprised patients without local or metastatic recurrence. Results There was a significant difference in miR-221 expression (p = 0.005) between the case and control groups. There were no significant differences between the groups that were positive and negative for the progesterone receptor (PR) (p = 0.25), had high and low marker of proliferation Ki-67 levels (p = 0.60), were positive and negative for lymphovascular invasion (p = 0.14), and had stage 2 and stage 3 cancer (p = 0.25). Conclusion miR-221 expression was higher in tamoxifen-resistant BC cases. miR-221 is a potential biomarker of tamoxifen resistance. Tamoxifen is used to treat early-stage and estrogen receptor-α-positive breast cancer. Resistance to tamoxifen is a common problem. Serum microRNA-221 levels were higher in patients with local recurrence and metastasis. microRNA-221 is a potential serum biomarker of tamoxifen resistance.
Collapse
Affiliation(s)
- Alfiah Amiruddin
- Doctoral Program of Biomedical Sciences, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Muhammad Nassrum Massi
- Department of Microbiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Andi Asadul Islam
- Department of Neurosurgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Ilhamjaya Patellongi
- Department of Physiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Muhammad Yogi Pratama
- Department of Pathology Anatomy, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Noorwati Sutandyo
- Department of Medical Hematology-Oncology, Dharmais Hospital National Cancer Center, Jakarta, Indonesia
| | - Rosdiana Natzir
- Department of Biochemistry, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia
| | - Mochammad Hatta
- Department of Microbiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Nani Harlina Md Latar
- Endocrine and Breast Surgery Unit, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Syarifuddin Wahid
- Department of Pathology Anatomy, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
7
|
Hu O, Li Z, Tong Y, Wang Q, Chen Z. DNA functionalized double quantum dots-based fluorescence biosensor for one-step simultaneous detection of multiple microRNAs. Talanta 2021; 235:122763. [PMID: 34517624 DOI: 10.1016/j.talanta.2021.122763] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/27/2022]
Abstract
The disease diagnosis by detecting single microRNAs (miRNAs) can produce high false positive rate. Herein, a novel fluorescence biosensor method for one-step simultaneous detection of multiple miRNAs was proposed by using single-stranded DNA (ssDNA) functionalized double quantum dots (QDs) and black hole quencher (BHQ)-decorated magnetic nanobeads (MNs). MNs were linked with two black hole quenchers (BHQ1 and BHQ3) via a complementary DNA (cDNA). The ssDNA/cDNA hybridization contributed to the fluorescence quenching of double QDs due to the fluorescence resonance energy transfer (FRET) between double QDs and BHQ. In the presence of target miRNA-33 (miR-33) and miRNA-125b (miR-125b), the ssDNA1 and ssDNA2 were respectively hybridized with miR-33 and miR-125b to form more stable duplexes. Thus, the double QDs were released into supernatant after the magnetic separation, leading to the fluorescence signals recovery at 537 nm and 647 nm. A wide linear range (0.5 nM-320 nM for miR-33 and 0.1 nM-250 nM for miR-125b) and low limits of detection (0.09 nM for miR-33 and 0.02 nM for miR-125b) were achieved. Moreover, our approach has been demonstrated to simultaneously detect miR-33 and miR-125b in cell extracts. With advantages of high sensitivity, strong specificity, low background and low cost, the strategies show great potentials for the detection of various targets in bioanalysis and disease diagnosis.
Collapse
Affiliation(s)
- Ou Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zeyu Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yanli Tong
- Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
| | - Qiyou Wang
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Zuanguang Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Is the regulation by miRNAs of NTPDase1 and ecto-5'-nucleotidase genes involved with the different profiles of breast cancer subtypes? Purinergic Signal 2021; 18:123-133. [PMID: 34741235 DOI: 10.1007/s11302-021-09824-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is a public health problem worldwide, causing suffering and premature death among women. As a heterogeneous disease, BC-specific diagnosis and treatment are challenging. Ectonucleotidases are related to tumor development and their expression may vary among BC. miRNAs may participate in epigenetic events and may regulate ectonucleotidases in BC. This study aimed to evaluate the expression of ectonucleotidases according to BC subtypes and to predict if there is post-transcriptional regulation of them by miRNAs. MCF 10A (non-tumorigenic), MCF7 (luminal BC), and MDA-MB-231 (triple-negative BC - TNBC) breast cell lines were used and ENTPD1 (the gene encoding for NTPDase1) and NT5E (the gene encoding for ecto-5'-nucleotidase) gene expression was determined. Interestingly, the expression of ENTPD1 was only observed in MCF7 and NT5E was lower in MCF7 compared to MDA-MB-231 cell line. ATP, ADP, and AMP hydrolysis were observed on the surface of all cell lines, being higher in MDA-MB-231. Like qPCR, the activity of AMP hydrolysis was also lower in the MCF7 cells, which may represent a striking feature of this BC subtype. In silico analyses confirmed that the miRNAs miR-101-3p, miR-141-3p, and miR-340-5p were higher expressed in MCF7 cells and targeted NT5E mRNA. Altogether, data suggest that the regulation of NT5E by miRNAs in MCF7 lineage may direct the molecular profile of luminal BC. Thus, we suggest that the roles of ecto-5'-nucleotidase and the aforementioned miRNAs must be unraveled in TNBC to be possibly defined as diagnostic and therapeutic targets.
Collapse
|
9
|
Yang H, Chen J, Liang Y, Zhang Y, Yin W, Xu Y, Liu SY, Dai Z, Zou X. A MOF-Shell-Confined I-Motif-Based pH Probe (MOFC-i) Strategy for Sensitive and Dynamic Imaging of Cell Surface pH. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45291-45299. [PMID: 34542269 DOI: 10.1021/acsami.1c13720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dynamic imaging of cell surface pH is extremely challenging due to the slight changes in pH and the fast diffusion of secreted acid to the extracellular environment. In this work, we construct a novel metal-organic framework (MOF)-shell-confined i-motif-based pH probe (MOFC-i) strategy that enables sensitive and dynamic imaging of cell surface pH. The CY3- and CY5-labeled i-motif, which is hybridized via its short complementary chain with two-base mismatches, is optimized for sensing at physiological pH. After efficiently anchoring the optimized pH probes onto the cell membrane with the aid of cholesterol groups, a biocompatible microporous MOF shell is then formed around the cell by cross-linking ZIF-8 nanoparticles via tannic acid. The microporous MOF shell can confine secreted acid without inhibiting the normal physiological activities of cells; thus, the MOFC-i strategy can be used to monitor dynamic changes in the cell surface pH of living cells. Furthermore, this method can not only clearly distinguish the different metabolic behaviors of cancer cells and normal cells but also reveal drug effects on the cell surface pH or metabolism, providing promising prospects in pH-related diagnostics and drug screening.
Collapse
Affiliation(s)
- Huihui Yang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jun Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuling Liang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yanfei Zhang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wen Yin
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuzhi Xu
- Scientific Research Center, Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Si-Yang Liu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Zong Dai
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Xiaoyong Zou
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
10
|
Garrido-Cano I, Pattanayak B, Adam-Artigues A, Lameirinhas A, Torres-Ruiz S, Tormo E, Cervera R, Eroles P. MicroRNAs as a clue to overcome breast cancer treatment resistance. Cancer Metastasis Rev 2021; 41:77-105. [PMID: 34524579 PMCID: PMC8924146 DOI: 10.1007/s10555-021-09992-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/02/2021] [Indexed: 12/31/2022]
Abstract
Breast cancer is the most frequent cancer in women worldwide. Despite the improvement in diagnosis and treatments, the rates of cancer relapse and resistance to therapies remain higher than desirable. Alterations in microRNAs have been linked to changes in critical processes related to cancer development and progression. Their involvement in resistance or sensitivity to breast cancer treatments has been documented by different in vivo and in vitro experiments. The most significant microRNAs implicated in modulating resistance to breast cancer therapies are summarized in this review. Resistance to therapy has been linked to cellular processes such as cell cycle, apoptosis, epithelial-to-mesenchymal transition, stemness phenotype, or receptor signaling pathways, and the role of microRNAs in their regulation has already been described. The modulation of specific microRNAs may modify treatment response and improve survival rates and cancer patients' quality of life. As a result, a greater understanding of microRNAs, their targets, and the signaling pathways through which they act is needed. This information could be useful to design new therapeutic strategies, to reduce resistance to the available treatments, and to open the door to possible new clinical approaches.
Collapse
Affiliation(s)
| | | | | | - Ana Lameirinhas
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
| | | | - Eduardo Tormo
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain.,Center for Biomedical Network Research On Cancer, CIBERONC-ISCIII, 28029, Madrid, Spain
| | | | - Pilar Eroles
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain. .,Center for Biomedical Network Research On Cancer, CIBERONC-ISCIII, 28029, Madrid, Spain. .,Department of Physiology, University of Valencia, 46010, Valencia, Spain.
| |
Collapse
|
11
|
Barazetti JF, Jucoski TS, Carvalho TM, Veiga RN, Kohler AF, Baig J, Al Bizri H, Gradia DF, Mader S, Carvalho de Oliveira J. From Micro to Long: Non-Coding RNAs in Tamoxifen Resistance of Breast Cancer Cells. Cancers (Basel) 2021; 13:3688. [PMID: 34359587 PMCID: PMC8345104 DOI: 10.3390/cancers13153688] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/03/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer mortality among women. Two thirds of patients are classified as hormone receptor positive, based on expression of estrogen receptor alpha (ERα), the main driver of breast cancer cell proliferation, and/or progesterone receptor, which is regulated by ERα. Despite presenting the best prognosis, these tumors can recur when patients acquire resistance to treatment by aromatase inhibitors or antiestrogen such as tamoxifen (Tam). The mechanisms that are involved in Tam resistance are complex and involve multiple signaling pathways. Recently, roles for microRNAs and lncRNAs in controlling ER expression and/or tamoxifen action have been described, but the underlying mechanisms are still little explored. In this review, we will discuss the current state of knowledge on the roles of microRNAs and lncRNAs in the main mechanisms of tamoxifen resistance in hormone receptor positive breast cancer. In the future, this knowledge can be used to identify patients at a greater risk of relapse due to the expression patterns of ncRNAs that impact response to Tam, in order to guide their treatment more efficiently and possibly to design therapeutic strategies to bypass mechanisms of resistance.
Collapse
Affiliation(s)
- Jéssica Fernanda Barazetti
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Tayana Shultz Jucoski
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Tamyres Mingorance Carvalho
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Rafaela Nasser Veiga
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Ana Flávia Kohler
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Jumanah Baig
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; (J.B.); (H.A.B.)
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Hend Al Bizri
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; (J.B.); (H.A.B.)
| | - Daniela Fiori Gradia
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Sylvie Mader
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; (J.B.); (H.A.B.)
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Jaqueline Carvalho de Oliveira
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| |
Collapse
|
12
|
Petrović N, Nakashidze I, Nedeljković M. Breast Cancer Response to Therapy: Can microRNAs Lead the Way? J Mammary Gland Biol Neoplasia 2021; 26:157-178. [PMID: 33479880 DOI: 10.1007/s10911-021-09478-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/17/2021] [Indexed: 12/23/2022] Open
Abstract
Breast cancer (BC) is a leading cause of death among women with malignant diseases. The selection of adequate therapies for highly invasive and metastatic BCs still represents a major challenge. Novel combinatorial therapeutic approaches are urgently required to enhance the efficiency of BC treatment. Recently, microRNAs (miRNAs) emerged as key regulators of the complex mechanisms that govern BC therapeutic resistance and susceptibility. In the present review we aim to critically examine how miRNAs influence BC response to therapies, or how to use miRNAs as a basis for new therapeutic approaches. We summarized recent findings in this rapidly evolving field, emphasizing the challenges still ahead for the successful implementation of miRNAs into BC treatment while providing insights for future BC management.The goal of this review was to propose miRNAs, that might simultaneously improve the efficacy of all four therapies that are the backbone of current BC management (radio-, chemo-, targeted, and hormone therapy). Among the described miRNAs, miR-21 and miR-16 emerged as the most promising, closely followed by miR-205, miR-451, miR-182, and miRNAs from the let-7 family. miR-21 inhibition might be the best choice for future improvement of invasive BC treatment.New therapeutic strategies of miRNA-based agents alongside current standard treatment modalities could greatly benefit BC patients. This review represents a guideline on how to navigate this elaborate puzzle.
Collapse
Affiliation(s)
- Nina Petrović
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environment, "VINČA" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11001, Belgrade, Serbia.
- Department for Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia.
| | - Irina Nakashidze
- Department of Biology, Natural Science and Health Care, Batumi Shota Rustaveli State University, Ninoshvili str. 35, 6010, Batumi, Georgia
| | - Milica Nedeljković
- Department for Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia
| |
Collapse
|
13
|
Ansari MA, Thiruvengadam M, Farooqui Z, Rajakumar G, Sajid Jamal QM, Alzohairy MA, Almatroudi A, Alomary MN, Chung IM, Al-Suhaimi EA. Nanotechnology, in silico and endocrine-based strategy for delivering paclitaxel and miRNA: Prospects for the therapeutic management of breast cancer. Semin Cancer Biol 2021; 69:109-128. [PMID: 31891780 DOI: 10.1016/j.semcancer.2019.12.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/06/2019] [Accepted: 12/25/2019] [Indexed: 02/07/2023]
Abstract
Breast cancer is one of the most prevalent and reoccurring cancers and the second most common reason of death in women. Despite advancements in therapeutic strategies for breast cancer, early tumor recurrence and metastasis in patients indicate resistance to chemotherapeutic medicines, such as paclitaxel due to the abnormal expression of ER and EGF2 in breast cancer cells. Therefore, the development of alternatives to paclitaxel is urgently needed to overcome challenges involving drug resistance. An increasing number of studies has revealed miRNAs as novel natural alternative substances that play a crucial role in regulating several physiological processes and have a close, adverse association with several diseases, including breast cancer. Due to the therapeutic potential of miRNA and paclitaxel in cancer research, the current review focuses on the differential roles of various miRNAs in breast cancer development and treatment. miRNA delivery to a specific target site, the development of paclitaxel and miRNA formulations, and nanotechnological strategies for the delivery of nanopaclitaxel in the management of breast cancer are discussed. These strategies involve improving the cellular uptake and bioavailability and reducing the toxicity of free paclitaxel to achieve accumulation tumor site. Furthermore, a molecular docking study was performed to ascertain the enhanced anticancer activity of the nanoformulation of ANG1005 and Abraxane. An in silico analysis revealed that ANG1005 and Abraxane nanoformulations have superior and significantly enhanced interactions with the proteins α-tubulin and Bcl-2. Therefore, ANG1005 and Abraxane may be more suitable in the therapeutic management of breast cancer than the existing free paclitaxel. miRNAs can revert abnormal gene expression to normalcy; since miRNAs serve as tumor suppressors. Therefore, restoration of particular miRNAs levels as a replacement therapy may be an effective endocrine potential strategy for treating ER positive/ negative breast cancers.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia.
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| | - Zeba Farooqui
- College of Pharmacy, University of Houston, Houston, TX, 77204, United States
| | - Govindaswamy Rajakumar
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| | - Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al-Bukayriyah, Saudi Arabia
| | - Mohammad A Alzohairy
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia
| | - Mohammad N Alomary
- National Center of Biotechnology, Life Science and Environmental Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh, Saudi Arabia
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| | - Ebtesam Abdullah Al-Suhaimi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia; Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| |
Collapse
|
14
|
Abstract
Despite the decline in death rate from breast cancer and recent advances in targeted therapies and combinations for the treatment of metastatic disease, metastatic breast cancer remains the second leading cause of cancer-associated death in U.S. women. The invasion-metastasis cascade involves a number of steps and multitudes of proteins and signaling molecules. The pathways include invasion, intravasation, circulation, extravasation, infiltration into a distant site to form a metastatic niche, and micrometastasis formation in a new environment. Each of these processes is regulated by changes in gene expression. Noncoding RNAs including microRNAs (miRNAs) are involved in breast cancer tumorigenesis, progression, and metastasis by post-transcriptional regulation of target gene expression. miRNAs can stimulate oncogenesis (oncomiRs), inhibit tumor growth (tumor suppressors or miRsupps), and regulate gene targets in metastasis (metastamiRs). The goal of this review is to summarize some of the key miRNAs that regulate genes and pathways involved in metastatic breast cancer with an emphasis on estrogen receptor α (ERα+) breast cancer. We reviewed the identity, regulation, human breast tumor expression, and reported prognostic significance of miRNAs that have been documented to directly target key genes in pathways, including epithelial-to-mesenchymal transition (EMT) contributing to the metastatic cascade. We critically evaluated the evidence for metastamiRs and their targets and miRNA regulation of metastasis suppressor genes in breast cancer progression and metastasis. It is clear that our understanding of miRNA regulation of targets in metastasis is incomplete.
Collapse
Affiliation(s)
- Belinda J Petri
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| |
Collapse
|
15
|
Nuclear PDCD4 Expression Defines a Subset of Luminal B-Like Breast Cancers with Good Prognosis. Discov Oncol 2020; 11:218-239. [PMID: 32632815 DOI: 10.1007/s12672-020-00392-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
The hormone receptor-positive (estrogen and/or progesterone receptor (PR)-positive) and HER2-negative breast cancer (BC) subtype is a biologically heterogeneous entity that includes luminal A-like (LumA-like) and luminal B-like (LumB-like) subtypes. Decreased PR levels is a distinctive biological feature of LumB-like tumors. These tumors also show reduced sensitivity to endocrine therapies and poorer prognosis than LumA-like tumors. Identification of biomarkers to accurately predict disease relapse in these subtypes is crucial in order to select effective therapies. We identified the tumor suppressor PDCD4 (programmed cell death 4), located in the nucleus (NPDCD4), as an independent prognostic factor of good clinical outcome in LumA-like and LumB-like subtypes. NPDCD4-positive LumB-like tumors presented overall and disease-free survival rates comparable to those of NPDCD4-positive LumA-like tumors, indicating that NPDCD4 improves the outcome of LumB-like patients. In contrast, NPDCD4 loss increased the risk of disease recurrence and death in LumB-like compared with LumA-like tumors. This, along with our results showing that LumB-like tumors present lower NPDCD4 positivity than LumA-like tumors, suggests that NPDCD4 loss contributes to endocrine therapy resistance in LumB-like BCs. We also revealed that PR induces PDCD4 transcription in LumB-like BC, providing a mechanistic explanation to the low PDCD4 levels in LumB-like BCs lacking PR. Finally, PDCD4 silencing enhanced BC cell survival in a patient-derived explant model of LumB-like disease. Our discoveries highlight NPDCD4 as a novel biomarker in LumA- and LumB-like subtypes, which could be included in the panel of immunohistochemical markers used in the clinic to accurately predict the prognosis of LumB-like tumors.
Collapse
|
16
|
Amorim M, Lobo J, Fontes-Sousa M, Estevão-Pereira H, Salta S, Lopes P, Coimbra N, Antunes L, Palma de Sousa S, Henrique R, Jerónimo C. Predictive and Prognostic Value of Selected MicroRNAs in Luminal Breast Cancer. Front Genet 2019; 10:815. [PMID: 31572437 PMCID: PMC6749838 DOI: 10.3389/fgene.2019.00815] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 08/07/2019] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BrC) is the most frequent malignancy and the leading cause of cancer death among women worldwide. Approximately 70% of BrC are classified as luminal-like subtype, expressing the estrogen receptor. One of the most common and effective adjuvant therapies for this BrC subtype is endocrine therapy. However, its effectiveness is limited, with relapse occurring in up to 40% of patients. Because microRNAs have been associated with several mechanisms underlying endocrine resistance and sensitivity, they may serve as predictive and/or prognostic biomarkers in this setting. Hence, the main goal of this study was to investigate whether miRNAs deregulated in endocrine-resistant BrC may be clinically relevant as prognostic and predictive biomarkers in patients treated with adjuvant endocrine therapy. A global expression assay allowed for the identification of microRNAs differentially expressed between luminal BrC patients with or without recurrence after endocrine adjuvant therapy. Then, six microRNAs were chosen for validation using quantitative reverse transcription polymerase chain reaction in a larger set of tissue samples. Thus, miR-30c-5p, miR-30b-5p, miR-182-5p, and miR-200b-3p were found to be independent predictors of clinical benefit from endocrine therapy. Moreover, miR-182-5p and miR-200b-3p displayed independent prognostic value for disease recurrence in luminal BrC patients after endocrine therapy. Our results indicate that selected miRNAs’ panels may constitute clinically useful ancillary tools for management of luminal BrC patients. Nevertheless, additional validation, ideally in a multicentric setting, is required to confirm our findings.
Collapse
Affiliation(s)
- Maria Amorim
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Master in Oncology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Porto, Portugal
| | - João Lobo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Porto, Portugal
| | - Mário Fontes-Sousa
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Medical Oncology, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Helena Estevão-Pereira
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Master in Oncology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Porto, Portugal
| | - Sofia Salta
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Paula Lopes
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Nuno Coimbra
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Porto, Portugal
| | - Luís Antunes
- Department of Epidemiology, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Susana Palma de Sousa
- Department of Medical Oncology, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Porto, Portugal
| |
Collapse
|
17
|
Alizadeh S, Isanejad A, Sadighi S, Khalighfard S, Alizadeh AM. Effect of a high-intensity interval training on serum microRNA levels in women with breast cancer undergoing hormone therapy. A single-blind randomized trial. Ann Phys Rehabil Med 2019; 62:329-335. [PMID: 31400480 DOI: 10.1016/j.rehab.2019.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 07/07/2019] [Accepted: 07/07/2019] [Indexed: 01/28/2023]
Abstract
BACKGROUND The role of microRNAs (miRs) in hormone therapy (HT) is of keen interest in developing biomarkers and treatments for individuals with breast cancer. Although miRs are often moderate regulators under homeostatic conditions, their function is changed more in response to physical activity. OBJECTIVE This single-blind randomized trial aimed to explore the effect of high-intensity interval training (HIIT) on serum levels of miRs in individuals with early-stage breast cancer undergoing HT. METHODS Hormone receptor-positive women with breast cancer and healthy women were randomly assigned to a healthy control group (n=15), healthy group with HIIT (n=15), breast cancer group with HT (HT, n=26), and breast cancer group with HT and HIIT (HT+HIIT, n=26). The exercise groups underwent interval uphill walking training on a treadmill 3 times a week for 12weeks. At the end of the study, we analyzed changes in levels of cancer-related miRs (oncomiRs) and tumour suppressor miRs (TSmiRs) in response to the HT and HIIT. RESULTS In women with breast cancer versus healthy controls, the expression of some oncomiRs was significantly increased - miR-21 (P<0.001), miR-155 (P=0.001), miR-221 (P=0.008), miR-27a (P<0.001), and miR-10b (P=0.007) - and that of some TSmiRs was significantly decreased - miR-206 (P=0.048), miR-145 (P=0.011), miR-143 (P=0.008), miR-9 (P=0.020), and let-7a (P=0.005). Moreover, HT considerably downregulated oncomiRs and upregulated TSmiRs. HIIT for 12weeks with HT significantly decreased the expression of the oncomiRs and significantly increased that of the TSmiRs as compared with HT alone. CONCLUSIONS HITT could amplify the decrease and/or increase in expression of miRs associated with HT in women with breast cancer. A prospective trial could determine whether the use of circulating miRs for monitoring treatment can be useful in therapy decisions. TRIAL REGISTRATION Iranian Registry of Clinical Trials (No.: IRCT201202289171N1).
Collapse
Affiliation(s)
- Shaban Alizadeh
- Department of Hematology, Allied Medical School, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Isanejad
- Immunoregulation Research Center, Shahed University, Tehran, Iran; Physical Education Department, Shahed University, Tehran, Iran
| | - Sanambar Sadighi
- Medical Oncology and Hematology Department, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Khalighfard
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Mohammad Alizadeh
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran; Breast Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Klinge CM, Piell KM, Tooley CS, Rouchka EC. HNRNPA2/B1 is upregulated in endocrine-resistant LCC9 breast cancer cells and alters the miRNA transcriptome when overexpressed in MCF-7 cells. Sci Rep 2019; 9:9430. [PMID: 31263129 PMCID: PMC6603045 DOI: 10.1038/s41598-019-45636-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs are dysregulated in breast cancer. Heterogeneous Nuclear Ribonucleoprotein A2/B1 (HNRNPA2/B1) is a reader of the N(6)-methyladenosine (m6A) mark in primary-miRNAs (pri-miRNAs) and promotes DROSHA processing to precursor-miRNAs (pre-miRNAs). We examined the expression of writers, readers, and erasers of m6A and report that HNRNPA2/B1 expression is higher in tamoxifen-resistant LCC9 breast cancer cells as compared to parental, tamoxifen-sensitive MCF-7 cells. To examine how increased expression of HNRNPA2/B1 affects miRNA expression, HNRNPA2/B1 was transiently overexpressed (~5.4-fold) in MCF-7 cells for whole genome miRNA profiling (miRNA-seq). 148 and 88 miRNAs were up- and down-regulated, respectively, 48 h after transfection and 177 and 172 up- and down-regulated, respectively, 72 h after transfection. MetaCore Enrichment analysis identified progesterone receptor action and transforming growth factor β (TGFβ) signaling via miRNA in breast cancer as pathways downstream of the upregulated miRNAs and TGFβ signaling via SMADs and Notch signaling as pathways of the downregulated miRNAs. GO biological processes for mRNA targets of HNRNPA2/B1-regulated miRNAs included response to estradiol and cell-substrate adhesion. qPCR confirmed HNRNPA2B1 downregulation of miR-29a-3p, miR-29b-3p, and miR-222 and upregulation of miR-1266-5p, miR-1268a, miR-671-3p. Transient overexpression of HNRNPA2/B1 reduced MCF-7 sensitivity to 4-hydroxytamoxifen and fulvestrant, suggesting a role for HNRNPA2/B1 in endocrine-resistance.
Collapse
Affiliation(s)
- Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| | - Kellianne M Piell
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Christine Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Eric C Rouchka
- Bioinformatics and Biomedical Computing Laboratory, Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY, 40292, USA
| |
Collapse
|
19
|
The expression level changes of microRNAs 200a/205 in the development of invasive properties in gastric cancer cells through epithelial-mesenchymal transition. Eur J Pharmacol 2019; 857:172426. [PMID: 31150646 DOI: 10.1016/j.ejphar.2019.172426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/26/2019] [Accepted: 05/27/2019] [Indexed: 12/17/2022]
Abstract
EMT (Epithelial-Mesenchymal Transition) is a highly regulated process that results in cancer progression. MicroRNA plays a significant role in the regulation of EMT through tight control of the transcription factors. In this study, we focus on miR-200a/205 as a factor involved in the control of the EMT process in gastric cancer cells. In this sense, gastric adenocarcinoma cell lines were used to induce EMT process. For characterization of EMT process, the mRNA levels of E-cadherin, Vimentin, β-catenin, ZEB1 and Snail were measured by real time PCR. In addition, Western blot approach was adopted to determine the protein levels of these EMT markers. Transwell assay revealed migration and invasion property of gastric cancer cell after EMT induction. To analyze alteration amount of microRNAs, RT-PCR was applied. Our results confirmed the establishment of in vitro EMT model. In vitro study showed a significant negative correlation between the expression of miR-200a (P = 0.001) and expression level of EMT markers. Nevertheless, miR-205 did not show any significant results in correlation with EMT in AGS cell line. All in vitro results also were validated in gastric cancer tissue samples. Based on our findings from gastric cancer sample patients and in vitro results, miR-200a is down regulated. Therefore, in further investigation, miR-200a could be used as a candidate to prevent the invasive properties of gastric cancer through the EMT process.
Collapse
|
20
|
Poly-ADP-Ribosylation of Estrogen Receptor-Alpha by PARP1 Mediates Antiestrogen Resistance in Human Breast Cancer Cells. Cancers (Basel) 2019; 11:cancers11010043. [PMID: 30621214 PMCID: PMC6357000 DOI: 10.3390/cancers11010043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/21/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023] Open
Abstract
Therapeutic targeting of estrogen receptor-α (ERα) by the anti-estrogen tamoxifen is standard of care for premenopausal breast cancer patients and remains a key component of treatment strategies for postmenopausal patients. While tamoxifen significantly increases overall survival, tamoxifen resistance remains a major limitation despite continued expression of ERα in resistant tumors. Previous reports have described increased oxidative stress in tamoxifen resistant versus sensitive breast cancer and a role for PARP1 in mediating oxidative damage repair. We hypothesized that PARP1 activity mediated tamoxifen resistance in ERα-positive breast cancer and that combining the antiestrogen tamoxifen with a PARP1 inhibitor (PARPi) would sensitize tamoxifen resistant cells to tamoxifen therapy. In tamoxifen-resistant vs. -sensitive breast cancer cells, oxidative stress and PARP1 overexpression were increased. Furthermore, differential PARylation of ERα was observed in tamoxifen-resistant versus -sensitive cells, and ERα PARylation was increased by tamoxifen treatment. Loss of ERα PARylation following treatment with a PARP inhibitor (talazoparib) augmented tamoxifen sensitivity and decreased localization of both ERα and PARP1 to ERα-target genes. Co-administration of talazoparib plus tamoxifen increased DNA damage accumulation and decreased cell survival in a dose-dependent manner. The ability of PARPi to overcome tamoxifen resistance was dependent on ERα, as lack of ERα-mediated estrogen signaling expression and showed no response to tamoxifen-PARPi treatment. These results correlate ERα PARylation with tamoxifen resistance and indicate a novel mechanism-based approach to overcome tamoxifen resistance in ER+ breast cancer.
Collapse
|
21
|
Farhan M, Aatif M, Dandawate P, Ahmad A. Non-coding RNAs as Mediators of Tamoxifen Resistance in Breast Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1152:229-241. [DOI: 10.1007/978-3-030-20301-6_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Howard EW, Yang X. microRNA Regulation in Estrogen Receptor-Positive Breast Cancer and Endocrine Therapy. Biol Proced Online 2018; 20:17. [PMID: 30214383 PMCID: PMC6134714 DOI: 10.1186/s12575-018-0082-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/29/2018] [Indexed: 02/07/2023] Open
Abstract
As de novo and acquired resistance to standard first line endocrine therapies is a growing clinical challenge for estrogen receptor-positive (ER+) breast cancer patients, understanding the mechanisms of resistance is critical to develop novel therapeutic strategies to prevent therapeutic resistance and improve patient outcomes. The widespread post-transcriptional regulatory role that microRNAs (miRNAs) can have on various oncogenic pathways has been well-documented. In particular, several miRNAs are reported to suppress ERα expression via direct binding with the 3’ UTR of ESR1 mRNA, which can confer resistance to estrogen/ERα-targeted therapies. In turn, estrogen/ERα activation can modulate miRNA expression, which may contribute to ER+ breast carcinogenesis. Given the reported oncogenic and tumor suppressor functions of miRNAs in ER+ breast cancer, the targeted regulation of specific miRNAs is emerging as a promising strategy to treat ER+ breast cancer and significantly improve patient responsiveness to endocrine therapies. In this review, we highlight the major miRNA-ER regulatory mechanisms in context with ER+ breast carcinogenesis, as well as the critical miRNAs that contribute to endocrine therapy resistance or sensitivity. Collectively, this comprehensive review of the current literature sheds light on the clinical applications and challenges associated with miRNA regulatory mechanisms and novel miRNA targets that may have translational value as potential therapeutics for the treatment of ER+ breast cancer.
Collapse
Affiliation(s)
- Erin W Howard
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina Research Campus, 500 Laureate Way, NRI 4301, Kannapolis, North Carolina 28081 USA
| | - Xiaohe Yang
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina Research Campus, 500 Laureate Way, NRI 4301, Kannapolis, North Carolina 28081 USA
| |
Collapse
|
23
|
Botti G, De Chiara A, Di Bonito M, Cerrone M, Malzone MG, Collina F, Cantile M. Noncoding RNAs within the
HOX
gene network in tumor pathogenesis and progression. J Cell Physiol 2018; 234:395-413. [DOI: 10.1002/jcp.27036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Gerardo Botti
- Department of Support for Oncological Pathways Diagnostic Area, Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale” Napoli Italy
| | - Anna De Chiara
- Department of Support for Oncological Pathways Diagnostic Area, Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale” Napoli Italy
| | - Maurizio Di Bonito
- Department of Support for Oncological Pathways Diagnostic Area, Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale” Napoli Italy
| | - Margherita Cerrone
- Department of Support for Oncological Pathways Diagnostic Area, Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale” Napoli Italy
| | - Maria Gabriella Malzone
- Department of Support for Oncological Pathways Diagnostic Area, Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale” Napoli Italy
| | - Francesca Collina
- Department of Support for Oncological Pathways Diagnostic Area, Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale” Napoli Italy
| | - Monica Cantile
- Department of Support for Oncological Pathways Diagnostic Area, Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale” Napoli Italy
| |
Collapse
|
24
|
Bioinformatics-based interaction analysis of miR-92a-3p and key genes in tamoxifen-resistant breast cancer cells. Biomed Pharmacother 2018; 107:117-128. [PMID: 30086458 DOI: 10.1016/j.biopha.2018.07.158] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/19/2018] [Accepted: 07/31/2018] [Indexed: 12/15/2022] Open
Abstract
The abnormal expression of miR-92a-3p was detected in multiple cancers. However, the biological role and underlying mechanism of miR-92a-3p in tamoxifen-resistant cells are still unknown. The main objective of our study was to find potential miR-92a-3p regulating pathways involved in tamoxifen resistance and to construct their regulatory network using bioinformatics. Four gene expression profiles were retrieved from GEO database and the GEO2R tool was used for analysis. GSE41922 and GSE42072 were applied to investigate aberrant miR-92a-3p expression in breast cancer serum and tissue. We found that miR-92a-3p expression was higher in breast cancer serum or tissue than in healthy volunteer serum or adjacent normal tissue, and high expression of miR-92a-3p could predict poor prognosis of breast cancer patients. In our qRT-PCR validation, we found that miR-92a-3p was upregulated in tamoxifen-resistant cells. MiR-92a-3p might play a role in tamoxifen resistance. In order to find the relationship between miR-92a-3p and some key genes and their potential molecular mechanisms in tamoxifen-resistant cells. The microarray data GSE26459 and GSE28267 were analyzed to determine the differentially expressed genes (DEGs) or miRNAs (DEMs). Furthermore, the related long non-coding RNAs (lncRNAs) were screened with starBase v2.0. Finally,microRNA.org,miRDB, targetminer and targetscan were applied to predict the targets of miR-92a-3p. Through analysis, we find that miR-92a-3p may be used as a potential biomarker for early detection of cancer and monitoring the efficacy of endocrine therapy.
Collapse
|
25
|
Jiang H, Cheng L, Hu P, Liu R. MicroRNA‑663b mediates TAM resistance in breast cancer by modulating TP73 expression. Mol Med Rep 2018; 18:1120-1126. [PMID: 29845295 DOI: 10.3892/mmr.2018.9064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/09/2018] [Indexed: 11/06/2022] Open
Abstract
Breast cancer is the second leading cause of cancer‑associated mortalities in women. Tamoxifen (TAM) is an endocrine therapy commonly used in the treatment of patients with breast cancer expressing estrogen receptor α. However, treatment often ends in failure due to the emergence of drug resistance. MicroRNAs (miRNAs), a family of small non‑coding RNAs, serve critical roles in the regulation of gene expression and cell events. To date, whether miRNA‑663b could mediate TAM resistance in breast cancer remains unknown. Therefore, the aim of the present study was to investigate the role of miRNA‑663b in TAM resistance in breast cancer. The results demonstrated that miRNA‑663b was upregulated in breast cancer with TAM resistance. Tumor protein 73 (TP73) was a direct target of miRNA‑663b, and was negatively regulated by miRNA‑663b in MCF‑7 cells. Furthermore, it was identified that downregulation of miRNA‑663b inhibited cell proliferation ability and promoted cell apoptosis, resulting in enhanced TAM sensitivity. In addition, these findings suggested that TP73 silencing may have eliminated the effects of miRNA‑663b inhibitor on breast cancer cells. In conclusion, the present study verified a novel molecular link between miRNA‑663b and TP73, and indicated that miRNA‑663b may be a critical therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Hua Jiang
- Breast Cancer Center, Department of Breast and Thyroid Surgery, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Lin Cheng
- Breast Cancer Center, Department of Breast and Thyroid Surgery, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Pan Hu
- Breast Cancer Center, Department of Breast and Thyroid Surgery, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Renbin Liu
- Breast Cancer Center, Department of Breast and Thyroid Surgery, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
26
|
Zhang G, Pian C, Chen Z, Zhang J, Xu M, Zhang L, Chen Y. Identification of cancer-related miRNA-lncRNA biomarkers using a basic miRNA-lncRNA network. PLoS One 2018; 13:e0196681. [PMID: 29715309 PMCID: PMC5929565 DOI: 10.1371/journal.pone.0196681] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/17/2018] [Indexed: 01/04/2023] Open
Abstract
LncRNAs are regulatory noncoding RNAs that play crucial roles in many biological processes. The dysregulation of lncRNA is thought to be involved in many complex diseases; lncRNAs are often the targets of miRNAs in the indirect regulation of gene expression. Numerous studies have indicated that miRNA-lncRNA interactions are closely related to the occurrence and development of cancers. Thus, it is important to develop an effective method for the identification of cancer-related miRNA-lncRNA interactions. In this study, we compiled 155653 experimentally validated and predicted miRNA-lncRNA associations, which we defined as basic interactions. We next constructed an individual-specific miRNA-lncRNA network (ISMLN) for each cancer sample and a basic miRNA-lncRNA network (BMLN) for each type of cancer by examining the expression profiles of miRNAs and lncRNAs in the TCGA (The Cancer Genome Atlas) database. We then selected potential miRNA-lncRNA biomarkers based on the BLMN. Using this method, we identified cancer-related miRNA-lncRNA biomarkers and modules specific to a certain cancer. This method of profiling will contribute to the diagnosis and treatment of cancers at the level of gene regulatory networks.
Collapse
Affiliation(s)
- Guangle Zhang
- Department of Mathematics, College of Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Cong Pian
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhi Chen
- Department of Mathematics, College of Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jin Zhang
- Department of Mathematics, College of Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Mingmin Xu
- Department of Mathematics, College of Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Liangyun Zhang
- Department of Mathematics, College of Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
- * E-mail: (LYZ); (YYC)
| | - Yuanyuan Chen
- Department of Mathematics, College of Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
- * E-mail: (LYZ); (YYC)
| |
Collapse
|
27
|
Guney Eskiler G, Cecener G, Dikmen G, Egeli U, Tunca B. Solid lipid nanoparticles: Reversal of tamoxifen resistance in breast cancer. Eur J Pharm Sci 2018; 120:73-88. [PMID: 29719240 DOI: 10.1016/j.ejps.2018.04.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/28/2018] [Accepted: 04/27/2018] [Indexed: 12/18/2022]
Abstract
The objective of the present study was to investigate the effect of tamoxifen (Tam) loaded solid lipid nanoparticles (SLNs) on MCF7 Tam-resistant breast cancer cells (MCF7-TamR). Tam-SLNs were produced by the hot homogenization method. The characterization studies of Tam-SLNs demonstrated good physical stability with small particle size. The in vitro cytotoxicity results showed that Tam-SLNs enhanced the efficacy of Tam and reversed the acquired Tam resistance by inducing apoptosis, altering the expression levels of specific miRNA and the related apoptosis-associated target-genes in both MCF7 and MCF7-TamR cells without damaging the MCF10A control cells (p < 0.05). In conclusion, we demonstrated a molecular mechanism of the induction of apoptosis by Tam-SLNs in MCF7 and MCF7-TamR cells, and thus, we demonstrated that Tam-SLNs were more effective than Tam. The present study suggests that the use SLNs may be a potential therapeutic strategy to overcome Tam-resistance in breast cancer for clinical use.
Collapse
Affiliation(s)
- Gamze Guney Eskiler
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Gulsah Cecener
- Department of Medical Biology, Faculty of Medicine, Uludag University, Bursa, Turkey.
| | - Gokhan Dikmen
- Central Research Laboratory, Application and Research Center (ARUM), Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Unal Egeli
- Department of Medical Biology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Berrin Tunca
- Department of Medical Biology, Faculty of Medicine, Uludag University, Bursa, Turkey
| |
Collapse
|
28
|
Ye P, Fang C, Zeng H, Shi Y, Pan Z, An N, He K, Zhang L, Long X. Differential microRNA expression profiles in tamoxifen-resistant human breast cancer cell lines induced by two methods. Oncol Lett 2018; 15:3532-3539. [PMID: 29467872 PMCID: PMC5796357 DOI: 10.3892/ol.2018.7768] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 11/20/2017] [Indexed: 12/28/2022] Open
Abstract
Tamoxifen (TAM) resistance has become a severe problem for endocrine therapy of breast cancer. The present study investigated the association between microRNA (miRNA) expression and TAM resistance in breast cancer. The TAM-resistant breast cancer MCF-7C and MCF-7T cell lines were established using the human breast cancer cell line MCF-7 as the parental cell line and 4-hydroxytamoxifen (OHT) as the screening drug in vitro. The MCF-7C cell line was established by dose stepwise induction beginning with a low concentration of OHT; the MCF-7T cell line was established by temporal stepwise induction beginning with a high concentration of OHT. Differential miRNA expression profiles between TAM-sensitive (MCF-7) and TAM-resistant (MCF-7C and MCF-7T) breast cancer cell lines were detected and analyzed using RNA sequencing technology. The results of western blot analysis indicated that the level of ERα protein expression in drug-resistant cells was significantly increased. A total of 1,646 miRNAs were detected in all samples, including 1,376 known miRNAs and 270 predicted miRNAs. There were 118 miRNAs expressed at significantly different levels between MCF-7C and MCF-7 cells (P<0.05); among them, 67 miRNAs were upregulated (P<0.05) and 51 miRNA were downregulated (P<0.05). There were 42 miRNAs expressed at significantly different levels between MCF-7T and MCF-7 (P<0.05); among them, 23 miRNAs were upregulated (P<0.05) and 19 miRNAs were downregulated (P<0.05). There were 126 miRNAs with significant differences between MCF-7C and MCF-7T (P<0.05); among them, 76 miRNAs were upregulated (P<0.05) and 50 miRNAs were downregulated. On the basis of the results of the present study, we hypothesize that miR-21, miR-146a, miR-148a, miR-34a and miR-27a may serve important roles in mediating TAM resistance in breast cancer, and have potential as therapeutic targets for TAM-resistant breast cancer.
Collapse
Affiliation(s)
- Peng Ye
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Cheng Fang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Hui Zeng
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yu Shi
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zhongya Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Nairui An
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Keli He
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Li Zhang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Xinghua Long
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
29
|
Merino MJ, Gil S, Macias CG, Lara K. The Unknown microRNA Expression of Male Breast Cancer. Similarities and Differences with Female Ductal Carcinoma. Their Role as Tumor Biomarker. J Cancer 2018; 9:450-459. [PMID: 29483949 PMCID: PMC5820911 DOI: 10.7150/jca.23151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/27/2017] [Indexed: 12/03/2022] Open
Abstract
Mature microRNAs (miRNAs) are small non-protein coding RNAs that modulate gene expression after transcription. Few studies have shown that male breast cancer (MBC) shows distinctive miRNAs pattern, suggesting its relevance in this pathology. To study this, we performed a profile of 800 miRNAs in 9 MBC samples and in normal epithelial cells of 3 MBC cases. Experimental Design: Of FFPE tissues, miRNA was extracted for profiles using the NanoString method. miRNAs were obtained by comparing tumor samples versus normal epithelium. Quantitative real-time PCR analyzes were performed by the TaqMan approach for specific miRNAs. Results: The profile of 800 miRNAs showed a different microRNA expression pattern between MBC and its normal counterpart, suggesting a specific microRNA cancer expression profile for MBC. Forty-nine miRNAs showed greater expression, while 26 were found to be down-regulated in MBC, compared to normal tissue. The lower expression of miR-125b correlated significantly with tumors> 2 cm, suggesting that its down-regulation may be implicated in mechanisms to more aggressive tumors. Conclusions: These results suggest that MBC has a unique expression profile compared to normal breast tissue and expression profile of female breast cancer. Differentially expressed miRNAs provide insights of this uncommon but highly aggressive pathology.
Collapse
Affiliation(s)
- Maria J Merino
- Translational Surgical Pathology Section, Laboratory of Pathology. Center for Cancer Research, National Cancer Institute, National Institutes of Health
| | - Sara Gil
- Translational Surgical Pathology Section, Laboratory of Pathology. Center for Cancer Research, National Cancer Institute, National Institutes of Health
| | | | | |
Collapse
|
30
|
Fang Q, Yao S, Luo G, Zhang X. Identification of differentially expressed genes in human breast cancer cells induced by 4-hydroxyltamoxifen and elucidation of their pathophysiological relevance and mechanisms. Oncotarget 2017; 9:2475-2501. [PMID: 29416786 PMCID: PMC5788654 DOI: 10.18632/oncotarget.23504] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 12/13/2017] [Indexed: 12/14/2022] Open
Abstract
While tamoxifen (TAM) is used for treating estrogen receptor (ER)a-positive breast cancer patients, its anti-breast cancer mechanisms are not completely elucidated. This study aimed to examine effects of 4-hydroxyltamoxifen (4-OH-TAM) on ER-positive (ER+) breast cancer MCF-7 cell growth and gene expression profiles. MCF-7 cell growth was inhibited by 4-OH-TAM dose-dependently with IC50 of 29 μM. 332 genes were up-regulated while 320 genes were down-regulated. The mRNA levels of up-regulated genes including STAT1, STAT2, EIF2AK2, TGM2, DDX58, PARP9, SASH1, RBL2 and USP18 as well as down-regulated genes including CCDN1, S100A9, S100A8, ANXA1 and PGR were confirmed by quantitative real-time PCR (qRT-PCR). In human breast tumor tissues, mRNA levels of EIF2Ak2, USP18, DDX58, RBL2, STAT2, PGR, S1000A9, and CCND1 were significantly higher in ER+- than in ER--breast cancer tissues. The mRNA levels of EIF2AK2, TGM2, USP18, DDX58, PARP9, STAT2, STAT1, PGR and CCND1 were all significantly higher in ER+-tumor tissues than in their corresponding tumor-adjacent tissues. These genes, except PGR and CCND1 which were down-regulated, were also up-regulated in ER+ MCF-7 cells by 4-OH-TAM. Total 14 genes mentioned above are involved in regulation of cell proliferation, apoptosis, cell cycles, and estrogen and interferon signal pathways. Bioinformatics analysis also revealed other novel and important regulatory factors that are associated with these genes and involved in the mentioned functional processes. This study has paved a foundation for elucidating TAM anti-breast cancer mechanisms in E2/ER-dependent and independent pathways.
Collapse
Affiliation(s)
- Qi Fang
- Department of Breast Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Shuang Yao
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Guanghua Luo
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Xiaoying Zhang
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| |
Collapse
|
31
|
Florijn BW, Bijkerk R, van der Veer EP, van Zonneveld AJ. Gender and cardiovascular disease: are sex-biased microRNA networks a driving force behind heart failure with preserved ejection fraction in women? Cardiovasc Res 2017; 114:210-225. [DOI: 10.1093/cvr/cvx223] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/23/2017] [Indexed: 01/08/2023] Open
Abstract
AbstractCardiovascular disease (CVD) is the primary cause of death among men and women worldwide. Nevertheless, our comprehension of how CVD progresses in women and elicits clinical outcomes is lacking, leading CVD to be under-diagnosed and under-treated in women. A clear example of this differential presentation of CVD pathophysiologies in females is the strikingly higher prevalence of heart failure with preserved ejection fraction (HFpEF). Women with a history of pre-eclampsia or those who present with co-morbidities such as obesity, hypertension, and diabetes mellitus are at increased risk of developing HFpEF. Long understood to be a critical CVD risk factor, our understanding of how gender differentially affects the development of CVD has been greatly expanded by extensive genomic and transcriptomic studies. These studies uncovered a pivotal role for differential microRNA (miRNA) expression in response to systemic inflammation, where their co-ordinated expression forms a post-transcriptional regulatory network that instigates microcirculation defects. Importantly, the potential sex-biased expression of the given miRNAs may explain sex-specific cardiovascular pathophysiologies in women, such as HFpEF. Sex-biased miRNAs are regulated by oestrogen (E2) in their transcription and processing or are expressed from loci on the X-chromosome due to incomplete X-chromosome inactivation. Interestingly, while E2-induced miRNAs predominantly appear to serve protective functions, it could be argued that many X-linked miRNAs have been found to challenge microvascular and myocardial integrity. Therefore, menopausal E2 deficiency, resulting in protective miRNA loss, and the augmentation of X-linked miRNA expression, may well contribute to the molecular mechanisms that underlie the female-specific cardiovascular aetiology in HFpEF.
Collapse
Affiliation(s)
- Barend W Florijn
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| | - Roel Bijkerk
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| | - Eric P van der Veer
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| | - Anton Jan van Zonneveld
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| |
Collapse
|
32
|
Muluhngwi P, Klinge CM. Identification of miRNAs as biomarkers for acquired endocrine resistance in breast cancer. Mol Cell Endocrinol 2017; 456:76-86. [PMID: 28163101 DOI: 10.1016/j.mce.2017.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/01/2017] [Accepted: 02/01/2017] [Indexed: 02/07/2023]
Abstract
Therapies targeting estrogen receptor α (ERα) including tamoxifen, a selective estrogen receptor modulator (SERM) and aromatase inhibitors (AI), e.g., letrozole, have proven successful in reducing the death rate for breast cancer patients whose initial tumors express ERα. However, about 40% of patients develop acquired resistance to these endocrine treatments. There is a critical need to develop sensitive circulating biomarkers that accurately identify signaling pathways altered in breast cancer patients resistant to endocrine therapies. Serum miRNAs have the potential to serve as biomarkers of the progression of endocrine-resistant breast cancer due to their cancer-specific expression and stability. Exosomal transfer of miRNAs has been implicated in metastasis and endocrine-resistance. This review focuses on miRNAs in breast tumors and in serum, including exosomes, from breast cancer patients that are associated with resistance to tamoxifen since it is best-studied.
Collapse
Affiliation(s)
- Penn Muluhngwi
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|
33
|
Muluhngwi P, Richardson K, Napier J, Rouchka EC, Mott JL, Klinge CM. Regulation of miR-29b-1/a transcription and identification of target mRNAs in CHO-K1 cells. Mol Cell Endocrinol 2017; 444:38-47. [PMID: 28137615 PMCID: PMC5316361 DOI: 10.1016/j.mce.2017.01.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 01/28/2023]
Abstract
miR-29b and miR-29a transcript levels were reported to increase in exponentially growing CHO-K1 cells. Here, we examine the regulation of miR-29b-1/a in CHO-K1 cells. We observed that 4-hydroxytamoxifen (4-OHT) increased pri-miR-29b-1 and pri-miR-29a transcription in CHO-K1 cells by activating endogenous estrogen receptor α (ERα). DICER, an established, bona fide target of miR-29b-1/a, was shown to be regulated by 4-OHT in CHO-K1 cells. We showed that miR-29b-1 and miR-29a serve a repressive role in cell proliferation, migration, invasion, and colony formation in CHO-K1 cells. To identify other targets of miR-29b-1 and miR-29a, RNA sequencing was performed by transfecting cells with anti-miR-29a, which inhibits both miR-29a and miR-29b-1, pre-miR-29b-1, and/or pre-miR-29a. In silico network analysis in MetaCore™ identified common and unique putative gene targets of miR-29b-1 and miR-29a. Pathway analysis of identified putative miR-29 targets were related to cell adhesion, cytoskeletal remodeling, and development. Further inquiry revealed regulation of pathways mediating responses to growth factor stimulus and cell cycle regulation.
Collapse
Affiliation(s)
- Penn Muluhngwi
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Kirsten Richardson
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Joshua Napier
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Eric C Rouchka
- Bioinformatics and Biomedical Computing Laboratory, Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY 40292, USA
| | - Justin L Mott
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA; Bioinformatics and Biomedical Computing Laboratory, Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY 40292, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
34
|
Gu C, Liao B, Li X, Cai L, Chen H, Li K, Yang J. Network-based collaborative filtering recommendation model for inferring novel disease-related miRNAs. RSC Adv 2017. [DOI: 10.1039/c7ra09229f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
According to the miRNA and disease similarity network, the unknown associations are predicted by combining the known miRNA-disease association network based on collaborative filtering recommendation algorithm.
Collapse
Affiliation(s)
- Changlong Gu
- College of Information Science and Engineering
- Hunan University
- Changsha
- China
| | - Bo Liao
- College of Information Science and Engineering
- Hunan University
- Changsha
- China
| | - Xiaoying Li
- College of Information Science and Engineering
- Hunan University
- Changsha
- China
| | - Lijun Cai
- College of Information Science and Engineering
- Hunan University
- Changsha
- China
| | - Haowen Chen
- College of Information Science and Engineering
- Hunan University
- Changsha
- China
| | - Keqin Li
- Department of Computer Science
- State University of New York
- New York 12561
- USA
| | - Jialiang Yang
- Department of Genetics and Gnomic Science
- Icahn School of Medicine at Mount Sinai
- New York 10029
- USA
| |
Collapse
|
35
|
Muluhngwi P, Krishna A, Vittitow SL, Napier JT, Richardson KM, Ellis M, Mott JL, Klinge CM. Tamoxifen differentially regulates miR-29b-1 and miR-29a expression depending on endocrine-sensitivity in breast cancer cells. Cancer Lett 2016; 388:230-238. [PMID: 27986463 DOI: 10.1016/j.canlet.2016.12.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 12/21/2022]
Abstract
Endocrine-resistance develops in ∼40% of breast cancer patients after tamoxifen (TAM) therapy. Although microRNAs are dysregulated in breast cancer, their contribution to endocrine-resistance is not yet understood. Previous microarray analysis identified miR-29a and miR-29b-1 as repressed by TAM in MCF-7 endocrine-sensitive breast cancer cells but stimulated by TAM in LY2 endocrine-resistant breast cancer cells. Here we examined the mechanism for the differential regulation of these miRs by TAM in MCF-7 versus TAM-resistant LY2 and LCC9 breast cancer cells and the functional role of these microRNAs in these cells. Knockdown studies revealed that ERα is responsible for TAM regulation of miR-29b-1/a transcription. We also demonstrated that transient overexpression of miR-29b-1/a decreased MCF-7, LCC9, and LY2 proliferation and inhibited LY2 cell migration and colony formation but did not sensitize LCC9 or LY2 cells to TAM. Furthermore, TAM reduced DICER1 mRNA and protein in LY2 cells, a known target of miR-29. Supporting this observation, anti-miR-29b-1 or anti-miR-29a inhibited the suppression of DICER by 4-OHT. These results suggest miR-29b-1/a has tumor suppressor activity in TAM-resistant cells and does not appear to play a role in mediating TAM resistance.
Collapse
Affiliation(s)
- Penn Muluhngwi
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Abirami Krishna
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Stephany L Vittitow
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Joshua T Napier
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Kirsten M Richardson
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Mackenzie Ellis
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Justin L Mott
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|
36
|
miR-200c: a versatile watchdog in cancer progression, EMT, and drug resistance. J Mol Med (Berl) 2016; 94:629-44. [PMID: 27094812 DOI: 10.1007/s00109-016-1420-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 04/05/2016] [Accepted: 04/11/2016] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are 20-22-nucleotide small endogenous non-coding RNAs which regulate gene expression at post-transcriptional level. In the last two decades, identification of almost 2600 miRNAs in human and their potential to be modulated opened a new avenue to target almost all hallmarks of cancer. miRNAs have been classified as tumor suppressors or oncogenes depending on the phenotype they induce, the targets they modulate, and the tissue where they function. miR-200c, an illustrious tumor suppressor, is one of the highly studied miRNAs in terms of development, stemness, proliferation, epithelial-mesenchymal transition (EMT), therapy resistance, and metastasis. In this review, we first focus on the regulation of miR-200c expression and its role in regulating EMT in a ZEB1/E-cadherin axis-dependent and ZEB1/E-cadherin axis-independent manner. We then describe the role of miR-200c in therapy resistance in terms of multidrug resistance, chemoresistance, targeted therapy resistance, and radiotherapy resistance in various cancer types. We highlight the importance of miR-200c at the intersection of EMT and chemoresistance. Furthermore, we show how miR-200c coordinates several important signaling cascades such as TGF-β signaling, PI3K/Akt signaling, Notch signaling, VEGF signaling, and NF-κB signaling. Finally, we discuss miR-200c as a potential prognostic/diagnostic biomarker in several diseases, but mainly focusing on cancer and its potential application in future therapeutics.
Collapse
|
37
|
Luqmani YA, Alam-Eldin N. Overcoming Resistance to Endocrine Therapy in Breast Cancer: New Approaches to a Nagging Problem. Med Princ Pract 2016; 25 Suppl 2:28-40. [PMID: 26849149 PMCID: PMC5588530 DOI: 10.1159/000444451] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 02/04/2016] [Indexed: 01/02/2023] Open
Abstract
In the majority of women, breast cancer progresses through increased transcriptional activity due to over-expressed oestrogen receptors (ER). Therapeutic strategies include: (i) reduction of circulating ovarian oestrogens or of peripherally produced oestrogen (in postmenopausal women) with aromatase inhibitors and (ii) application of selective ER modulators for receptor blockade. The success of these interventions is limited by the variable but persistent onset of acquired resistance and by an intrinsic refractiveness which manifests despite adequate levels of ER in about 50% of patients with advanced metastatic disease. Loss of functional ER leads to endocrine insensitivity, loss of cellular adhesion and polarity, and increased migratory potential due to trans-differentiation of the epithelial cancer cells into a mesenchymal-like phenotype (epithelial-mesenchymal transition; EMT). Multiple mechanisms contributing to therapeutic failure have been proposed: (i) loss or modification of ER expression including epigenetic mechanisms, (ii) agonistic actions of selective ER modulators that may be enhanced through an increased expression of co-activators, (iii) attenuation of the tamoxifen metabolism through expression of genetic variants of P450 cytochromes which leads to more or less active metabolites and (iv) increased growth factor signalling particularly through epidermal growth factor receptor activation of pathways involving keratinocyte growth factor, platelet-derived growth factor, and nuclear factor x03BA;B. In addition, the small non-coding microRNAs, recently recognized as critical gene regulators, exhibit differential expression in tamoxifen-sensitive versus resistant cell lines. Several studies suggest the potential of using these either as targets or as therapeutic agents to modulate EMT regulators as a means of reversing the aggressive metastatic phenotype by reversal of the EMT, with the added benefit of re-sensitization to anti-oestrogens.
Collapse
Affiliation(s)
- Yunus A. Luqmani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
| | | |
Collapse
|
38
|
De Marchi T, Liu NQ, Stingl C, Timmermans MA, Smid M, Look MP, Tjoa M, Braakman RBH, Opdam M, Linn SC, Sweep FCGJ, Span PN, Kliffen M, Luider TM, Foekens JA, Martens JWM, Umar A. 4-protein signature predicting tamoxifen treatment outcome in recurrent breast cancer. Mol Oncol 2016; 10:24-39. [PMID: 26285647 PMCID: PMC5528925 DOI: 10.1016/j.molonc.2015.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/23/2015] [Indexed: 12/02/2022] Open
Abstract
Estrogen receptor (ER) positive tumors represent the majority of breast malignancies, and are effectively treated with hormonal therapies, such as tamoxifen. However, in the recurrent disease resistance to tamoxifen therapy is common and a major cause of death. In recent years, in-depth proteome analyses have enabled identification of clinically useful biomarkers, particularly, when heterogeneity in complex tumor tissue was reduced using laser capture microdissection (LCM). In the current study, we performed high resolution proteomic analysis on two cohorts of ER positive breast tumors derived from patients who either manifested good or poor outcome to tamoxifen treatment upon recurrence. A total of 112 fresh frozen tumors were collected from multiple medical centers and divided into two sets: an in-house training and a multi-center test set. Epithelial tumor cells were enriched with LCM and analyzed by nano-LC Orbitrap mass spectrometry (MS), which yielded >3000 and >4000 quantified proteins in the training and test sets, respectively. Raw data are available via ProteomeXchange with identifiers PXD000484 and PXD000485. Statistical analysis showed differential abundance of 99 proteins, of which a subset of 4 proteins was selected through a multivariate step-down to develop a predictor for tamoxifen treatment outcome. The 4-protein signature significantly predicted poor outcome patients in the test set, independent of predictive histopathological characteristics (hazard ratio [HR] = 2.17; 95% confidence interval [CI] = 1.15 to 4.17; multivariate Cox regression p value = 0.017). Immunohistochemical (IHC) staining of PDCD4, one of the signature proteins, on an independent set of formalin-fixed paraffin-embedded tumor tissues provided and independent technical validation (HR = 0.72; 95% CI = 0.57 to 0.92; multivariate Cox regression p value = 0.009). We hereby report the first validated protein predictor for tamoxifen treatment outcome in recurrent ER-positive breast cancer. IHC further showed that PDCD4 is an independent marker.
Collapse
Affiliation(s)
- Tommaso De Marchi
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Wytemaweg 80, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands; Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| | - Ning Qing Liu
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Wytemaweg 80, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Cristoph Stingl
- Department of Neurology, Erasmus MC, University Medical Center, Wytemaweg 80, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Mieke A Timmermans
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Wytemaweg 80, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Marcel Smid
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Wytemaweg 80, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Maxime P Look
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Wytemaweg 80, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Mila Tjoa
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Wytemaweg 80, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Rene B H Braakman
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Wytemaweg 80, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands; Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| | - Mark Opdam
- Division of Medical Oncology, Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - Sabine C Linn
- Division of Medical Oncology, Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - Fred C G J Sweep
- Department of Laboratory Medicine, Radboud University Medical Center, PO Box 9101, NL-6500 HB, Nijmegen, The Netherlands.
| | - Paul N Span
- Department of Radiation Oncology, Radboud University Medical Center, PO Box 9101, NL-6500 HB, Nijmegen, The Netherlands.
| | - Mike Kliffen
- Department of Pathology, Maasstad Hospital, Maasstadweg 21, 3079 DZ, Rotterdam, The Netherlands.
| | - Theo M Luider
- Department of Neurology, Erasmus MC, University Medical Center, Wytemaweg 80, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | - John A Foekens
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Wytemaweg 80, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Wytemaweg 80, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands; Cancer Genomics Center Netherlands, Amsterdam, The Netherlands.
| | - Arzu Umar
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Wytemaweg 80, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
39
|
Emmadi R, Canestrari E, Arbieva ZH, Mu W, Dai Y, Frasor J, Wiley E. Correlative Analysis of miRNA Expression and Oncotype Dx Recurrence Score in Estrogen Receptor Positive Breast Carcinomas. PLoS One 2015; 10:e0145346. [PMID: 26717565 PMCID: PMC4696739 DOI: 10.1371/journal.pone.0145346] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 12/02/2015] [Indexed: 12/11/2022] Open
Abstract
Altered expression of miRNAs has been observed in many types of cancer, including breast cancer, and shown to contribute to cancer growth, aggressiveness, and response to therapies. In this pilot study, we investigated the possible correlation of miRNAs with risk of recurrence of estrogen receptor positive, lymph node-negative mammary carcinomas as determined by the Oncotype DX® Breast Cancer assay. To accomplish this, we extracted RNA from a collection of breast carcinomas that had previously been analyzed by Oncotype DX®. Multiple Let-7 family members were negatively correlated with the recurrence score (RS), which is consistent with their tumor suppressor properties. Additional miRNAs were found to positively correlate with RS, including miR-377-5p, miR-633b, miR-548t and miR-3648. Pathway analysis of putative and validated targets suggests that these miRNAs may have a diverse range of functions that may contribute to tumor recurrence. Taken together, these findings provide evidence that a miRNA expression signature can be developed to aid existing methods to determine the risk of recurrence for women with estrogen receptor positive breast cancers treated with endocrine therapy.
Collapse
Affiliation(s)
- Rajyasree Emmadi
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| | - Emanuele Canestrari
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Zarema H. Arbieva
- Core Genomics Facility, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Wenbo Mu
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Yang Dai
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jonna Frasor
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Elizabeth Wiley
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
40
|
Klinge CM. miRNAs regulated by estrogens, tamoxifen, and endocrine disruptors and their downstream gene targets. Mol Cell Endocrinol 2015; 418 Pt 3:273-97. [PMID: 25659536 PMCID: PMC4523495 DOI: 10.1016/j.mce.2015.01.035] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are short (22 nucleotides), single-stranded, non-coding RNAs that form complimentary base-pairs with the 3' untranslated region of target mRNAs within the RNA-induced silencing complex (RISC) and block translation and/or stimulate mRNA transcript degradation. The non-coding miRBase (release 21, June 2014) reports that human genome contains ∼ 2588 mature miRNAs which regulate ∼ 60% of human protein-coding mRNAs. Dysregulation of miRNA expression has been implicated in estrogen-related diseases including breast cancer and endometrial cancer. The mechanism for estrogen regulation of miRNA expression and the role of estrogen-regulated miRNAs in normal homeostasis, reproduction, lactation, and in cancer is an area of great research and clinical interest. Estrogens regulate miRNA transcription through estrogen receptors α and β in a tissue-specific and cell-dependent manner. This review focuses primarily on the regulation of miRNA expression by ligand-activated ERs and their bona fide gene targets and includes miRNA regulation by tamoxifen and endocrine disrupting chemicals (EDCs) in breast cancer and cell lines.
Collapse
Affiliation(s)
- Carolyn M Klinge
- Department of Biochemistry & Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|
41
|
Abstract
Therapies targeting estrogen receptor alpha (ERα), including selective ER modulators such as tamoxifen, selective ER downregulators such as fulvestrant (ICI 182 780), and aromatase inhibitors such as letrozole, are successfully used in treating breast cancer patients whose initial tumor expresses ERα. Unfortunately, the effectiveness of endocrine therapies is limited by acquired resistance. The role of microRNAs (miRNAs) in the progression of endocrine-resistant breast cancer is of keen interest in developing biomarkers and therapies to counter metastatic disease. This review focuses on miRNAs implicated as disruptors of antiestrogen therapies, their bona fide gene targets and associated pathways promoting endocrine resistance.
Collapse
Affiliation(s)
- Penn Muluhngwi
- Department of Biochemistry and Molecular GeneticsCenter for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular GeneticsCenter for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA
| |
Collapse
|
42
|
Shao B, Liao L, Yu Y, Shuai Y, Su X, Jing H, Yang D, Jin Y. Estrogen preserves Fas ligand levels by inhibiting microRNA-181a in bone marrow-derived mesenchymal stem cells to maintain bone remodeling balance. FASEB J 2015; 29:3935-44. [DOI: 10.1096/fj.15-272823] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/26/2015] [Indexed: 12/29/2022]
|
43
|
Jin K, Park S, Teo WW, Korangath P, Cho SS, Yoshida T, Győrffy B, Goswami CP, Nakshatri H, Cruz LA, Zhou W, Ji H, Su Y, Ekram M, Wu Z, Zhu T, Polyak K, Sukumar S. HOXB7 Is an ERα Cofactor in the Activation of HER2 and Multiple ER Target Genes Leading to Endocrine Resistance. Cancer Discov 2015; 5:944-59. [PMID: 26180042 DOI: 10.1158/2159-8290.cd-15-0090] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 07/01/2015] [Indexed: 11/16/2022]
Abstract
UNLABELLED Why breast cancers become resistant to tamoxifen despite continued expression of the estrogen receptor-α (ERα) and what factors are responsible for high HER2 expression in these tumors remains an enigma. HOXB7 chromatin immunoprecipitation analysis followed by validation showed that HOXB7 physically interacts with ERα, and that the HOXB7-ERα complex enhances transcription of many ERα target genes, including HER2. Investigating strategies for controlling HOXB7, our studies revealed that MYC, stabilized via phosphorylation mediated by EGFR-HER2 signaling, inhibits transcription of miR-196a, a HOXB7 repressor. This leads to increased expression of HOXB7, ER target genes, and HER2. Repressing MYC using small-molecule inhibitors reverses these events and causes regression of breast cancer xenografts. The MYC-HOXB7-HER2 signaling pathway is eminently targetable in endocrine-resistant breast cancer. SIGNIFICANCE HOXB7 acts as an ERα cofactor regulating a myriad of ER target genes, including HER2, in tamoxifen-resistant breast cancer. HOXB7 expression is controlled by MYC via transcriptional regulation of the HOXB7 repressor miR-196a; consequently, antagonists of MYC cause reversal of selective ER modulator resistance both in vitro and in vivo.
Collapse
Affiliation(s)
- Kideok Jin
- Breast Cancer Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sunju Park
- Breast Cancer Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Wei Wen Teo
- Breast Cancer Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Preethi Korangath
- Breast Cancer Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sean Soonweng Cho
- Breast Cancer Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Takahiro Yoshida
- Breast Cancer Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group and 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Chirayu Pankaj Goswami
- Center for Computational Biology and Bioinformatics, Indiana University, Bloomington, Indiana
| | - Harikrishna Nakshatri
- Center for Computational Biology and Bioinformatics, Indiana University, Bloomington, Indiana
| | - Leigh-Ann Cruz
- Breast Cancer Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Ying Su
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Zhengsheng Wu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Tao Zhu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | | | - Saraswati Sukumar
- Breast Cancer Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
44
|
Zhang W, Xu J, Shi Y, Sun Q, Zhang Q, Guan X. The novel role of miRNAs for tamoxifen resistance in human breast cancer. Cell Mol Life Sci 2015; 72:2575-84. [PMID: 25782411 PMCID: PMC11113898 DOI: 10.1007/s00018-015-1887-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/09/2015] [Accepted: 03/12/2015] [Indexed: 01/04/2023]
Abstract
The selective estrogen receptor modulator tamoxifen is the most commonly used treatment for patients with ER-positive breast cancer. However, tumor cells often develop resistance to tamoxifen therapy, which is a major obstacle limiting the success of breast cancer treatment. miRNAs, as oncogenic or tumor suppressor genes, regulate the expression and function of their related target genes to affect the biological behaviors of cancer cells, including cancer initiation, progression, metastasis, and therapeutic resistance. In detail, many miRNAs associated with breast cancer tamoxifen resistance have been identified, which offer new targets for breast cancer therapy. Here, we review the miRNAs involved in regulation of tamoxifen resistance in human breast cancer and the mechanism of how the modulation of miRNAs may regulate the sensitivity of breast cancer cells to tamoxifen. We also discuss the future prospects of studies about miRNAs in regulation of tamoxifen resistance and miRNA-based therapeutics for tamoxifen resistance breast cancer patients.
Collapse
Affiliation(s)
- Wenwen Zhang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 China
| | - Jing Xu
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 China
| | - Yaqin Shi
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 China
| | - Qian Sun
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 China
| | - Qun Zhang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 China
| | - Xiaoxiang Guan
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 China
| |
Collapse
|
45
|
Vilquin P, Donini CF, Villedieu M, Grisard E, Corbo L, Bachelot T, Vendrell JA, Cohen PA. MicroRNA-125b upregulation confers aromatase inhibitor resistance and is a novel marker of poor prognosis in breast cancer. Breast Cancer Res 2015; 17:13. [PMID: 25633049 PMCID: PMC4342894 DOI: 10.1186/s13058-015-0515-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/08/2015] [Indexed: 12/14/2022] Open
Abstract
Introduction Increasing evidence indicates that microRNAs (miRNAs) are important players in oncogenesis. Considering the widespread use of aromatase inhibitors (AIs) in endocrine therapy as a first-line treatment for postmenopausal estrogen receptor α–positive breast cancer patients, identifying deregulated expression levels of miRNAs in association with AI resistance is of utmost importance. Methods To gain further insight into the molecular mechanisms underlying the AI resistance, we performed miRNA microarray experiments using a new model of acquired resistance to letrozole (Res-Let cells), obtained by long-term exposure of aromatase-overexpressing MCF-7 cells (MCF-7aro cells) to letrozole, and a model of acquired anastrozole resistance (Res-Ana cells). Three miRNAs (miR-125b, miR-205 and miR-424) similarly deregulated in both AI-resistant cell lines were then investigated in terms of their functional role in AI resistance development and breast cancer cell aggressiveness and their clinical relevance using a cohort of 65 primary breast tumor samples. Results We identified the deregulated expression of 33 miRNAs in Res-Let cells and of 18 miRNAs in Res-Ana cells compared with the sensitive MCF-7aro cell line. The top-ranked Kyoto Encyclopedia of Genes and Genomes pathways delineated by both miRNA signatures converged on the AKT/mTOR pathway, which was found to be constitutively activated in both AI-resistant cell lines. We report for the first time, to our knowledge, that ectopic overexpression of either miR-125b or miR-205, or the silencing of miR-424 expression, in the sensitive MCF-7aro cell line was sufficient to confer resistance to letrozole and anastrozole, to target and activate the AKT/mTOR pathway and to increase the formation capacity of stem-like and tumor-initiating cells possessing self-renewing properties. Increasing miR-125b expression levels was also sufficient to confer estrogen-independent growth properties to the sensitive MCF-7aro cell line. We also found that elevated miR-125b expression levels were a novel marker for poor prognosis in breast cancer and that targeting miR-125b in Res-Let cells overcame letrozole resistance. Conclusion This study highlights that acquisition of specific deregulated miRNAs is a newly discovered alternative mechanism developed by AI-resistant breast cancer cells to achieve constitutive activation of the AKT/mTOR pathway and to develop AI resistance. It also highlights that miR-125b is a new biomarker of poor prognosis and a candidate therapeutic target in AI-resistant breast cancers. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0515-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paul Vilquin
- ISPB, Faculté de Pharmacie, 8 Avenue Rockefeller, 69008, Lyon, France. .,Université Lyon 1, 8 Avenue Rockefeller, 69008, Lyon, France. .,INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 28 Rue Laennec, 69008, Lyon, France.
| | - Caterina F Donini
- ISPB, Faculté de Pharmacie, 8 Avenue Rockefeller, 69008, Lyon, France. .,Université Lyon 1, 8 Avenue Rockefeller, 69008, Lyon, France. .,INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 28 Rue Laennec, 69008, Lyon, France. .,Unité Cancer et Environnement, Centre Léon Bérard-Université Lyon 1, 28 Rue Laennec, 69008, Lyon, France.
| | - Marie Villedieu
- ISPB, Faculté de Pharmacie, 8 Avenue Rockefeller, 69008, Lyon, France. .,Université Lyon 1, 8 Avenue Rockefeller, 69008, Lyon, France. .,INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 28 Rue Laennec, 69008, Lyon, France.
| | - Evelyne Grisard
- ISPB, Faculté de Pharmacie, 8 Avenue Rockefeller, 69008, Lyon, France. .,Université Lyon 1, 8 Avenue Rockefeller, 69008, Lyon, France. .,INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 28 Rue Laennec, 69008, Lyon, France.
| | - Laura Corbo
- Université Lyon 1, 8 Avenue Rockefeller, 69008, Lyon, France. .,INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 28 Rue Laennec, 69008, Lyon, France.
| | | | - Julie A Vendrell
- ISPB, Faculté de Pharmacie, 8 Avenue Rockefeller, 69008, Lyon, France. .,Université Lyon 1, 8 Avenue Rockefeller, 69008, Lyon, France. .,INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 28 Rue Laennec, 69008, Lyon, France.
| | - Pascale A Cohen
- ISPB, Faculté de Pharmacie, 8 Avenue Rockefeller, 69008, Lyon, France. .,Université Lyon 1, 8 Avenue Rockefeller, 69008, Lyon, France. .,INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 28 Rue Laennec, 69008, Lyon, France. .,Unité Cancer et Environnement, Centre Léon Bérard-Université Lyon 1, 28 Rue Laennec, 69008, Lyon, France. .,ProfileXpert, SFR Lyon-Est, 69008, Lyon, France. .,ISPBL-Faculté de Pharmacie de Lyon, 8 Avenue Rockefeller, 69373, Lyon, Cedex 08, France.
| |
Collapse
|
46
|
Teng Y, Litchfield LM, Ivanova MM, Prough RA, Clark BJ, Klinge CM. Dehydroepiandrosterone-induces miR-21 transcription in HepG2 cells through estrogen receptor β and androgen receptor. Mol Cell Endocrinol 2014; 392:23-36. [PMID: 24845419 PMCID: PMC4074919 DOI: 10.1016/j.mce.2014.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 05/02/2014] [Accepted: 05/09/2014] [Indexed: 12/15/2022]
Abstract
Although oncomiR miR-21 is highly expressed in liver and overexpressed in hepatocellular carcinoma (HCC), its regulation is uncharacterized. We examined the effect of physiologically relevant nanomolar concentrations of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEA-S) on miR-21 expression in HepG2 human hepatoma cells. 10nM DHEA and DHEA-S increase pri-miR-21 transcription in HepG2 cells. Dietary DHEA increased miR-21 in vivo in mouse liver. siRNA and inhibitor studies suggest that DHEA-S requires desulfation for activity and that DHEA-induced pri-miR-21 transcription involves metabolism to androgen and estrogen receptor (AR and ER) ligands. Activation of ERβ and AR by DHEA metabolites androst-5-ene-3,17-dione (ADIONE), androst-5-ene-3β,17β-diol (ADIOL), dihydrotestosterone (DHT), and 5α-androstane-3β,17β-diol (3β-Adiol) increased miR-21 transcription. DHEA-induced miR-21 increased cell proliferation and decreased Pdcd4 protein, a bona fide miR-21. Estradiol (E2) inhibited miR-21 expression via ERα. DHEA increased ERβ and AR recruitment to the miR-21 promoter within the VMP1/TMEM49 gene, with possible significance in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yun Teng
- Department of Biochemistry & Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Lacey M Litchfield
- Department of Biochemistry & Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Margarita M Ivanova
- Department of Biochemistry & Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Russell A Prough
- Department of Biochemistry & Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Barbara J Clark
- Department of Biochemistry & Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry & Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|
47
|
Zhu L, Liu J, Liang F, Rayner S, Xiong J. Predicting response to preoperative chemotherapy agents by identifying drug action on modeled microRNA regulation networks. PLoS One 2014; 9:e98140. [PMID: 24848634 PMCID: PMC4029965 DOI: 10.1371/journal.pone.0098140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 04/29/2014] [Indexed: 01/05/2023] Open
Abstract
Identifying patients most responsive to specific chemotherapy agents in neoadjuvant settings can help to maximize the benefits of treatment and minimize unnecessary side effects. Metagene approaches that predict response based on gene expression signatures derived from an associative analysis of clinical data can identify chance associations caused by the heterogeneity of a tumor, leading to reproducibility issues in independent validations. In this study, to incorporate information from drug mechanisms of action, we explore the potential of microRNA regulation networks as a new feature space for identifying predictive markers. We introduce a measure we term the CoMi (Context-specific-miRNA-regulation) pattern to represent a descriptive feature of the miRNA regulation network in the transcriptome. We examine whether the modifications to the CoMi pattern on specific biological processes are a useful representation of drug action by predicting the response to neoadjuvant Paclitaxel treatment in breast cancer and show that the drug counteracts the CoMi network dysregulation induced by tumorigenesis. We then generate a quantitative testbed to investigate the ability of the CoMi pattern to distinguish FDA approved breast cancer drugs from other FDA approved drugs not related to breast cancer. We also compare the ability of the CoMi and metagene methods to predict response to neoadjuvant Paclitaxel treatment in clinical cohorts. We find the CoMi method outperforms the metagene method, achieving area under curve (AUC) values of 0.78 and 0.66 respectively. Furthermore, several of the predicted CoMi features highlight the network-based mechanism of drug resistance. Thus, our study suggests that explicitly modeling the drug action using network biology provides a promising approach for predictive marker discovery.
Collapse
Affiliation(s)
- Lida Zhu
- School of Computer Science, Wuhan University, Wuhan, P. R. China
| | - Juan Liu
- School of Computer Science, Wuhan University, Wuhan, P. R. China
- * E-mail: (JL); (JX); (SR)
| | - Fengji Liang
- State Key Lab of Space Medicine Fundamentals and Application (SMFA), China Astronaut Research and Training Center (ACC), Beijing, P. R. China
| | - Simon Rayner
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Wuhan, China
- * E-mail: (JL); (JX); (SR)
| | - Jianghui Xiong
- State Key Lab of Space Medicine Fundamentals and Application (SMFA), China Astronaut Research and Training Center (ACC), Beijing, P. R. China
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- * E-mail: (JL); (JX); (SR)
| |
Collapse
|
48
|
Yao J, Zhou E, Wang Y, Xu F, Zhang D, Zhong D. microRNA-200a Inhibits Cell Proliferation by Targeting Mitochondrial Transcription Factor A in Breast Cancer. DNA Cell Biol 2014; 33:291-300. [PMID: 24684598 DOI: 10.1089/dna.2013.2132] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Jia Yao
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Enxiang Zhou
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yichun Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Feng Xu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Danhua Zhang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Dewu Zhong
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
49
|
Martin HL, Smith L, Tomlinson DC. Multidrug-resistant breast cancer: current perspectives. BREAST CANCER (DOVE MEDICAL PRESS) 2014; 6:1-13. [PMID: 24648765 PMCID: PMC3929252 DOI: 10.2147/bctt.s37638] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Breast cancer is the most common cancer in women worldwide, and resistance to the current therapeutics, often concurrently, is an increasing clinical challenge. By understanding the molecular mechanisms behind multidrug-resistant breast cancer, new treatments may be developed. Here we review the recent advances in this understanding, emphasizing the common mechanisms underlying resistance to both targeted therapies, notably tamoxifen and trastuzumab, and traditional chemotherapies. We focus primarily on three molecular mechanisms, the phosphatidylinositide 3-kinase/Akt pathway, the role of microRNAs in gene silencing, and epigenetic alterations affecting gene expression, and discuss how these mechanisms can interact in multidrug resistance. The development of therapeutics targeting these mechanisms is also addressed.
Collapse
Affiliation(s)
- Heather L Martin
- BioScreening Technology Group, Leeds Institutes of Molecular Medicine, University of Leeds, Leeds, UK
| | - Laura Smith
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Darren C Tomlinson
- BioScreening Technology Group, Leeds Institutes of Molecular Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
50
|
Zhou J, Teng R, Wang Q, Xu C, Guo J, Yuan C, Shen J, Hu W, Wang L, Xie S. Endocrine resistance in breast cancer: Current status and a perspective on the roles of miRNAs (Review). Oncol Lett 2013; 6:295-305. [PMID: 24137320 PMCID: PMC3789028 DOI: 10.3892/ol.2013.1405] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 05/03/2013] [Indexed: 12/11/2022] Open
Abstract
Current endocrine therapies for females with estrogen receptor-positive breast cancer have facilitated substantial improvements in outcomes. The effectiveness of endocrine therapy is limited by either initial de novo resistance or acquired endocrine resistance. Multiple mechanisms responsible for endocrine resistance have been proposed, including deregulation of various components of the estrogen receptor (ER) pathway, alterations in cell cycle and cell survival signaling molecules, and the activation of escape pathways. Dysregulation of miRNA expression has been associated with experimental and clinical endocrine therapy resistance. miRNAs are pivotal to understanding the complex biological mechanism of endocrine resistance, and may serve as novel candidate predictive and prognostic surrogates and therapeutic targets. This review focuses on current progress concerning the roles of miRNAs in endocrine resistance, and discusses the challenges and opportunities for implementing miRNA-based assays and treatment for patients with endocrine-resistant breast cancer.
Collapse
Affiliation(s)
- Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|