1
|
Ocadiz-Delgado R, Serafin-Higuera N, Alvarez-Rios E, García-Villa E, Tinajero-Rodríguez M, Rodríguez-Uribe G, Escobar-Wilches DC, Estela Albino-Sánchez M, Ramírez-Rosas A, Sierra-Santoyo A, Hernández-Pando R, Lambert P, Gariglio P. Vitamin A deficiency in K14E7HPV expressing transgenic mice facilitates the formation of malignant cervical lesions. APMIS 2021; 129:512-523. [PMID: 34046932 DOI: 10.1111/apm.13159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/17/2021] [Indexed: 12/25/2022]
Abstract
Infection with high-risk human papillomavirus (HR-HPV) is the main cause of cervical cancer (CC), but viral infection alone does not guarantee the development of this malignancy. Indeed, deficiencies of dietary micronutrients could favor cervical cancer development in individuals that harbor HR-HPV infections. The status of retinoid levels, natural and synthetic derivatives of vitamin A, is important in maintaining cellular differentiation of the cervical epithelium. Moreover, many studies show a link between deficient intake of retinoids or alteration of the retinoid receptors and CC development. In spite of this, the effect of vitamin A deficiency (VAD) in presence of HR-HPV oncoproteins on cervical carcinogenesis in vivo has not been reported. Transgenic mice expressing E6 or E7 oncoproteins (K14E6 or K14E7 mice, respectively) were used to evaluate the possible role of VAD in the development of malignant cervical lesions. The survival of the mice in VAD condition was studied, and histopathological analysis and immunohistochemical detection of molecular cancer markers such as the tumor suppressor retinoic acid receptor beta (RARβ), proliferating cell nuclear antigen (PCNA), cleaved caspase 3, and the tumor suppressor protein p16INK4A (inhibitor of CDK4) were performed. Our results show that K14E6/VAD mice showed moderate cervical dysplasia; notably, K14E7/VAD mice developed severe cervical dysplasia and cervical in situ carcinoma at an early age. VAD synergizes with HPV16E7 oncoprotein expression favoring cervical carcinogenesis in vivo.
Collapse
Affiliation(s)
- Rodolfo Ocadiz-Delgado
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Nicolás Serafin-Higuera
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Elizabeth Alvarez-Rios
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Enrique García-Villa
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Manuel Tinajero-Rodríguez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Genaro Rodríguez-Uribe
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Derly-Constanza Escobar-Wilches
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Marta Estela Albino-Sánchez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Alejandro Ramírez-Rosas
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Adolfo Sierra-Santoyo
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Rogelio Hernández-Pando
- Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - Paul Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Patricio Gariglio
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| |
Collapse
|
2
|
Ocadiz-Delgado R, Cruz-Colin JL, Alvarez-Rios E, Torres-Carrillo A, Hernandez-Mendoza K, Conde-Pérezprina JC, Dominguez-Gomez GI, Garcia-Villa E, Lambert PF, Gariglio P. Expression of miR-34a and miR-15b during the progression of cervical cancer in a murine model expressing the HPV16 E7 oncoprotein. J Physiol Biochem 2021; 77:547-555. [PMID: 33937961 DOI: 10.1007/s13105-021-00818-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 04/20/2021] [Indexed: 01/01/2023]
Abstract
The high-risk human papillomavirus (HR-HPV) E7 oncoprotein appears to be a major determinant for cell immortalization and transformation altering critical processes such as cell proliferation, apoptosis, and immune response. This oncoprotein plays an essential role in cervical carcinogenesis, but other cofactors such as long-term use of hormonal contraceptives are necessary to modulate the risk of cervical cancer (CC). The role of HR-HPVs in the alteration of microRNA (miRNA) levels in persistent viral infections currently remains unclear. The aim of this study was to evaluate the miR-34a and miR-15b expression levels in the murine HPV16K14E7 (K14E7) transgenic model after chronic estrogen (E2) treatment and their involvement in CC. Interestingly, results showed that, although miR-34a expression is elevated by the HPVE7 oncogene, this expression was downregulated in the presence of both the E7 oncoprotein and chronic E2 in cervical carcinoma. On the other hand, miR-15b expression was upregulated along cervical carcinogenesis mainly by the effect of E2. These different changes in the expression levels of miR-34a and miR-15b along cervical carcinogenesis conduced to low apoptosis levels, high cell proliferation and finally, to cancerous cervical tissue development. In this work, we also determined the relative mRNA expression of Cyclin E2 (Ccne2), Cyclin A2 (Ccna2), and B cell lymphoma 2 (Bcl-2) (target genes of miR-34a and miR-15b); Sirtuin 1 (Sirt1), Cmyc, and Bax (miR-34a target genes); and p21/WAF1 (mir15b target gene) and the H-ras oncogene. Given the modifications in the expression levels of miR-34a and miR-15b during the development of cervical cancer, it will be useful to carry out further investigation to confirm them as molecular biomarkers of cancer.
Collapse
Affiliation(s)
- Rodolfo Ocadiz-Delgado
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Colonia San Pedro Zacatenco Delegación Gustavo A. Madero, 07360, Mexico City, CP, Mexico
| | - Jose-Luis Cruz-Colin
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Colonia San Pedro Zacatenco Delegación Gustavo A. Madero, 07360, Mexico City, CP, Mexico.,Department of Genomic Diagnostic, INMEGEN, Mexico City, Mexico, Mexico
| | - Elizabeth Alvarez-Rios
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Colonia San Pedro Zacatenco Delegación Gustavo A. Madero, 07360, Mexico City, CP, Mexico
| | - Antonio Torres-Carrillo
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Colonia San Pedro Zacatenco Delegación Gustavo A. Madero, 07360, Mexico City, CP, Mexico
| | - Karina Hernandez-Mendoza
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Colonia San Pedro Zacatenco Delegación Gustavo A. Madero, 07360, Mexico City, CP, Mexico
| | - Juan-Cristobal Conde-Pérezprina
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Colonia San Pedro Zacatenco Delegación Gustavo A. Madero, 07360, Mexico City, CP, Mexico
| | - Guadalupe-Isabel Dominguez-Gomez
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Colonia San Pedro Zacatenco Delegación Gustavo A. Madero, 07360, Mexico City, CP, Mexico.,Subdirección de Investigación Clínica, INCan, Mexico City, Mexico, Mexico
| | - Enrique Garcia-Villa
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Colonia San Pedro Zacatenco Delegación Gustavo A. Madero, 07360, Mexico City, CP, Mexico
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison, WI, USA
| | - Patricio Gariglio
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Colonia San Pedro Zacatenco Delegación Gustavo A. Madero, 07360, Mexico City, CP, Mexico.
| |
Collapse
|
3
|
Ocadiz-Delgado R, Lizcano-Meneses S, Trejo-Vazquez JA, Conde-Perezprina JC, Garrido-Palmas F, Alvarez-Rios E, García-Villa E, Ruiz G, Illades-Aguiar B, Leyva-Vázquez MA, García-Carrancá A, Gariglio P. Circulating miR-15b, miR-34a and miR-218 as promising novel early low-invasive biomarkers of cervical carcinogenesis. APMIS 2020; 129:70-79. [PMID: 33112434 DOI: 10.1111/apm.13093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
Circulating biological markers, such as miRNAs, hold the greatest possibilities to complement tissue biopsy and clinical diagnostic tests. The objective of this study was to evaluate the relative abundance of three circulating miRNAs in serum from 17 HPV16-positive patients with early cervical lesions known as Low-Grade Squamous Intraepithelial Lesions (LSILs). The expression of circulating microRNAs miR-15b, miR-34a and miR-218 in patients with LSILs was compared to 23 HPV-negative individuals showing normal cervical epithelium (healthy women) and 23 Squamous Cell Carcinoma (SCC) samples. The expression levels of miR-15b remained unchanged while those of miRNAs 34a and 218 were relatively high in serum obtained from LSIL patients in comparison with healthy women (results were statistically significant with a p of < 0.01 or < 0.001). According to previous findings, miR-15b was overexpressed and miRNAs 34a and 218 were underexpressed in serum from SCC patients. Additionally, the mRNA expression levels of some selected gene targets were determined [Cyclin D1 (CCND1), Cyclin E1 (CCNE1), B-cell lymphoma 2 (Bcl-2) and MutS homolog 2 (MSH-2)]. All serum results correlated with tissue samples from the same patients. We propose that circulating microRNAs can be valuable as molecular markers for the early follow-up of cervical carcinogenesis risk.
Collapse
Affiliation(s)
| | | | | | | | - Frida Garrido-Palmas
- Department of Genetics and Molecular Biology, CINVESTAV-IPN, Mexico City, Mexico
| | | | - Enrique García-Villa
- Department of Genetics and Molecular Biology, CINVESTAV-IPN, Mexico City, Mexico
| | - Graciela Ruiz
- Department of Genetics and Molecular Biology, CINVESTAV-IPN, Mexico City, Mexico
| | - Berenice Illades-Aguiar
- Faculty of Chemical Biological Sciences, Autonomous University of Guerrero, UAGro, Chilpancingo, Guerrero, Mexico
| | - Marco Antonio Leyva-Vázquez
- Faculty of Chemical Biological Sciences, Autonomous University of Guerrero, UAGro, Chilpancingo, Guerrero, Mexico
| | - Alejandro García-Carrancá
- Biomedical Research Unit in Cancer, IIB, National Autonomous University of Mexico UNAM, Mexico City, Mexico.,National Cancer Institute INCan, SS, Mexico City, Mexico
| | - Patricio Gariglio
- Department of Genetics and Molecular Biology, CINVESTAV-IPN, Mexico City, Mexico
| |
Collapse
|
4
|
Evidence of CPV2c introgression into Croatia and novel insights into phylogeny and cell tropism. Sci Rep 2019; 9:16909. [PMID: 31729462 PMCID: PMC6858334 DOI: 10.1038/s41598-019-53422-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/28/2019] [Indexed: 12/16/2022] Open
Abstract
Canine parvovirus type 2 (CPV2) emerged for the first time in 1978 and evolved into two antigenic variants CPV2a and CPV2b and the third new antigenic variant CPV2c reported in 2000 in Italy. During 2014 unexplained outbreaks of gastroenteritis were observed in kennels where an extensive vaccination program was ongoing and where vaccinated animals showed pathologic lesions consistent with typical parvovirosis. The aim of this study was to investigate whether CPV2 could have played a role in the emergence of these cases and to evaluate genetic or pathological specificities of the virus and the disease. Using PCR and phylogenetic analysis we showed that the CPV2c variant is circulating in Croatia and is in close relationships with isolates from North and South America. Histopathological lesions and cell tropism that are known for CPV2 we are reporting the identification of the virus in glial cells and ovaries. It seems that evolution of CPV and CPV2a-c and adaptation to dogs are two independent events. Croatian isolates had specific and some unique amino acid mutations under positive selection. The effect of the alterations on the immunoglobulin binding cannot be excluded.
Collapse
|
5
|
Medel-Flores O, Valenzuela-Rodríguez VA, Ocadiz-Delgado R, Castro-Muñoz LJ, Hernández-Leyva S, Lara-Hernández G, Silva-Escobedo JG, Vidal PG, Sánchez-Monroy V. Association between HPV infection and prostate cancer in a Mexican population. Genet Mol Biol 2018; 41:781-789. [PMID: 30508006 PMCID: PMC6415601 DOI: 10.1590/1678-4685-gmb-2017-0331] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/29/2018] [Indexed: 12/19/2022] Open
Abstract
The aim of this study was to evaluate the association between prostate cancer (PCa) and Human papillomavirus (HPV) infection in the Mexican population. We studied 356 paraffin-embedded tissues from unrelated Mexican men with PCa or benign prostatic hyperplasia (BPH), with the latter serving as control. HPV detection was performed by polymerase chain reaction (PCR) using universal primers, and viral genotypes were detected using sequencing or multiplex PCR. Light microscopy analyses enabled the identification of koilocytes in samples subsequently analyzed for HPV detection by in situ PCR and for p16-INK4A expression by immunohistochemistry. The results showed that high risk- (HR) HPVs were detected in 37/189 (19.6%) PCa specimens compared to 16/167 (9.6%) of BHP specimens (odds ratio 2.3; 95% CI= 1.2 to 4.3; p=0.01). These data suggest HR-HPV may play a role in PCa. HPV 52 and 58 were the most frequent genotypes (33 and 17%, respectively) detected in the population studied. Koilocytes were detected in all in situ PCR-HPV-positive samples, representing a pathognomonic feature of infection, and we observed the overexpression of p16-INK4A in HPV-positive samples compared to HPV-negative samples, indirectly suggesting the presence of HR-HPV E7 oncoprotein. These results suggest that HPV infection plays an important role in prostate cancer development.
Collapse
Affiliation(s)
- Olivia Medel-Flores
- Laboratorio de Biomedicina Molecular I, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | | | - Rodolfo Ocadiz-Delgado
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Leonardo Josué Castro-Muñoz
- Laboratorio de Biomedicina Molecular I, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Sandra Hernández-Leyva
- Laboratorio Multidisciplinario de Investigación, Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional, Ciudad de México, Mexico
| | - Gabriel Lara-Hernández
- Laboratorio Multidisciplinario de Investigación, Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional, Ciudad de México, Mexico
| | - Jesús-Gabriel Silva-Escobedo
- Laboratorio Multidisciplinario de Investigación, Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional, Ciudad de México, Mexico
| | - Patricio Gariglio Vidal
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Virginia Sánchez-Monroy
- Laboratorio de Biomedicina Molecular I, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
6
|
HPV16-E6 Oncoprotein Activates TGF- β and Wnt/ β-Catenin Pathways in the Epithelium-Mesenchymal Transition of Cataracts in a Transgenic Mouse Model. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2847873. [PMID: 29888254 PMCID: PMC5977056 DOI: 10.1155/2018/2847873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/14/2018] [Accepted: 04/03/2018] [Indexed: 11/18/2022]
Abstract
Objective This work aimed to determine if cataractous changes associated with EMT occurring in the K14E6 mice lenses are associated with TGF-β and Wnt/β-catenin signaling activation. Materials and Methods Cataracts of K14E6 mice were analysed histologically; and components of TGF-β and Wnt/β-catenin signaling were evaluated by Western blot, RT-qPCR, in situ RT-PCR, IHC, or IF technics. Metalloproteinases involved in EMT were also assayed using zymography. The endogenous stabilisation of Smad7 protein was also assessed using an HDAC inhibitor. Results The K14E6 mice, which displayed binocular cataracts in 100% of the animals, exhibited loss of tissue organisation, cortical liquefaction, and an increase in the number of hyperproliferative-nucleated cells with mesenchymal-like characteristics in the lenses. Changes in lenses' cell morphology were due to actin filaments reorganisation, activation of TGF-β and Wnt/β-catenin pathways, and the accumulation of MTA1 protein. Finally, the stabilisation of Smad7 protein diminishes cell proliferation, as well as MTA1 protein levels. Conclusion The HPV16-E6 oncoprotein induces EMT in transgenic mice cataracts. The molecular mechanism may involve TGF-β and Wnt/β-catenin pathways, suggesting that the K14E6 transgenic mouse could be a useful model for the study or treatment of EMT-induced cataracts.
Collapse
|
7
|
Novosel D, Cadar D, Tuboly T, Jungic A, Stadejek T, Ait-Ali T, Cságola A. Investigating porcine parvoviruses genogroup 2 infection using in situ polymerase chain reaction. BMC Vet Res 2018; 14:163. [PMID: 29783968 PMCID: PMC5963090 DOI: 10.1186/s12917-018-1487-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 05/07/2018] [Indexed: 02/06/2023] Open
Abstract
Background Porcine parvovirus 2 (PPV2) was detected in swine serum without showing any relationship with disease. The emergence of the virus seemed to be a unique event until other genetically highly similar parvoviruses were identified in China and, later in 2012, the presence of the virus was also described in Europe. PPV2 is widely distributed in pig populations where it is suspected to be involved in respiratory conditions, based on its frequent detection in lung samples. In order to investigate the potential pathogenic involvement of PPV2, 60 dead pigs were examined from two farms. They were necropsied and tested for PPV2 and PCV2 (Porcine circovirus type 2) by PCR; by Brown and Brenn (B&B) staining for bacteria; by immunohistochemistry (IHC) to detect CD3, Swine leukocyte antigen class II DQ (SLAIIDQ), lysozyme, porcine reproductive and respiratory syndrome virus (PRRSV), swine influenza (SIV), Mycoplasma hyopneumoniae (Mhyo); and by in situ hybridization (ISH) to detect ssDNA and dsDNA of PCV2. PPV2 positive samples were subjected to in situ polymerase chain reaction (IS-PCR) including double staining method to detect PPV2 and host cell markers. To calculate statistical difference we used GENMOD or LOGISTIC procedures in Statistical Analysis System (SAS®). Results We found that the PPV2 was localized mostly in lymphocytes in lungs, lymph nodes and liver. Neither CD3 antigen nor lysozyme was expressed by these infected cells. In contrast, low levels of SLAIIDQ were expressed by infected cells, suggesting that PPV2 may have a specific tropism for immature B lymphocytes and/or NK lymphocytes though possibly not T lymphocytes. Conclusion The overall conclusion of this study indicates that PPV2 may contribute to the pathogenesis of pneumonia. Electronic supplementary material The online version of this article (10.1186/s12917-018-1487-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dinko Novosel
- Department of Pathology, Croatian Veterinary Institute, Savska cesta 143, 10000, Zagreb, Croatia. .,Department for Animal science, Faculty of Agriculture, University of Zagreb, Svetosimunska 25, 10000, Zagreb, Croatia.
| | - Daniel Cadar
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, National Reference Centre for Tropical Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359, Hamburg, Germany.,Department of Microbiology and Infectious Diseases, Faculty of Veterinary Science, Immunology, Szent István University, István u. 2, Budapest, 1078, Hungary
| | - Tamás Tuboly
- Department of Microbiology and Infectious Diseases, Faculty of Veterinary Science, Immunology, Szent István University, István u. 2, Budapest, 1078, Hungary
| | - Andreja Jungic
- Department for Virology, Croatian Veterinary Institute, Savska cesta 143, 10000, Zagreb, Croatia
| | - Tomasz Stadejek
- Department of Pathology and Veterinary Diagnostic, Faculty of Veterinary Medicine, University of Life Science, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Tahar Ait-Ali
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edingburgh, United Kingdom
| | - Attila Cságola
- Department of Microbiology and Infectious Diseases, Faculty of Veterinary Science, Immunology, Szent István University, István u. 2, Budapest, 1078, Hungary
| |
Collapse
|
8
|
Abstract
Genetically engineered mice (GEMs) have provided valuable insights into the carcinogenic properties of various human tumor viruses, which, in aggregate, are etiologically associated with over 15% of all human cancers. This review provides an overview of seminal discoveries made through the use of GEM models for human DNA tumor viruses. Emphasis is placed on the discoveries made in the study of human papillomaviruses, Merkel cell carcinoma-associated polyomavirus, Epstein-Barr virus, and Kaposi's sarcoma-associated herpesvirus, because GEMs have contributed extensively to our understanding of how these DNA tumor viruses directly contribute to human cancers.
Collapse
Affiliation(s)
- Paul F Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705;
| |
Collapse
|
9
|
Organista-Nava J, Gómez-Gómez Y, Ocadiz-Delgado R, García-Villa E, Bonilla-Delgado J, Lagunas-Martínez A, Tapia JSO, Lambert PF, García-Carrancá A, Gariglio P. The HPV16 E7 oncoprotein increases the expression of Oct3/4 and stemness-related genes and augments cell self-renewal. Virology 2016; 499:230-242. [PMID: 27693927 DOI: 10.1016/j.virol.2016.09.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 09/15/2016] [Accepted: 09/20/2016] [Indexed: 01/24/2023]
Abstract
Oct3/4 is a transcription factor involved in maintenance of the pluripotency and self-renewal of stem cells. The E7 oncoprotein and 17β-estradiol (E2) are key factors in cervical carcinogenesis. In the present study, we aimed to investigate the effect of the HPV16 E7 oncoprotein and E2 on the expression pattern of Oct3/4, Sox2, Nanog and Fgf4. We also determined whether the E7 oncoprotein is associated with cell self-renewal. The results showed that Oct3/4, Sox2, Nanog and Fgf4 were upregulated by the E7 oncoprotein in vivo and in vitro and implicate E2 in the upregulation of these factors in vivo. We also demonstrated that E7 is involved in cell self-renewal, suggesting that the HPV16 E7 oncoprotein upregulates Oct3/4, Sox2, Nanog and Fgf4 expression to maintain the self-renewal capacity of cancer stem cells.
Collapse
Affiliation(s)
- Jorge Organista-Nava
- Programa de Doctorado en Ciencias Biomédicas, Instituto de Fisiología Celular (IFC), Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, México; Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07360, México
| | - Yazmín Gómez-Gómez
- Programa de Doctorado en Ciencias Biomédicas, Instituto de Fisiología Celular (IFC), Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, México; Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07360, México
| | - Rodolfo Ocadiz-Delgado
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07360, México
| | - Enrique García-Villa
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07360, México
| | - José Bonilla-Delgado
- Unidad de Investigación, Hospital Juárez de México, Ciudad de México 07760, México
| | - Alfredo Lagunas-Martínez
- División de Biología Molecular de Patógenos, CISEI, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Jesús Santa-Olalla Tapia
- Unidad de Diagnóstico y Medicina Molecular, "Dr. Ruy Pérez Tamayo", Hospital del Niño y el Adolescente Morelense, Cuernavaca, Morelos, México; Facultad de Medicina, Universidad Autonóma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Alejandro García-Carrancá
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM) and División de Investigación Básica, Instituto Nacional de Cancerología (INCan), Secretaría de Salud, Ciudad de México 14080, México.
| | - Patricio Gariglio
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07360, México.
| |
Collapse
|
10
|
Albino-Sanchez ME, Vazquez-Hernandez J, Ocadiz-Delgado R, Serafin-Higuera N, León-Galicia I, Garcia-Villa E, Hernandez-Pando R, Gariglio P. Decreased RARβ expression induces abundant inflammation and cervical precancerous lesions. Exp Cell Res 2016; 346:40-52. [PMID: 27207583 DOI: 10.1016/j.yexcr.2016.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/03/2016] [Accepted: 05/15/2016] [Indexed: 12/29/2022]
Abstract
It is well known that vitamin A and its receptors protect against cancer development and that Retinoid Acid Receptor β (RARβ) is epigenetically silenced during tumoral progression. Cervical Cancer (CC) has been causally linked to high risk human papillomavirus (HR-HPV) infection. However, host factors are important in determining the outcome of persistent HR-HPV infection as most cervical precancerous lesions containing HR-HPVs do not progress to invasive carcinomas. Increasing evidence suggests that low diet in vitamin A and their receptors participate in the development of CC. The aim of this study has been to investigate the effects of abated RARβ expression in the development of cervical premalignant lesions in 4 month-old conditional mice (RARβ(L-/L-)). Results demonstrated the development of spontaneous squamous metaplasia, inflammatory infiltrate, enhanced mitotic activity, loss of cell differentiation, as well as decreased apoptosis and p16(INK4a) protein levels in RARβ(L-/L-) mice cervix. All these changes are hallmarks of moderate dysplasia. Importantly, our results suggest that the low expression of RARβ, may induce the down regulation of p16(INK4a), chronic inflammation and decreased apoptosis and may be involved in vulnerability to HR-HPV and early stage cervical carcinogenesis.
Collapse
Affiliation(s)
- M E Albino-Sanchez
- Department of Genetics & Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN 2508, Col. San Pedro Zacatenco, 07360 México, DF, México
| | - J Vazquez-Hernandez
- Department of Genetics & Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN 2508, Col. San Pedro Zacatenco, 07360 México, DF, México
| | - R Ocadiz-Delgado
- Department of Genetics & Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN 2508, Col. San Pedro Zacatenco, 07360 México, DF, México
| | - N Serafin-Higuera
- Department of Genetics & Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN 2508, Col. San Pedro Zacatenco, 07360 México, DF, México
| | - I León-Galicia
- Department of Genetics & Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN 2508, Col. San Pedro Zacatenco, 07360 México, DF, México
| | - E Garcia-Villa
- Department of Genetics & Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN 2508, Col. San Pedro Zacatenco, 07360 México, DF, México
| | - R Hernandez-Pando
- Department of Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran (INCMNSZ), Vasco de Quiroga 15, Col. Seccion XVI, Tlalpan, 14000 México, DF, México
| | - P Gariglio
- Department of Genetics & Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN 2508, Col. San Pedro Zacatenco, 07360 México, DF, México.
| |
Collapse
|
11
|
Everts HB, Suo L, Ghim S, Bennett Jenson A, Sundberg JP. Retinoic acid metabolism proteins are altered in trichoblastomas induced by mouse papillomavirus 1. Exp Mol Pathol 2015; 99:546-51. [PMID: 26416148 DOI: 10.1016/j.yexmp.2015.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/21/2015] [Indexed: 12/21/2022]
Abstract
Skin cancer burden is significant as treatment costs have skyrocketed to $8.1 million annually and some forms metastasize, such as cutaneous squamous cell carcinoma (cSCC) and melanoma. cSCC is caused by altered growth factor signaling induced by chemical carcinogens, ultraviolet light (UV) exposure, and infections with papillomaviruses (PVs). One of the few options for preventing cSCC in high-risk patients is oral retinoids. While much is understood about retinoid treatments and metabolism in mouse models of chemically and UV exposure induced cSCC, little is known about the role of retinoids in PV-induced cSCC. To better understand how retinoid metabolism is altered in cSCC, we examined the expression of this pathway in the newly discovered mouse papillomavirus (MmuPV1), which produces trichoblastomas in dorsal skin but not cSCC. We found significant increases in a rate-limiting enzyme involved in retinoic acid synthesis and retinoic acid binding proteins, suggestive of increased RA synthesis, in MmuPV1-induced tumors in B6.Cg-Foxn1(nu)/J mice. Similar increases in these proteins were seen after acute UVB exposure in Crl:SKH1-Hr(hr) mice and in regressing pre-cancerous lesions in a chemically-induced mouse model, suggesting a common mechanism in limiting the progression of papillomas to full blown cSCC.
Collapse
Affiliation(s)
- Helen B Everts
- Department of Human Sciences (Nutrition), The Ohio State University, Columbus, OH, United States.
| | - Liye Suo
- Department of Human Sciences (Nutrition), The Ohio State University, Columbus, OH, United States
| | - Shinge Ghim
- The James Graham Brown Cancer Center, The University of Louisville, Louisville, KY, United States
| | - A Bennett Jenson
- The James Graham Brown Cancer Center, The University of Louisville, Louisville, KY, United States
| | | |
Collapse
|
12
|
Chen J. Signaling pathways in HPV-associated cancers and therapeutic implications. Rev Med Virol 2015; 25 Suppl 1:24-53. [DOI: 10.1002/rmv.1823] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 10/15/2014] [Accepted: 12/27/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Jiezhong Chen
- School of Biomedical Sciences and Australian Institute for Bioengineering and Nanotechnology; The University of Queensland; Brisbane Queensland Australia
| |
Collapse
|
13
|
Wang H, Gui SY, Chen FH, Zhou Q, Wang Y. New insights into 4-amino-2-tri-fluoromethyl-phenyl ester inhibition of cell growth and migration in the A549 lung adenocarcinoma cell line. Asian Pac J Cancer Prev 2015; 14:7265-70. [PMID: 24460286 DOI: 10.7314/apjcp.2013.14.12.7265] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE The present study was designed to investigate the probable mechanisms of synthetic retinoid 4-amino-2-tri-fluoromethyl-phenyl ester (ATPR) inhibition of the proliferation and migration of A549 human lung carcinoma cells. MATERIALS AND METHODS After the A549 cells were treated with different concentrations of ATPR or all-trans retinoic acid (ATRA) for 72 h, scratch-wound assays were performed to assess migration. Immunofluorescence was used to determine the distribution of CAV1 and RXRα, while expression of CAV1, MLCK, MLC, P38, and phosphorylation of MLC and P38 were detected by Western blotting. RESULTS ATPR could block the migration of A549 cells. The relative migration rate of ML-7 group had significantly decreased compared with control group. In addition, ATPR decreased the expression of a migration related proteins, MLCK, and phosphorylation of MLC and P38. ATPR could also influence the expression of RARs or RXRs. At the same time, CAV1 accumulated at cell membranes, and RXRα relocated to the nucleus after ATPR treatment. CONCLUSIONS Caveolae may be implicate in the transport of ATPR to the nucleus. Change in the expression and distribution of RXRα may be implicated in ATPR inhibition of A549 cell proliferation. The mechanisms of ATPR reduction in A549 cell migration may be associated with expression of MLCK and phosphorylation of MLC and P38.
Collapse
Affiliation(s)
- Hao Wang
- Department of Respiratory Medicine, the First Affiliated Hospital, Hefei, Anhui, China E-mail : ,
| | | | | | | | | |
Collapse
|
14
|
Halim TA, Farooqi AA, Zaman F. Nip the HPV encoded evil in the cancer bud: HPV reshapes TRAILs and signaling landscapes. Cancer Cell Int 2013; 13:61. [PMID: 23773282 PMCID: PMC3691735 DOI: 10.1186/1475-2867-13-61] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 05/17/2013] [Indexed: 12/18/2022] Open
Abstract
HPV encoded proteins can elicit ectopic protein–protein interactions that re-wire signaling pathways, in a mode that promotes malignancy. Moreover, accumulating data related to HPV is now providing compelling substantiation of a central role played by HPV in escaping immunosurveillance and impairment of apoptotic response. What emerges is an intricate network of Wnt, TGF, Notch signaling cascades that forms higher-order ligand–receptor complexes routing downstream signaling in HPV infected cells. These HPV infected cells are regulated both extracellularly by ligand receptor axis and intracellularly by HPV encoded proteins and impair TRAIL mediated apoptosis. We divide this review into different sections addressing how linear signaling pathways integrate to facilitate carcinogenesis and compounds that directly or indirectly reverse these aberrant interactions offer new possibilities for therapy in cancer. Although HPV encoded proteins mediated misrepresentation of pathways is difficult to target, improved drug-discovery platforms and new technologies have facilitated the discovery of agents that can target dysregulated pathways in HPV infected cervical cancer cells, thus setting the stage for preclinical models and clinical trials.
Collapse
Affiliation(s)
- Talha Abdul Halim
- Laboratory for Translational oncology and Personalized Medicine, RLMC, 35 Km Ferozepur Road, Lahore, Pakistan.
| | | | | |
Collapse
|