1
|
Liu D, Tong H, Guo Y, Liu B, Ye C, Yang N, Wu Y. The Toll-like receptor 4 antagonist TAK-242 in combination with sodium hyaluronate alleviates postoperative abdominal adhesion in a mouse model. BMC Med Genomics 2024; 17:257. [PMID: 39456047 PMCID: PMC11520138 DOI: 10.1186/s12920-024-02031-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Postoperative abdominal adhesion is one of the most common complications after abdominal surgery. The Toll-like receptor 4 (TLR4) signaling pathway is one of the most common inflammation-related pathways, and it has been demonstrated that TLR4 is highly expressed in adhesive tissues; however, the function of TLR4 in adhesion formation has not yet been studied. In the present study, the expression of TLR4 was first detected by immunohistochemical (IHC) and double-immunofluorescence staining in 40 mice, which were randomly divided into four groups, and sacrificed at 1, 3, 5 and 7 days after surgery. Subsequently, another 40 mice were randomly divided into five groups; with the exception of the sham group, the other groups were modeled and treated with saline that contained DMSO, sodium hyaluronate (HA), TAK-242 or TAK-242 + HA (applied to damaged peritoneal wounds). A total of 7 days after surgery, the mice were sacrificed and specimens were collected. Inflammation was detected by hematoxylin and eosin staining, and ELISA of transforming growth factor- β1 (TGF-β1) and interleukin-6 (IL-6); collagen deposition was examined by Masson staining and IHC staining of α-SMA; and reactive oxygen species (ROS) were detected by ROS staining and malondialdehyde (MDA) assay. The results revealed that TLR4 was highly expressed in the adhesive tissues at 3, 5 and 7 days after surgery. In addition, TAK-242 + HA treatment could reduce abdominal adhesion formation, exhibiting lower Nair's score and inflammation scores, lower TGF-β1 and IL-6 levels, and lower collagen thickness and α-SMA levels compared with those in the control group. In addition, the TAK-242 + HA group had lower levels of ROS and MDA compared with those in the control group. The present study revealed that TLR4 was highly expressed in the process of adhesion formation and its inhibitor, TAK-242, combined with HA, could reduce adhesion formation by reducing inflammation and ROS, and alleviating collagen deposition.
Collapse
Affiliation(s)
- Dong Liu
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital, 256 West Youyi Road, Xi'an, 710061, Shaanxi, P.R. China
| | - Haochongyang Tong
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, P.R. China
| | - Yu Guo
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital, 256 West Youyi Road, Xi'an, 710061, Shaanxi, P.R. China
| | - Bin Liu
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital, 256 West Youyi Road, Xi'an, 710061, Shaanxi, P.R. China
| | - Changchun Ye
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, P.R. China
| | - Ni Yang
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital, 256 West Youyi Road, Xi'an, 710061, Shaanxi, P.R. China
| | - Yunhua Wu
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital, 256 West Youyi Road, Xi'an, 710061, Shaanxi, P.R. China.
| |
Collapse
|
2
|
Pinocembrin Relieves Mycoplasma pneumoniae Infection‑Induced Pneumonia in Mice Through the Inhibition of Oxidative Stress and Inflammatory Response. Appl Biochem Biotechnol 2022; 194:6335-6348. [PMID: 35917101 DOI: 10.1007/s12010-022-04081-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 11/02/2022]
Abstract
Pneumonia is a serious infectious disease with increased morbidity and mortality worldwide. The M. pneumoniae is a major airway pathogen that mainly affects respiratory tract and ultimately leads to the development of pneumonia. The current exploration was aimed to uncover the beneficial properties of pinocembrin against the M. pneumoniae-triggered pneumonia in mice via its anti-inflammatory property. The pneumonia was stimulated to the BALB/c mice via infecting them with M. pneumoniae (100 µl) for 2 days through nasal drops and concomitantly treated with pinocembrin (10 mg/kg) for 3 days. The azithromycin (100 mg/kg) was used as a standard drug. Then the lung weight, nitric oxide, and myeloperoxidase (MPO) activity was assessed. The content of MDA, GSH, and SOD activity was scrutinized using kits. The total cells and DNA amount present in the bronchoalveolar lavage fluid (BALF) was assessed by standard methods. The IL-1, IL-6, IL-8, TNF-α, and TGF contents in the BALF samples and NF-κB level in the lung tissues were assessed using kits. The lung histopathology was assessed microscopically to detect the histological alterations. The 10 mg/kg of pinocembrin treatment substantially decreased the lung weight, nitric oxide (NO) level, and MPO activity. The MDA level was decreased, and GSH content and SOD activity were improved by the pinocembrin treatment. The pinocembrin administered pneumonia animals also demonstrated the decreased total cells, DNA amount, IL-1, IL-6, IL-8, TNF-α, and TGF in the BALF and NF-κB level. The findings of histological studies also witnessed the beneficial role of pinocembrin against M. pneumoniae-infected pneumonia. In conclusion, our findings confirmed that the pinocembrin effectively ameliorated the M. pneumoniae-provoked inflammation and oxidative stress in the pneumonia mice model. Hence, it could be a hopeful therapeutic agent to treat the pneumonia in the future.
Collapse
|
3
|
Fu YS, Duan XQ, Cheng KR, Yan-Yan-Fei, Liu L, Duan HD, Hu Q, Xia SL, Wang XR, Cheng ZF. Geraniol relieves mycoplasma pneumonia infection-induced lung injury in mice through the regulation of ERK/JNK and NF-κB signaling pathways. J Biochem Mol Toxicol 2022; 36:e22984. [PMID: 35038199 DOI: 10.1002/jbt.22984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/08/2021] [Accepted: 12/09/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND Pneumonia is a serious pediatric lung injury disease caused by Mycoplasma pneumoniae (M. pneumoniae) with increasing global prevalence every year. The WHO has reported that nearly 19% of children die due to pneumonia worldwide. OBJECTIVE The present research was conducted to discover the ameliorative properties of geraniol against M. pneumoniae-provoked pneumonia in mice through the modulation of inflammatory responses. METHODOLOGY The pneumonia was provoked in the male Swiss albino mice via infecting animals with 100 µl of M. pneumoniae for 2 days and supplemented concurrently with 20 mg/kg of geraniol for 3 days. 100 mg/kg of azithromycin was used as a standard drug. The nitric oxide (NO) level and MPO activity were measured using kits. The SOD activity, GSH, and MDA levels were studied using standard methods. The polymerase chain reaction (PCR) study was performed to examine the M. pneumoniae DNA load. The inflammatory cytokines status was assessed by assay kits. The ERK1/2, JNK1/2, and NF-κB expressions were studied by reverse-transcription (RT-PCR). The lung tissues were analyzed microscopically to investigate the histological alterations. RESULTS Geraniol treatment effectively reduced lung weight, NO level, and MPO activity in the pneumonia mice. The total cells and M. pneumoniae DNA load were also decreased by the geraniol. The SOD activity and GSH level were improved and MDA was decreased by the geraniol treatment. The IL-1, IL-6, IL-8, TNF-α, and TGF status were appreciably depleted by the geraniol in the pneumonia mice. Geraniol also suppressed the ERK1/2 and NF-κB expressions in the lung tissues. Histological findings also suggest the therapeutic roles of geraniol against pneumonia in mice. CONCLUSION In summary, our results proved the beneficial roles of geraniol against the M. pneumoniae-provoked pneumonia. Geraniol could be a hopeful therapeutic agent to treat pneumonia in the future.
Collapse
Affiliation(s)
- Yang-Shan Fu
- Department of Emergency Medicine, Affiliated Hospital of Yunnan University, Kunming, China
| | - Xue-Qiong Duan
- Department of Emergency Medicine, Affiliated Hospital of Yunnan University, Kunming, China
| | - Ke-Run Cheng
- Department of Clinical Medicine, Sichuan University School of Clinical Medicine, Chengdu, China
| | - Yan-Yan-Fei
- Department of Radiation Oncology, The third affiliated hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Lin Liu
- Department of Emergency Medicine, Affiliated Hospital of Yunnan University, Kunming, China
| | - Hong-Dan Duan
- Department of Emergency Medicine, Affiliated Hospital of Yunnan University, Kunming, China
| | - Qin Hu
- Emergency Department, Kunming Second People's Hospital, Kunming, China
| | - Shuang-Li Xia
- Research centre of Pharmacology and Application of Traditional Chinese Medicine, School of Chinese Materia Medica, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Xin-Ru Wang
- Research on the Prevention and Treatment of Emergency in the Department of Internal Medicine of Traditional Chinese Medicine, the First Clinical School of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Zhong-Feng Cheng
- Department of Emergency Medicine, Affiliated Hospital of Yunnan University, Kunming, China
| |
Collapse
|
4
|
Bhatia R, Gautam SK, Cannon A, Thompson C, Hall BR, Aithal A, Banerjee K, Jain M, Solheim JC, Kumar S, Batra SK. Cancer-associated mucins: role in immune modulation and metastasis. Cancer Metastasis Rev 2020; 38:223-236. [PMID: 30618016 DOI: 10.1007/s10555-018-09775-0] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mucins (MUC) protect epithelial barriers from environmental insult to maintain homeostasis. However, their aberrant overexpression and glycosylation in various malignancies facilitate oncogenic events from inception to metastasis. Mucin-associated sialyl-Tn (sTn) antigens bind to various receptors present on the dendritic cells (DCs), macrophages, and natural killer (NK) cells, resulting in overall immunosuppression by either receptor masking or inhibition of cytolytic activity. MUC1-mediated interaction of tumor cells with innate immune cells hampers cross-presentation of processed antigens on MHC class I molecules. MUC1 and MUC16 bind siglecs and mask Toll-like receptors (TLRs), respectively, on DCs promoting an immature DC phenotype that in turn reduces T cell effector functions. Mucins, such as MUC1, MUC2, MUC4, and MUC16, interact with or form aggregates with neutrophils, macrophages, and platelets, conferring protection to cancer cells during hematological dissemination and facilitate their spread and colonization to the metastatic sites. On the contrary, poor glycosylation of MUC1 and MUC4 at the tandem repeat region (TR) generates cancer-specific immunodominant epitopes. The presence of MUC16 neo-antigen-specific T cell clones and anti-MUC1 antibodies in cancer patients suggests that mucins can serve as potential targets for developing cancer therapeutics. The present review summarizes the molecular events involved in mucin-mediated immunomodulation, and metastasis, as well as the utility of mucins as targets for cancer immunotherapy and radioimmunotherapy.
Collapse
Affiliation(s)
- Rakesh Bhatia
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Andrew Cannon
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Christopher Thompson
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Bradley R Hall
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Abhijit Aithal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Kasturi Banerjee
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Joyce C Solheim
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA. .,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA. .,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
5
|
Reynolds IS, Fichtner M, McNamara DA, Kay EW, Prehn JHM, Burke JP. Mucin glycoproteins block apoptosis; promote invasion, proliferation, and migration; and cause chemoresistance through diverse pathways in epithelial cancers. Cancer Metastasis Rev 2020; 38:237-257. [PMID: 30680581 DOI: 10.1007/s10555-019-09781-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Overexpression of mucin glycoproteins has been demonstrated in many epithelial-derived cancers. The significance of this overexpression remains uncertain. The aim of this paper was to define the association of mucin glycoproteins with apoptosis, cell growth, invasion, migration, adhesion, and clonogenicity in vitro as well as tumor growth, tumorigenicity, and metastasis in vivo in epithelial-derived cancers by performing a systematic review of all published data. A systematic review of PubMed, Embase, and the Cochrane Central Register of Controlled Trials was performed to identify all papers that evaluated the association between mucin glycoproteins with apoptosis, cell growth, invasion, migration, adhesion, and clonogenicity in vitro as well as tumor growth, tumorigenicity, and metastasis in vivo in epithelial-derived cancers. PRISMA guidelines were adhered to. Results of individual studies were extracted and pooled together based on the organ in which the cancer was derived from. The initial search revealed 2031 papers, of which 90 were deemed eligible for inclusion in the study. The studies included details on MUC1, MUC2, MUC4, MUC5AC, MUC5B, MUC13, and MUC16. The majority of studies evaluated MUC1. MUC1 overexpression was consistently associated with resistance to apoptosis and resistance to chemotherapy. There was also evidence that overexpression of MUC2, MUC4, MUC5AC, MUC5B, MUC13, and MUC16 conferred resistance to apoptosis in epithelial-derived cancers. The overexpression of mucin glycoproteins is associated with resistance to apoptosis in numerous epithelial cancers. They cause resistance through diverse signaling pathways. Targeting the expression of mucin glycoproteins represents a potential therapeutic target in the treatment of epithelial-derived cancers.
Collapse
Affiliation(s)
- Ian S Reynolds
- Department of Colorectal Surgery, Beaumont Hospital, Dublin 9, Ireland
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| | - Michael Fichtner
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| | - Deborah A McNamara
- Department of Colorectal Surgery, Beaumont Hospital, Dublin 9, Ireland
- Department of Surgery, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| | - Elaine W Kay
- Department of Pathology, Beaumont Hospital, Dublin 9, Ireland
- Department of Pathology, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| | - Jochen H M Prehn
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| | - John P Burke
- Department of Colorectal Surgery, Beaumont Hospital, Dublin 9, Ireland.
| |
Collapse
|
6
|
Castro I, Albornoz N, Aguilera S, Barrera MJ, González S, Núñez M, Carvajal P, Jara D, Lagos C, Molina C, Urzúa U, Hermoso MA, González MJ. Aberrant MUC1 accumulation in salivary glands of Sjögren’s syndrome patients is reversed by TUDCA in vitro. Rheumatology (Oxford) 2019; 59:742-753. [DOI: 10.1093/rheumatology/kez316] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/28/2019] [Indexed: 02/07/2023] Open
Abstract
Abstract
Objectives
Xerostomia in SS patients has been associated with low quality and quantity of salivary mucins, which are fundamental for the hydration and protection of the oral mucosa. The aim of this study was to evaluate if cytokines induce aberrant mucin expression and whether tauroursodeoxycholic acid (TUDCA) is able to counteract such an anomaly.
Methods
Labial salivary glands from 16 SS patients and 15 control subjects, as well as 3D acini or human submandibular gland cells stimulated with TNF-α or IFN-γ and co-incubated with TUDCA, were analysed. mRNA and protein levels of Mucin 1 (MUC1) and MUC7 were determined by RT-qPCR and western blot, respectively. Co-immunoprecipitation and immunofluorescence assays for mucins and GRP78 [an endoplasmic reticulum (ER)-resident protein] were also performed. mRNA levels of RelA/p65 (nuclear factor-κB subunit), TNF-α, IL-1β, IL-6, SEL1L and EDEM1 were determined by RT-qPCR, and RelA/p65 localization was evaluated by immunofluorescence.
Results
MUC1 is overexpressed and accumulated in the ER of labial salivary gland from SS patients, while MUC7 accumulates throughout the cytoplasm of acinar cells; however, MUC1, but not MUC7, co-precipitated with GRP78. TUDCA diminished the overexpression and aberrant accumulation of MUC1 induced by TNF-α and IFN-γ, as well as the nuclear translocation of RelA/p65, together with the expression of inflammatory and ER stress markers in 3D acini.
Conclusion
Chronic inflammation alters the secretory process of MUC1, inducing ER stress and affecting the quality of saliva in SS patients. TUDCA showed anti-inflammatory properties decreasing aberrant MUC1 accumulation. Further studies are necessary to evaluate the potential therapeutic effect of TUDCA in restoring glandular homeostasis in SS patients.
Collapse
Affiliation(s)
| | - Nicolás Albornoz
- Programa de Biología Celular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sergio Aguilera
- Departamento de Reumatología, Clínica INDISA, Santiago, Chile
| | | | - Sergio González
- Escuela de Odontología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Matilde Núñez
- Programa de Biología Celular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Patricia Carvajal
- Programa de Biología Celular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Daniela Jara
- Programa de Biología Celular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carolina Lagos
- Programa de Biología Celular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Claudio Molina
- Facultad de Odontología, Universidad San Sebastián, Santiago, Chile
| | - Ulises Urzúa
- Departamento de Oncología Básico-Clínico y, Santiago, Chile
| | - Marcela A Hermoso
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - María-Julieta González
- Programa de Biología Celular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
7
|
Jeong MH, Park YJ, Kim HR, Chung KH. Polyhexamethylene guanidine phosphate-induced upregulation of MUC5AC via activation of the TLR-p38 MAPK and JNK axis. Chem Biol Interact 2019; 305:119-126. [PMID: 30935901 DOI: 10.1016/j.cbi.2019.03.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/14/2019] [Accepted: 03/26/2019] [Indexed: 02/08/2023]
Abstract
Epidemiological and toxicological studies indicate that polyhexamethylene guanidine phosphate (PHMG-p) is a guanidine-based cationic disinfectant strongly associated with interstitial lung diseases. As individuals exposed to aerosolized PHMG-p complain of respiratory problems (asthma and rhinitis), whether PHMG-p can cause respiratory diseases other than interstitial fibrosis should be investigated. MUC5AC, the predominant mucin gene expressed in airways, is associated with obstructive respiratory disease pathogenesis. Therefore, in this study, we elucidated the relationship between PHMG-p and MUC5AC overexpression. First, in immunofluorescence studies, the bronchial epithelia of mice intratracheally administrated PHMG-p appeared to be sloughing and tethered by MUC5AC. Second, Calu-3 cells exposed to PHMG-p showed concentration-dependent increases in MUC5AC mRNA and protein expression. c-Jun N-terminal kinase (JNK), p38, and c-jun were phosphorylated in cells exposed to PHMG-p. SP600125 and SB203580, JNK and p38 inhibitors, respectively, reduced the upregulation of MUC5AC by PHMG-p in Calu-3 cells. When toll-like receptor (TLR)2, 4, and 6 were silenced, PHMG-p-induced JNK and p38 phosphorylation decreased. Furthermore, TLR2-, 4-, and 6-silenced cells showed reduced levels of MUC5AC mRNA and protein induced by PHMG-p, with TLR6 knockdown showing the greatest effect. In conclusion, PHMG-p induced MUC5AC overexpression via activation of the TLR-p38 MAPK and JNK axis.
Collapse
Affiliation(s)
- Mi Ho Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Yong Joo Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Ha Ryong Kim
- College of Pharmacy, Daegu Catholic University, Gyeongsan, Gyeongsangbuk-do, 38430, Republic of Korea.
| | - Kyu Hyuck Chung
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
8
|
Volstatova T, Marchica A, Hroncova Z, Bernardi R, Doskocil I, Havlik J. Effects of chlorogenic acid, epicatechin gallate, and quercetin on mucin expression and secretion in the Caco-2/HT29-MTX cell model. Food Sci Nutr 2019; 7:492-498. [PMID: 30847127 PMCID: PMC6392881 DOI: 10.1002/fsn3.818] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 12/13/2022] Open
Abstract
Mucins are a family of large glycoproteins that represent the major structural components of the mucus and are encoded by 20 different mucin genes. Mucin expression can be modulated by different stimuli. In this study, we analyzed four mucins (MUC2, MUC3, MUC13, and MUC17) in coculture of Caco-2/HT29-MTX cells to demonstrate the variation in gene expression in the presence of antioxidant compounds like chlorogenic acid, epicatechin gallate, and quercetin (apple, tea, and coffee polyphenols, respectively). coculture of Caco-2/HT29-MTX cells was treated with polyphenols, and the expression of four mucins was determined by reverse-transcriptase PCR. In addition, the secretion levels of MUC2 were established by enzyme-linked immunoassay (ELISA) analysis. The results showed that each polyphenol compound induces different expression patterns of the mucin genes. Statistically significant up-regulation of MUC17 was observed following incubation with epicatechin gallate and quercetin. ELISA results did not prove any significant differences in protein levels of MUC2 after treatment by the polyphenol compounds. The polyphenols considered in this study may influence mucin secretion and act on diverse salivary substrates to change the barrier properties of mucins for mucus secretion in different ways.
Collapse
Affiliation(s)
- Tereza Volstatova
- Department of Microbiology, Nutrition and DieteticsCzech University of Life Sciences PraguePragueCzech Republic
| | - Alessandra Marchica
- Department of Agricultural, Food and Agro‐Environmental SciencesUniversity of PisaPisaItaly
| | - Zuzana Hroncova
- Department of Microbiology, Nutrition and DieteticsCzech University of Life Sciences PraguePragueCzech Republic
- Department of Genetics and Breeding of Farm AnimalsInstitute of Animal SciencePragueCzech Republic
| | - Rodolfo Bernardi
- Department of Agricultural, Food and Agro‐Environmental SciencesUniversity of PisaPisaItaly
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”University of PisaPisaItaly
| | - Ivo Doskocil
- Department of Microbiology, Nutrition and DieteticsCzech University of Life Sciences PraguePragueCzech Republic
| | - Jaroslav Havlik
- Department of Quality of Agricultural ProductsCzech University of Life Sciences PraguePragueCzech Republic
| |
Collapse
|
9
|
Nirmagustina DE, Yang Y, Kumrungsee T, Yanaka N, Kato N. Gender Difference and Dietary Supplemental Vitamin B 6: Impact on Colon Luminal Environment. J Nutr Sci Vitaminol (Tokyo) 2018; 64:116-128. [PMID: 29710029 DOI: 10.3177/jnsv.64.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Colon diseases can be affected by several factors such as gender difference and dietary supplemental vitamin B6 (B6). The nutritional status of B6 is affected by gender difference, leading us to hypothesize that gender difference affects colon luminal environment, which is dependent on B6 status. To investigate this hypothesis, we fed male and female rats a diet containing 1 mg, 7 mg, or 35 mg pyridoxine HCl/kg diet for 6 wk. We found significantly higher fecal mucin levels in female rats compared to those in male rats. Supplemental B6 significantly increased fecal mucins and was particularly profound in the female rats. The abundances of cecal and fecal Akkermansia muciniphila (mucin degrader) were unaffected. The fecal mucin levels were significantly correlated with colonic free threonine and serine and with gene expression of colon MUC16, implying that the combined effect of gender and dietary B6 on fecal mucins was mediated by the alteration in the levels of such amino acids and MUC16 expression. This study further showed the significant effects of gender difference on colonic free amino acids such as threonine, ornithine, asparagine/aspartate ratio, and glutamine/glutamate ratio, cecal and fecal Lactobacillus spp. levels, and colonic gene expressions of MUC16 and TLR8, the factors relating to colon health and diseases. Therefore, our findings suggest that gender difference and dietary B6 may have an impact on colon diseases by modulating these parameters.
Collapse
Affiliation(s)
| | - Yongshou Yang
- Graduate School of Biosphere Science, Hiroshima University
| | | | | | - Norihisa Kato
- Graduate School of Biosphere Science, Hiroshima University
| |
Collapse
|
10
|
Shetab Boushehri MA, Lamprecht A. TLR4-Based Immunotherapeutics in Cancer: A Review of the Achievements and Shortcomings. Mol Pharm 2018; 15:4777-4800. [DOI: 10.1021/acs.molpharmaceut.8b00691] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, D-53121 Bonn, Germany
- PEPITE EA4267, Univ. Bourgonge Franch-Comte, 25030 Besançon, France
| |
Collapse
|
11
|
Toll like receptors TLR1/2, TLR6 and MUC5B as binding interaction partners with cytostatic proline rich polypeptide 1 in human chondrosarcoma. Int J Oncol 2017; 52:139-154. [PMID: 29138803 PMCID: PMC5743405 DOI: 10.3892/ijo.2017.4199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/27/2017] [Indexed: 02/06/2023] Open
Abstract
Metastatic chondrosarcoma is a bone malignancy not responsive to conventional therapies; new approaches and therapies are urgently needed. We have previously reported that mTORC1 inhibitor, antitumorigenic cytostatic proline rich polypeptide 1 (PRP-1), galarmin caused a significant upregulation of tumor suppressors including TET1/2 and SOCS3 (known to be involved in inflammatory processes), downregulation of oncoproteins and embryonic stem cell marker miR-302C and its targets Nanog, c-Myc and Bmi-1 in human chondrosarcoma. To understand better the mechanism of PRP-1 action it was very important to identify the receptor it binds to. Nuclear pathway receptor and GPCR assays indicated that PRP-1 receptors are not G protein coupled, neither do they belong to family of nuclear or orphan receptors. In the present study, we have demonstrated that PRP-1 binding interacting partners belong to innate immunity pattern recognition toll like receptors TLR1/2 and TLR6 and gel forming secreted mucin MUC5B. MUC5B was identified as PRP-1 receptor in human chondrosarcoma JJ012 cell line using Ligand-receptor capture technology. Toll like receptors TLR1/2 and TLR6 were identified as binding interaction partners with PRP-1 by western blot analysis in human chondrosarcoma JJ012 cell line lysates. Immunocytochemistry experiments confirmed the finding and indicated the localization of PRP-1 receptors in the tumor nucleus predominantly. TLR1/2, TLR6 and MUC5B were downregulated in human chondrosarcoma and upregulated in dose-response manner upon PRP-1 treatment. Experimental data indicated that in this cellular context the mentioned receptors had tumor suppressive function.
Collapse
|
12
|
Zhang Y, Mei S, Zhou Y, Yang D, Pan T, Chen Z, Wang Q. TIPE2 negatively regulates mycoplasma pneumonia-triggered immune response via MAPK signaling pathway. Sci Rep 2017; 7:13319. [PMID: 29042627 PMCID: PMC5645323 DOI: 10.1038/s41598-017-13825-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/29/2017] [Indexed: 12/23/2022] Open
Abstract
Excessive immune responses played an important role in pathophysiology of mycoplasma pneumonia (MP) infection. Tumor necrosis factor-α-induced protein 8-like 2 (TIPE2) is a negative regulator of immune response. This study investigated the expression change of TIPE2 and its role in immune defense against MP infection, as well as the underlying mechanisms. Expressions of TIPE2 both in patients and in macrophages in vitro after MP infection were measured. We further studied cytokine production and mitogen-activated protein kinase (MAPK) signaling function in macrophages with interfered expression of TIPE2 upon MP infection. A significant decrease of TIPE2 mRNA expression was observed in peripheral blood mononuclear cells (PBMCs) from MP patients, which was correlated with the severity of infection. Accordingly we found down-regulation of TIPE2 expression in macrophages after MP infection. In vitro study further suggested that TIPE2 jeopardized inflammatory cytokine production trigged by MP infection via inhibiting MAPK signaling pathway. These findings provided evidences of the novel function of TIPE2 in anti-MP immunity and its possible clinical utility related clinical significance.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310051, P. R. China
| | - Shufen Mei
- The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310051, P. R. China.,Departement of Pediatrics, Red Cross Hospital of Hangzhou, Hangzhou, 310003, P. R. China
| | - Yunlian Zhou
- The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310051, P. R. China
| | - Dehua Yang
- The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310051, P. R. China
| | - Ting Pan
- Institute of Immunology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zhimin Chen
- The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310051, P. R. China.
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University, Hangzhou, 310058, P. R. China.
| |
Collapse
|
13
|
Gibier JB, Hémon B, Fanchon M, Gaudelot K, Pottier N, Ringot B, Van Seuningen I, Glowacki F, Cauffiez C, Blum D, Copin MC, Perrais M, Gnemmi V. Dual role of MUC1 mucin in kidney ischemia-reperfusion injury: Nephroprotector in early phase, but pro-fibrotic in late phase. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1336-1349. [DOI: 10.1016/j.bbadis.2017.03.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/14/2017] [Accepted: 03/29/2017] [Indexed: 11/15/2022]
|
14
|
Tabasum S, Noreen A, Kanwal A, Zuber M, Anjum MN, Zia KM. Glycoproteins functionalized natural and synthetic polymers for prospective biomedical applications: A review. Int J Biol Macromol 2017; 98:748-776. [PMID: 28111295 DOI: 10.1016/j.ijbiomac.2017.01.078] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/05/2017] [Accepted: 01/16/2017] [Indexed: 02/06/2023]
Abstract
Glycoproteins have multidimensional properties such as biodegradability, biocompatibility, non-toxicity, antimicrobial and adsorption properties; therefore, they have wide range of applications. They are blended with different polymers such as chitosan, carboxymethyl cellulose (CMC), polyvinyl pyrrolidone (PVP), polycaprolactone (PCL), heparin, polystyrene fluorescent nanoparticles (PS-NPs) and carboxyl pullulan (PC) to improve their properties like thermal stability, mechanical properties, resistance to pH, chemical stability and toughness. Considering the versatile charateristics of glycoprotein based polymers, this review sheds light on synthesis and characterization of blends and composites of glycoproteins, with natural and synthetic polymers and their potential applications in biomedical field such as drug delivery system, insulin delivery, antimicrobial wound dressing uses, targeting of cancer cells, development of anticancer vaccines, development of new biopolymers, glycoproteome research, food product and detection of dengue glycoproteins. All the technical scientific issues have been addressed; highlighting the recent advancement.
Collapse
Affiliation(s)
- Shazia Tabasum
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Aqdas Noreen
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Arooj Kanwal
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Mohammad Zuber
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | | | - Khalid Mahmood Zia
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan.
| |
Collapse
|
15
|
c- Src and its role in cystic fibrosis. Eur J Cell Biol 2016; 95:401-413. [DOI: 10.1016/j.ejcb.2016.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/08/2016] [Accepted: 08/10/2016] [Indexed: 12/15/2022] Open
|
16
|
Zhang L, Wu WKK, Gallo RL, Fang EF, Hu W, Ling TKW, Shen J, Chan RLY, Lu L, Luo XM, Li MX, Chan KM, Yu J, Wong VWS, Ng SC, Wong SH, Chan FKL, Sung JJY, Chan MTV, Cho CH. Critical Role of Antimicrobial Peptide Cathelicidin for Controlling Helicobacter pylori Survival and Infection. THE JOURNAL OF IMMUNOLOGY 2016; 196:1799-1809. [DOI: 10.4049/jimmunol.1500021] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
The antimicrobial peptide cathelicidin is critical for protection against different kinds of microbial infection. This study sought to elucidate the protective action of cathelicidin against Helicobacter pylori infection and its associated gastritis. Exogenous cathelicidin was found to inhibit H. pylori growth, destroy the bacteria biofilm, and induce morphological alterations in H. pylori membrane. Additionally, knockdown of endogenous cathelicidin in human gastric epithelial HFE-145 cells markedly increased the intracellular survival of H. pylori. Consistently, cathelicidin knockout mice exhibited stronger H. pylori colonization, higher expression of proinflammatory cytokines IL-6, IL-1β, and ICAM1, and lower expression of the anti-inflammatory cytokine IL-10 in the gastric mucosa upon H. pylori infection. In wild-type mice, H. pylori infection also stimulated gastric epithelium-derived cathelicidin production. Importantly, pretreatment with bioengineered Lactococcus lactis that actively secretes cathelicidin significantly increased mucosal cathelicidin levels and reduced H. pylori infection and the associated inflammation. Moreover, cathelicidin strengthened the barrier function of gastric mucosa by stimulating mucus synthesis. Collectively, these findings indicate that cathelicidin plays a significant role as a potential natural antibiotic for H. pylori clearance and a therapeutic agent for chronic gastritis.
Collapse
Affiliation(s)
- Lin Zhang
- *Institute of Digestive Diseases and State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- †Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- ‡CUHK Shenzhen Research Institute, Shenzhen 518057, China
| | - William K. K. Wu
- *Institute of Digestive Diseases and State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- ‡CUHK Shenzhen Research Institute, Shenzhen 518057, China
- §Department of Anesthesia and Intensive Care, Chinese University of Hong Kong, Hong Kong, China
| | - Richard L. Gallo
- ¶Division of Dermatology, University of California, San Diego, La Jolla, CA 92093
| | - Evandro F. Fang
- ‖Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Wei Hu
- #School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China; and
| | - Thomas K. W. Ling
- **Department of Microbiology, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Jing Shen
- #School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China; and
| | - Ruby L. Y. Chan
- #School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China; and
| | - Lan Lu
- #School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China; and
| | - Xiao M. Luo
- #School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China; and
| | - Ming X. Li
- #School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China; and
| | - Kam M. Chan
- #School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China; and
| | - Jun Yu
- *Institute of Digestive Diseases and State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- †Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- ‡CUHK Shenzhen Research Institute, Shenzhen 518057, China
| | - Vincent W. S. Wong
- *Institute of Digestive Diseases and State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- †Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Siew C. Ng
- *Institute of Digestive Diseases and State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- †Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Sunny H. Wong
- *Institute of Digestive Diseases and State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- †Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- ‡CUHK Shenzhen Research Institute, Shenzhen 518057, China
| | - Francis K. L. Chan
- *Institute of Digestive Diseases and State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- †Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- ‡CUHK Shenzhen Research Institute, Shenzhen 518057, China
| | - Joseph J. Y. Sung
- *Institute of Digestive Diseases and State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- †Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- ‡CUHK Shenzhen Research Institute, Shenzhen 518057, China
| | - Matthew T. V. Chan
- §Department of Anesthesia and Intensive Care, Chinese University of Hong Kong, Hong Kong, China
| | - Chi H. Cho
- #School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China; and
| |
Collapse
|
17
|
Sung HH, Castro I, González S, Aguilera S, Smorodinsky NI, Quest A, Bahamondes V, Alliende C, Cortés J, Molina C, Urzúa U, Barrera MJ, Hermoso M, Herrera L, Leyton C, González MJ. MUC1/SEC and MUC1/Y overexpression is associated with inflammation in Sjögren's syndrome. Oral Dis 2015; 21:730-8. [PMID: 25757505 DOI: 10.1111/odi.12339] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/02/2015] [Accepted: 03/02/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To evaluate the expression and localization of MUC1/SEC and MUC1/Y isoforms in labial salivary glands (LSG) from Sjögren's syndrome patients (SS patients), as well as their in vitro expression induced by cytokines. SUBJECTS AND METHODS Labial salivary gland from 27 primary SS patients and 22 non-SS sicca subjects were studied. Relative MUC1/SEC and MUC1/Y mRNA levels were determined by qPCR and protein levels by Western blotting. Induction of mucin mRNAs was assayed in vitro. Immunohistochemistry was used for localization. RESULTS Relative MUC1/SEC and MUC1/Y mRNA and protein levels were significantly higher in LSG from SS patients. These mRNAs were induced by cytokines. MUC1/SEC and MUC1/Y were detected in acini apical region of control LSGs, and significant cytoplasmic accumulation was observed in acini of SS patients. MUC1/Y localized in acinar nuclei and cytoplasm of inflammatory cells of LSG from SS patients. A strong positive correlation was observed between cellular MUC1/SEC levels and glandular function determined by scintigraphy. CONCLUSIONS We show for the first time that MUC1/SEC and MUC1/Y are expressed in LSG of both SS patients and non-SS sicca subjects. The observed overexpression and aberrant localization of MUC1/SEC and MUC1/Y and their induction by pro-inflammatory cytokines may favor the perpetuation of the inflammatory environment that disrupts the salivary glandular homeostasis in SS patients.
Collapse
Affiliation(s)
- H H Sung
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - I Castro
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - S González
- Facultad de Odontología, Universidad Mayor, Santiago, Chile
| | - S Aguilera
- Departamento de Reumatología, Clínica INDISA, Santiago, Chile
| | - N I Smorodinsky
- The Alec and Myra Marmot Hybridoma Unit, the Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Afg Quest
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Center for Molecular Studies of the Cell (CEMC), and Advanced Center for Chronic Diseases (ACCDiS), ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - V Bahamondes
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - C Alliende
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - J Cortés
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - C Molina
- Facultad de Odontología, Universidad Mayor, Santiago, Chile
| | - U Urzúa
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - M-J Barrera
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - M Hermoso
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - L Herrera
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - C Leyton
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - M-J González
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
18
|
Barrera MJ, Aguilera S, Veerman E, Quest AFG, Díaz-Jiménez D, Urzúa U, Cortés J, González S, Castro I, Molina C, Bahamondes V, Leyton C, Hermoso MA, González MJ. Salivary mucins induce a Toll-like receptor 4-mediated pro-inflammatory response in human submandibular salivary cells: are mucins involved in Sjögren's syndrome? Rheumatology (Oxford) 2015; 54:1518-27. [PMID: 25802401 DOI: 10.1093/rheumatology/kev026] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES A hallmark characteristic of SS patients is the ectopic presence of the mucins MUC5B and MUC7 in the extracellular matrix of salivary glands that have lost apical-basolateral acinar-cell polarity. This study aims to determine whether exogenous salivary mucins induce gene expression of pro-inflammatory cytokines, as well as to evaluate whether the Toll-like receptor-4 (TLR4) pathway is involved in this response. METHODS Differentiated human submandibular gland (HSG) cells were stimulated with mucins or oligosaccharide residues at different concentrations and for different periods of time. The expression of pro-inflammatory cytokines and their receptors was determined by semi-quantitative real time PCR (sqPCR). TLR4-mediated responses induced by mucin were evaluated with the Toll-IL-1 receptor domain containing adaptor protein (TIRAP) inhibitory peptide or using anti-hTLR4 blocking antibody. TLR4-receptor expression was also determined in SS patients, controls and HSG cells. RESULTS Mucins induced a significant increase in CXCL8, TNF-α, IFN-α, IFN-β, IL-6 and IL-1β, but not B cell activating factor (BAFF). Cytokine induction was mediated by TLR4, as shown using TIRAP or using anti-hTLR4 antibody. Sugar residues present in MUC5B, such as sulpho-Lewis (SO3-3Galβ1-3GlcNAc), also induced cytokines. Unexpectedly, mucins induced MUC5B, but not MUC7 expression. CONCLUSION Salivary mucins were recognized by TLR4 in epithelial cells initiating a pro-inflammatory response that could attract inflammatory cells to amplify and perpetuate inflammation and thereby contribute to the development of a chronic state characteristic of SS. The ectopic localization of MUC5B and MUC7 in the salivary gland extracellular matrix from SS patients and the current results reveal the importance of salivary epithelial cells in innate immunity, as well as in SS pathogenesis.
Collapse
Affiliation(s)
- María-José Barrera
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile
| | - Sergio Aguilera
- Departamento de Reumatología, Clínica INDISA, Santiago, Chile
| | - Enno Veerman
- Academic Centre for Dentistry Amsterdam, Section Periodontology and Oral Biochemistry, Amsterdam, The Netherlands
| | - Andrew F G Quest
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Center for Molecular Studies of the Cell, Advanced Center for Chronic Diseases
| | - David Díaz-Jiménez
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile and
| | - Ulises Urzúa
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile
| | - Juan Cortés
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile
| | - Sergio González
- Departamento de Patología Oral, Facultad de Odontología, Universidad Mayor, Santiago, Chile
| | - Isabel Castro
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile
| | - Claudio Molina
- Departamento de Patología Oral, Facultad de Odontología, Universidad Mayor, Santiago, Chile
| | - Verónica Bahamondes
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile
| | - Cecilia Leyton
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile
| | - Marcela A Hermoso
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile and
| | - María-Julieta González
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile,
| |
Collapse
|
19
|
Rubin BK, Priftis KN, Schmidt HJ, Henke MO. Secretory hyperresponsiveness and pulmonary mucus hypersecretion. Chest 2014; 146:496-507. [PMID: 25091755 DOI: 10.1378/chest.13-2609] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The term bronchial hyperresponsiveness is generally used to describe a heightened airway smooth muscle bronchoconstrictor response measured by bronchoprovocation testing. However, the airway also responds to inflammation or bronchoprovocation with increased mucus secretion. We use the term "secretory hyperresponsiveness" to mean increased mucus secretion either intrinsically or in response to bronchoprovocation. This is not the same as retained phlegm or sputum. Unlike smooth muscle contraction, which is rapidly reversible using a bronchodilator, mucus hypersecretion produces airflow limitation that reverses more slowly and depends upon secretion clearance from the airway. Certain groups of patients appear to have greater mucus secretory response, including those with middle lobe syndrome, cough-dominant ("cough-variant") asthma, and severe asthma. Secretory hyperresponsiveness also is a component of forms of lung cancer associated with bronchorrhea. An extreme form of secretory hyperresponsiveness may lead to plastic bronchitis, a disease characterized by rigid branching mucus casts that obstruct the airway. Secretory hyperresponsiveness and mucus hypersecretion appear to be related to activation of the extracellular-regulated kinase 1/2, signaling through the epidermal growth factor receptor, or secretory phospholipases A2. Recognizing secretory hyperresponsiveness as a distinct clinical entity may lead to more effective and targeted therapy for these diseases.
Collapse
Affiliation(s)
- Bruce K Rubin
- Department of Pediatrics, School of Medicine, Virginia Commonwealth University, Richmond, VA.
| | - Kostas N Priftis
- Pediatric Pulmonary Unit, Third Department of Paediatrics, University of Athens School of Medicine, University General Hospital Attikon, Athens, Greece
| | - H Joel Schmidt
- Department of Pediatrics, School of Medicine, Virginia Commonwealth University, Richmond, VA
| | - Markus O Henke
- Department of Pulmonary Medicine, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
20
|
Plato A, Willment JA, Brown GD. C-type lectin-like receptors of the dectin-1 cluster: ligands and signaling pathways. Int Rev Immunol 2013; 32:134-56. [PMID: 23570314 PMCID: PMC3634610 DOI: 10.3109/08830185.2013.777065] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Innate immunity is constructed around genetically encoded receptors that survey the intracellular and extracellular environments for signs of invading microorganisms. These receptors recognise the invader and through complex intracellular networks of molecular signaling, they destroy the threat whilst instructing effective adaptive immune responses. Many of these receptors, like the Toll-like receptors in particular, are well-known for their ability to mediate downstream responses upon recognition of exogenous or endogenous ligands; however, the emerging family known as the C-type lectin-like receptors contains many members that have a huge impact on immune and homeostatic regulation. Of particular interest here are the C-type lectin-like receptors that make up the Dectin-1 cluster and their intracellular signaling motifs that mediate their functions. In this review, we aim to draw together current knowledge of ligands, motifs and signaling pathways, present downstream of Dectin-1 cluster receptors, and discuss how these dictate their role within biological systems.
Collapse
Affiliation(s)
- Anthony Plato
- Aberdeen Fungal Group, Section of Immunology and Infection, University of Aberdeen, Aberdeen, UK
| | | | | |
Collapse
|
21
|
NOYA VERÓNICA, BAY SYLVIE, FESTARI MARÍAFLORENCIA, GARCÍA ENRIQUEP, RODRIGUEZ ERNESTO, CHIALE CAROLINA, GANNEAU CHRISTELLE, BALEUX FRANÇOISE, ASTRADA SOLEDAD, BOLLATI-FOGOLÍN MARIELA, OSINAGA EDUARDO, FREIRE TERESA. Mucin-like peptides from Echinococcus granulosus induce antitumor activity. Int J Oncol 2013; 43:775-84. [DOI: 10.3892/ijo.2013.2000] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 05/30/2013] [Indexed: 11/06/2022] Open
|