1
|
Zhang X, Gao X, Xu J, Zhang Z, Lin T, Zhang X, Kang X. The role of lncRNA and miRNA on the effects of occurrence and development of osteosarcoma. Int Immunopharmacol 2025; 144:113726. [PMID: 39615111 DOI: 10.1016/j.intimp.2024.113726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/15/2024]
Abstract
Osteosarcoma is a common primary malignant bone tumor with a high incidence in children and adolescents, with high invasiveness and lung metastases. Even after traditional surgical excision, chemoradiotherapy, and comprehensive treatment, the survival rate of patients is still low, and the prognosis is not ideal. As an important part of non-coding RNA family, lncRNA and miRNA have significant regulatory effects on the growth, proliferation, metastasis and apoptosis of osteosarcoma cells. Therefore, exploring the roles of lncRNAs and miRNAs in the occurrence and development of osteosarcoma is of great help for the subsequent diagnosis, treatment, and prognosis of osteosarcoma. This paper mainly reviews the current research progress on the effects and mechanisms of lncRNAs and miRNAs on osteosarcoma cells, in order to provide new ideas for future research on the development process, treatment methods, and prognosis of osteosarcoma.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao Tong University, 710054 Xi'an, Shaanxi Province, China
| | - Xidan Gao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao Tong University, 710054 Xi'an, Shaanxi Province, China
| | - Jing Xu
- The Second Clinical Medical College of Lanzhou University, 730000 Lanzhou, Gansu, China
| | - Zhuoya Zhang
- The First Clinical Medical College of Lanzhou University, 730000 Lanzhou, Gansu, China
| | - Tingtong Lin
- The Second Clinical Medical College of Lanzhou University, 730000 Lanzhou, Gansu, China
| | - Xueyan Zhang
- Institute of Biochemistry and Molecular Biology and School of Basic Medical Sciences, Lanzhou University, 730000 Lanzhou, Gansu, China
| | - Xin Kang
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiao Tong University, 710054 Xi'an, Shaanxi Province, China.
| |
Collapse
|
2
|
Wang H, Cai G, Yu F, Li D, Wang C, Ma D, Han X, Chen J, Wang C, He J. Changes in the small noncoding RNA transcriptome in osteosarcoma cells. J Orthop Surg Res 2023; 18:898. [PMID: 38001513 PMCID: PMC10675919 DOI: 10.1186/s13018-023-04362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Osteosarcoma has the highest incidence among bone malignant tumors and mainly occurs in adolescents and the elderly, but the pathological mechanism is still unclear, which makes early diagnosis and treatment very difficult. Bone marrow mesenchymal stem cells (BMSCs) are considered to be one of the sources of osteosarcoma cells. Therefore, a full understanding of the gene expression differences between BMSCs and osteosarcoma cells is very important to explore the pathogenesis of osteosarcoma and facilitate the early diagnosis and treatment of osteosarcoma. Small noncoding RNAs (sncRNAs) are a class of RNAs that do not encode proteins but directly play biological functions at the RNA level. SncRNAs mainly include Piwi-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs), small nuclear RNAs (snRNAs), repeat RNAs and microRNAs (miRNAs). METHODS In this study, we compared the expression of sncRNAs in BMSCs and osteosarcoma cells by high-throughput sequencing and qPCR and looked for differentially expressed sncRNAs. CCK-8, clone formation and transwell assay were used to detect the effect of sncRNA in MG63 cells. RESULTS We found that 66 piRNAs were significantly upregulated and 70 piRNAs were significantly downregulated in MG63 cells. As for snoRNAs, 71 snoRNAs were significantly upregulated and 117 snoRNAs were significantly downregulated in MG63 cells. As for snRNAs, 35 snRNAs were significantly upregulated and 17 snRNAs were significantly downregulated in MG63 cells. As for repeat RNAs, 6 repeat RNAs were significantly upregulated and 7 repeat RNAs were significantly downregulated in MG63 cells. As for miRNAs, 326 miRNAs were significantly upregulated and 281 miRNAs were significantly downregulated in MG63 cells. Overexpression of piRNA DQ596225, snoRNA ENST00000364830.2, snRNA ENST00000410533.1 and miRNA hsa-miR-369-5p inhibited the proliferation and migration of MG63 cells. CONCLUSIONS Our results provide a theoretical basis for the pathogenesis, early diagnosis and treatment of osteosarcoma.
Collapse
Affiliation(s)
- Hui Wang
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, People's Republic of China
| | - Guiquan Cai
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, People's Republic of China
| | - Fengbin Yu
- Department of Orthopaedics, The 72nd Group Army Hospital of PLA, Huzhou, 313000, Zhejiang, People's Republic of China
| | - De Li
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, People's Republic of China
| | - Chenglong Wang
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, People's Republic of China
| | - Ding Ma
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, People's Republic of China
| | - Xiuguo Han
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, People's Republic of China
| | - Jiajia Chen
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Chuandong Wang
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, People's Republic of China.
| | - Jiye He
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, People's Republic of China.
| |
Collapse
|
3
|
Urlić I, Jovičić MŠ, Ostojić K, Ivković A. Cellular and Genetic Background of Osteosarcoma. Curr Issues Mol Biol 2023; 45:4344-4358. [PMID: 37232745 DOI: 10.3390/cimb45050276] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
Osteosarcoma describes a tumor of mesenchymal origin with an annual incidence rate of four to five people per million. Even though chemotherapy treatment has shown success in non-metastatic osteosarcoma, metastatic disease still has a low survival rate of 20%. A targeted therapy approach is limited due to high heterogeneity of tumors, and different underlying mutations. In this review, we will summarize new advances obtained by new technologies, such as next generation sequencing and single-cell sequencing. These new techniques have enabled better assessment of cell populations within osteosarcoma, as well as an understanding of the molecular pathogenesis. We also discuss the presence and properties of osteosarcoma stem cells-the cell population within the tumor that is responsible for metastasis, recurrence, and drug resistance.
Collapse
Affiliation(s)
- Inga Urlić
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Marijana Šimić Jovičić
- Department of Paediatric Orthopaedics, Children's Hospital Zagreb, 10000 Zagreb, Croatia
| | - Karla Ostojić
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Alan Ivković
- Department of Orthopaedics and Traumatology, University Hospital Sveti Duh, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Professional Study in Physiotherapy, University of Applied Health Sciences, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
MUC1 promotes cancer stemness and predicts poor prognosis in osteosarcoma. Pathol Res Pract 2023; 242:154329. [PMID: 36680928 DOI: 10.1016/j.prp.2023.154329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
Osteosarcoma (OS) is one of the most common primary bone malignancy. Combining chemotherapy and surgical treatment significantly improved clinical outcomes for osteosarcoma patients. Osteosarcoma stem cells (OSCs) are often more malignant than differentiated cancer cells and are a key determinant of responses to chemotherapy and radiation therapy, therefore, the removal of OSCs could be an effective therapeutic strategy. Myxoprotein 1 (MUC1) is aberrantly overexpressed in many human cancers and it promotes cancer stemness through activation of pluripotency networks. In this study, we observed elevated MUC1 in osteosarcoma and a depressed prognosis in patients with high MUC1 expression profiles. Our observations also revealed that MUC1 promoted OS stemness and tumor metastasis both in vivo and in vitro. These data led us to hypothesize that MUC1 may be a therapeutic target for patients with OS.
Collapse
|
5
|
Li Z, Jin C, Lu X, Zhang Y, Zhang Y, Wen J, Liu Y, Liu X, Li J. Construction of a novel mRNAsi-related risk model for predicting prognosis and immunotherapy response in osteosarcoma. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:61. [PMID: 36819514 PMCID: PMC9929782 DOI: 10.21037/atm-22-6011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/06/2023] [Indexed: 01/31/2023]
Abstract
Background Targeting cancer stem cells (CSC) may represent a future therapeutic direction for osteosarcoma (OS), which mainly relies on the identification of CSC markers. This study aimed to classify OS based on messenger ribonucleic acid (mRNA) stemness indices (mRNAsi) and construct a mRNAsi-related risk model to predict the prognosis of OS. Methods The one-class logistic regression (OCLR) algorithm was applied to the RNA- sequencing (seq) data of human embryonic stem cells (hESC) and induced pluripotent stem cell (iPSC) lines to calculate mRNAsi. Weighted gene co-expression network analysis (WGCNA) was performed on data obtained from the TARGET database to screen the mRNAsi-related genes. Univariate Cox regression analysis was implemented to screen mRNAsi-related genes with prognostic significance for consensus clustering of OS. The least absolute shrinkage and selection operator (LASSO) and COX regression analysis were conducted to construct a risk model based on mRNAsi-related genes. Results Six gene modules were identified in the TARGET database. The yellow module showed the strongest negative correlation with mRNAsi and the strongest significant positive correlation with the immune score and stromal score. OS was divided into three molecular subtypes with significant survival differences based on 73 mRNAsi-related genes with prognostic value for OS. The survival rate was ranked as C3 < C1 < C2 from low to high. The levels of immune components in C2 was significantly higher than those in C1 and C3. HSD11B2, GBP1, RNF130, APBB1IP, and NPC2 in the yellow module were used as variables for building the mRNAsi-related risk model. The survival rate of the high-risk group (as defined by this model) was significantly higher than that of the low-risk group, and it had significant survival prediction ability in 28 types of cancer. In addition, the mRNAsi-related risk model was superior to the Tumor Immune Dysfunction and Exclusion (TIDE) model in predicting the prognosis and immunotherapy response in all three immunotherapy cohorts. Conclusions This study classified OS and constructed a mRNAsi-related risk model based on mRNAsi-related genes, which provides a potential tool for more accurate risk stratification of OS and prediction of immunotherapy response.
Collapse
Affiliation(s)
- Zhe Li
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chi Jin
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinchang Lu
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jia Wen
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongkui Liu
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoting Liu
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiazhen Li
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
The Role of Tumor Microenvironment in Regulating the Plasticity of Osteosarcoma Cells. Int J Mol Sci 2022; 23:ijms232416155. [PMID: 36555795 PMCID: PMC9788144 DOI: 10.3390/ijms232416155] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Osteosarcoma (OS) is a malignancy that is becoming increasingly common in adolescents. OS stem cells (OSCs) form a dynamic subset of OS cells that are responsible for malignant progression and chemoradiotherapy resistance. The unique properties of OSCs, including self-renewal, multilineage differentiation and metastatic potential, 149 depend closely on their tumor microenvironment. In recent years, the likelihood of its dynamic plasticity has been extensively studied. Importantly, the tumor microenvironment appears to act as the main regulatory component of OS cell plasticity. For these reasons aforementioned, novel strategies for OS treatment focusing on modulating OS cell plasticity and the possibility of modulating the composition of the tumor microenvironment are currently being explored. In this paper, we review recent studies describing the phenomenon of OSCs and factors known to influence phenotypic plasticity. The microenvironment, which can regulate OSC plasticity, has great potential for clinical exploitation and provides different perspectives for drug and treatment design for OS.
Collapse
|
7
|
EID3 Promotes Cancer Stem Cell-Like Phenotypes in Osteosarcoma through the Activation of PI3K-AKT Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5941562. [PMID: 36071872 PMCID: PMC9441394 DOI: 10.1155/2022/5941562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 06/04/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
The aim of this study is to elucidate molecular mechanism by which E1A-like inhibitor of differentiation 3 (EID3) promotes cancer stem cell-like phenotypes in osteosarcoma. Overexpression of EID3 in osteosarcoma cells generated more spherical clones, enhanced the expression of stemness-associated genes, and promoted chemoresistance, invasion, and metastasis. Furthermore, osteosarcoma cells overexpressing EID3 had increased ability to grow in suspension as osteospheres with high expression of Sox2 and stem cell marker CD133. In addition, knockdown of EID3 reduced sphere formation and inhibited osteosarcoma cell migration and invasion. RNA sequencing and bioinformatics analysis revealed that PI3K-Akt signaling pathway and MAPK pathwayrelated genes were enriched in osteosarcoma cells with high expression of EID3. Taken together, EID3 promotes osteosarcoma, and EID3–PI3K-Akt axis is a potential therapeutic target for osteosarcoma treatment.
Collapse
|
8
|
Effects of Resveratrol, Curcumin and Quercetin Supplementation on Bone Metabolism—A Systematic Review. Nutrients 2022; 14:nu14173519. [PMID: 36079777 PMCID: PMC9459740 DOI: 10.3390/nu14173519] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Phenolic compounds are natural phytochemicals that have recently reported numerous health benefits. Resveratrol, curcumin, and quercetin have recently received the most attention among these molecules due to their documented antioxidant effects. The review aims to investigate the effects of these molecules on bone metabolism and their role in several diseases such as osteopenia and osteoporosis, bone tumours, and periodontitis. The PubMed/Medline, Web of Science, Google Scholar, Scopus, Cochrane Library, and Embase electronic databases were searched for papers in line with the study topic. According to an English language restriction, the screening period was from January 2012 to 3 July 2022, with the following Boolean keywords: (“resveratrol” AND “bone”); (“curcumin” AND “bone”); (“quercetin” AND “bone”). A total of 36 papers were identified as relevant to the purpose of our investigation. The studies reported the positive effects of the investigated phenolic compounds on bone metabolism and their potential application as adjuvant treatments for osteoporosis, bone tumours, and periodontitis. Furthermore, their use on the titanium surfaces of orthopaedic prostheses could represent a possible application to improve the osteogenic processes and osseointegration. According to the study findings, resveratrol, curcumin, and quercetin are reported to have a wide variety of beneficial effects as supplement therapies. The investigated phenolic compounds seem to positively mediate bone metabolism and osteoclast-related pathologies.
Collapse
|
9
|
Lama S, Luce A, Bitti G, Chacon-Millan P, Itro A, Ferranti P, D’Auria G, Cammarota M, Nicoletti GF, Ferraro GA, Schiraldi C, Caraglia M, Amler E, Stiuso P. Polydatin Incorporated in Polycaprolactone Nanofibers Improves Osteogenic Differentiation. Pharmaceuticals (Basel) 2022; 15:ph15060727. [PMID: 35745646 PMCID: PMC9230847 DOI: 10.3390/ph15060727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 12/20/2022] Open
Abstract
Polycaprolactone nanofibers are used as scaffolds in the field of tissue engineering for tissue regeneration or drug delivery. Polycaprolactone (PCL) is a biodegradable hydrophobic polyester used to obtain implantable nanostructures, which are clinically applicable due to their biological safety. Polydatin (PD), a glycosidic precursor of resveratrol, is known for its antioxidant, antitumor, antiosteoporotic, and bone regeneration activities. We aimed to use the osteogenic capacity of polydatin to create a biomimetic innovative and patented scaffold consisting of PCL-PD for bone tissue engineering. Both osteosarcoma cells (Saos-2) and mesenchymal stem cells (MSCs) were used to test the in vitro cytocompatibility of the PD-PCL scaffold. Reverse-phase (RP) HPLC was used to evaluate the timing release of PD from the PCL-PD nanofibers and the MTT assay, scanning electron microscopy, and alkaline phosphatase (ALP) activity were used to evaluate the proliferation, adhesion, and cellular differentiation in both osteosarcoma and human mesenchymal stem cells (MSCs) seeded on PD-PCL nanofibers. The proliferation of osteosarcoma cells (Saos-2) on the PD-PCL scaffold decreased when compared to cells grown on PLC nanofibers, whereas the proliferation of MSCs was comparable in both PCL and PD-PCL nanofibers. Noteworthy, after 14 days, the ALP activity was higher in both Saos-2 cells and MSCs cultivated on PD-PCL than on empty scaffolds. Moreover, the same cells showed a spindle-shaped morphology after 14 days when grown on PD-PCL as shown by SEM. In conclusion, we provide evidence that nanofibers appropriately coated with PD support the adhesion and promote the osteogenic differentiation of both human osteosarcoma cells and MSCs.
Collapse
Affiliation(s)
- Stefania Lama
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.L.); (A.L.); (P.C.-M.); (M.C.)
| | - Amalia Luce
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.L.); (A.L.); (P.C.-M.); (M.C.)
| | - Giuseppe Bitti
- Institute of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 15006 Prague, Czech Republic; (G.B.); (E.A.)
| | - Pilar Chacon-Millan
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.L.); (A.L.); (P.C.-M.); (M.C.)
| | - Annalisa Itro
- Plastic Surgery Unit, Department of Multidisciplinary Medical and Dental Specialties, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.I.); (G.F.N.); (G.A.F.)
| | - Pasquale Ferranti
- Department of Agricultural Sciences, University of Naples Federico II, 80138 Portici, Italy; (P.F.); (G.D.)
| | - Giovanni D’Auria
- Department of Agricultural Sciences, University of Naples Federico II, 80138 Portici, Italy; (P.F.); (G.D.)
| | - Marcella Cammarota
- Department of Experimental Medicine, Section of Biotechnology, Molecular Medicine and Medical Histology, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.C.); (C.S.)
| | - Giovanni Francesco Nicoletti
- Plastic Surgery Unit, Department of Multidisciplinary Medical and Dental Specialties, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.I.); (G.F.N.); (G.A.F.)
| | - Giuseppe Andrea Ferraro
- Plastic Surgery Unit, Department of Multidisciplinary Medical and Dental Specialties, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.I.); (G.F.N.); (G.A.F.)
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology, Molecular Medicine and Medical Histology, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.C.); (C.S.)
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.L.); (A.L.); (P.C.-M.); (M.C.)
| | - Evzen Amler
- Institute of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 15006 Prague, Czech Republic; (G.B.); (E.A.)
| | - Paola Stiuso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.L.); (A.L.); (P.C.-M.); (M.C.)
- Correspondence:
| |
Collapse
|
10
|
Passeri G, Northcote-Smith J, Perera R, Gubic N, Suntharalingam K. An Osteosarcoma Stem Cell Potent Nickel(II)-Polypyridyl Complex Containing Flufenamic Acid. Molecules 2022; 27:3277. [PMID: 35630754 PMCID: PMC9143476 DOI: 10.3390/molecules27103277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 11/25/2022] Open
Abstract
Apoptosis resistance is inherent to stem cell-like populations within tumours and is one of the major reasons for chemotherapy failures in the clinic. Necroptosis is a non-apoptotic mode of programmed cell death that could help bypass apoptosis resistance. Here we report the synthesis, characterisation, biophysical properties, and anti-osteosarcoma stem cell (OSC) properties of a new nickel(II) complex bearing 3,4,7,8-tetramethyl-1,10-phenanthroline and two flufenamic acid moieties, 1. The nickel(II) complex 1 is stable in both DMSO and cell media. The nickel(II) complex 1 kills bulk osteosarcoma cells and OSCs grown in monolayer cultures and osteospheres grown in three-dimensional cultures within the micromolar range. Remarkably, 1 exhibits higher potency towards osteospheres than the metal-based drugs used in current osteosarcoma treatment regimens, cisplatin and carboplatin, and an established anti-cancer stem cell agent, salinomycin (up to 7.7-fold). Cytotoxicity studies in the presence of prostaglandin E2 suggest that 1 kills OSCs in a cyclooxygenase-2 (COX-2) dependent manner. Furthermore, the potency of 1 towards OSCs decreased significantly upon co-treatment with necrostatin-1 or dabrafenib, well-known necroptosis inhibitors, implying that 1 induces necroptosis in OSCs. To the best of our knowledge, 1 is the first compound to implicate both COX-2 and necroptosis in its mechanism of action in OSCs.
Collapse
|
11
|
Keyimu R, Tuerdi M, Zhao Z. MSX2 represses tumor stem cell phenotypes within oral squamous cell carcinomas via SOX2 degradation. Exp Biol Med (Maywood) 2021; 246:2660-2670. [PMID: 34435915 PMCID: PMC8669173 DOI: 10.1177/15353702211041029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/02/2021] [Indexed: 02/05/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the sixth malignancy in the world with high incidence. The MSX2 (muscle segment homeobox 2)-Sry-related high-mobility box 2 (SOX2) signaling pathway plays a significant role in maintaining cancer stem cells, which are the origin of malignancy, leading to unfavorable outcomes in several carcinomas. This study aims to elucidate the mechanisms through which the MSX2-SOX2 pathway controls the cancer stem cell-like characterization in OSCC. The results showed that MSX2 was remarkably downregulated in OSCC and that the MSX2 expression level was related to unfavorable outcomes in patients with OSCC. Meanwhile, the MSX2 expression level was lower in the CD44+/CD24- population than in the other populations of OSCC cells. The OSCC2 cells exhibited decreased percentage of CD44+/CD24- cells, owing to MSX2 overexpression but increased owing to MSX2 knockdown. Moreover, a negative correlation was observed between MSX2 expression and is SOX2 transcriptional levels in different populations within the OSCC cell lines. Regarding the loss and gain of function, cancer stem cell phenotypes such as tumor globular formation, CD44+ subpopulation cells, and stem cell-associated gene expression were enhanced by MSX2 knockdown in OSCC CD44+/CD24- cells but decreased by MSX2 overexpression in other OSCC populations. However, these events were counteracted by the co-knockdown or SOX2 overexpression. Cells with MSX2 overexpression or knockdown formed smaller or bigger cancers in vivo, thereby showing a lower or a higher tumor incidence, respectively. Thus, our results confirm that MSX2 has a tumor suppression effect on the cancer stem cell phenotypes of OSCC and indicate that the MSX2-SOX2 signaling pathway could be a useful target for OSCC treatment.
Collapse
Affiliation(s)
- Reziwan Keyimu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan 610041, China
| | - Maimaitituxun Tuerdi
- Department of Oral and Maxillofacial Trauma and Orthognathic Surgery, The First Affiliated Hospital (Stomatological Hospital) of Xinjiang Medical University, Urumqi 830000, China
| | - Zhihe Zhao
- National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Chengdu 610041, China
| |
Collapse
|
12
|
Sung K, Hosoya K, Murase Y, Deguchi T, Kim S, Sunaga T, Okumura M. Visualizing the cancer stem-like properties of canine tumour cells with low proteasome activity. Vet Comp Oncol 2021; 20:324-335. [PMID: 34719098 DOI: 10.1111/vco.12779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/15/2021] [Indexed: 11/26/2022]
Abstract
Cancer stem-like cells (CSCs) cause treatment failure in various tumours; however, establishing CSC-targeted therapies has been hampered by difficulties in the identification and isolation of this small sub-population of cells. Recent studies have revealed that tumour cells with low proteasome activity display a CSC phenotype that can be utilized to image CSCs in canines. This study visualizes and reveals the CSC-like properties of tumour cells with low proteasome activity in HMPOS (osteosarcoma) and MegTCC (transitional cell carcinoma), which are canine cell lines. The parent cells were genetically engineered to express ZsGreen1, a fluorescent protein connected to the carboxyl-terminal degron of canine ornithine decarboxylase that accumulates with low proteasome activity (ZsG+ cells). ZsG+ cells were imaged and the mode of action of this system was confirmed using a proteasome inhibitor (MG-132), which increased the ZsGreen1 fluorescence intensity. The CSC-like properties of ZsG+ cells were evaluated on the basis of cell divisions, cell cycle, the expression of CSC markers and tumourigenicity. ZsG+ cells underwent asymmetric divisions and had a low percentage of G0/G1 phase cells; moreover, ZsG+ cells expressed CSC markers such as CD133 and showed a large tumourigenic capability. In histopathological analysis, ZsG+ cells were widely distributed in the tumour samples derived from ZsG+ cells and in the proliferative regions of the tumours. The results of this study indicate that visualized canine tumour cells with low proteasome activity have a CSC-like phenotype and that this visualization system can be utilized to identify and isolate canine CSCs.
Collapse
Affiliation(s)
- Koangyong Sung
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kenji Hosoya
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yusuke Murase
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Tatsuya Deguchi
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Sangho Kim
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takafumi Sunaga
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Masahiro Okumura
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
13
|
Xu A, Qian C, Lin J, Yu W, Jin J, Liu B, Tao H. Cell Differentiation Trajectory-Associated Molecular Classification of Osteosarcoma. Genes (Basel) 2021; 12:genes12111685. [PMID: 34828292 PMCID: PMC8625454 DOI: 10.3390/genes12111685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 01/01/2023] Open
Abstract
This study aims to investigate the differentiation trajectory of osteosarcoma cells and to construct molecular subtypes with their respective characteristics and generate a multi-gene signature for predicting prognosis. Integrated single-cell RNA-sequencing (scRNA-seq) data, bulk RNA-seq data and microarray data from osteosarcoma samples were used for analysis. Via scRNA-seq data, time-related as well as differentiation-related genes were recognized as osteosarcoma tumor stem cell-related genes (OSCGs). In Gene Expression Omnibus (GEO) cohort, osteosarcoma patients were classified into two subtypes based on prognostic OSCGs and it was found that molecular typing successfully predicted overall survival, tumor microenvironment and immune infiltration status. Further, available drugs for influencing osteosarcoma via prognostic OSCGs were revealed. A 3-OSCG-based prognostic risk score signature was generated and by combining other clinic-pathological independent prognostic factor, stage at diagnosis, a nomogram was established to predict individual survival probability. In external independent TARGET cohort, the molecular types, the 3-gene signature as well as nomogram were validated. In conclusion, osteosarcoma cell differentiation occupies a crucial position in many facets, such as tumor prognosis and microenvironment, suggesting promising therapeutic targets for this disease.
Collapse
Affiliation(s)
- Ankai Xu
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou 310009, China; (A.X.); (C.Q.); (J.L.); (W.Y.); (J.J.); (B.L.)
- Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Chao Qian
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou 310009, China; (A.X.); (C.Q.); (J.L.); (W.Y.); (J.J.); (B.L.)
- Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Jinti Lin
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou 310009, China; (A.X.); (C.Q.); (J.L.); (W.Y.); (J.J.); (B.L.)
- Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Wei Yu
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou 310009, China; (A.X.); (C.Q.); (J.L.); (W.Y.); (J.J.); (B.L.)
- Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Jiakang Jin
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou 310009, China; (A.X.); (C.Q.); (J.L.); (W.Y.); (J.J.); (B.L.)
- Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Bing Liu
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou 310009, China; (A.X.); (C.Q.); (J.L.); (W.Y.); (J.J.); (B.L.)
- Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Huimin Tao
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou 310009, China; (A.X.); (C.Q.); (J.L.); (W.Y.); (J.J.); (B.L.)
- Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
- Correspondence:
| |
Collapse
|
14
|
Gaspar N, Campbell-Hewson Q, Gallego Melcon S, Locatelli F, Venkatramani R, Hecker-Nolting S, Gambart M, Bautista F, Thebaud E, Aerts I, Morland B, Rossig C, Canete Nieto A, Longhi A, Lervat C, Entz-Werle N, Strauss SJ, Marec-Berard P, Okpara CE, He C, Dutta L, Casanova M. Phase I/II study of single-agent lenvatinib in children and adolescents with refractory or relapsed solid malignancies and young adults with osteosarcoma (ITCC-050) ☆. ESMO Open 2021; 6:100250. [PMID: 34562750 PMCID: PMC8477142 DOI: 10.1016/j.esmoop.2021.100250] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022] Open
Abstract
Background We report results from the phase I dose-finding and phase II expansion part of a multicenter, open-label study of single-agent lenvatinib in pediatric and young adult patients with relapsed/refractory solid tumors, including osteosarcoma and radioiodine-refractory differentiated thyroid cancer (RR-DTC) (NCT02432274). Patients and methods The primary endpoint of phase I was to determine the recommended phase II dose (RP2D) of lenvatinib in children with relapsed/refractory solid malignant tumors. Phase II primary endpoints were progression-free survival rate at 4 months (PFS-4) for patients with relapsed/refractory osteosarcoma; and objective response rate/best overall response for patients with RR-DTC at the RP2D. Results In phase I, 23 patients (median age, 12 years) were enrolled. With lenvatinib 14 mg/m2, three dose-limiting toxicities (hypertension, n = 2; increased alanine aminotransferase, n = 1) were reported, establishing 14 mg/m2 as the RP2D. In phase II, 31 patients with osteosarcoma (median age, 15 years) and 1 patient with RR-DTC (age 17 years) were enrolled. For the osteosarcoma cohort, PFS-4 (binomial estimate) was 29.0% [95% confidence interval (CI) 14.2% to 48.0%; full analysis set: n = 31], PFS-4 by Kaplan–Meier estimate was 37.8% (95% CI 20.0% to 55.4%; full analysis set) and median PFS was 3.0 months (95% CI 1.8-5.4 months). The objective response rate was 6.7% (95% CI 0.8% to 22.1%). The patient with RR-DTC had a best overall response of partial response. Some 60.8% of patients in phase I and 22.6% of patients in phase II (with osteosarcoma) had treatment-related treatment-emergent adverse events of grade ≥3. Conclusions The lenvatinib RP2D was 14 mg/m2. Single-agent lenvatinib showed activity in osteosarcoma; however, the null hypothesis could not be rejected. The safety profile was consistent with previous tyrosine kinase inhibitor studies. Lenvatinib is currently being investigated in osteosarcoma in combination with chemotherapy as part of a randomized, controlled trial (NCT04154189), in pediatric solid tumors in combination with everolimus (NCT03245151), and as a single agent in a basket study with enrollment ongoing (NCT04447755). The recommended phase II dose of lenvatinib in children with relapsed/refractory solid malignant tumors is 14 mg/m2. This dose is equivalent to the recommended dose of 24 mg/day for single-agent lenvatinib in adults with DTC. Single-agent lenvatinib showed activity of interest in children and young adults with osteosarcoma. Based on this initial report, lenvatinib is currently being investigated in combination with chemotherapy in osteosarcoma.
Collapse
Affiliation(s)
- N Gaspar
- Department of Childhood and Adolescent Oncology, Gustave Roussy Cancer Campus, Villejuif, France.
| | - Q Campbell-Hewson
- The Great North Children's Hospital, Royal Victoria Infirmary, Newcastle Upon Tyne, UK
| | - S Gallego Melcon
- Pediatric Oncology and Hematology Service, University Hospital Vall d'Hebron, Barcelona, Spain
| | - F Locatelli
- Department of Pediatric Hematology and Oncology, Ospedale Pediatrico Bambino Gesù, University of Rome, Rome, Italy
| | - R Venkatramani
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, USA
| | - S Hecker-Nolting
- Department of Pediatric Oncology, Hematology, Immunology, Klinikum Stuttgart - Olgahospital, Stuttgart, Germany
| | - M Gambart
- Pediatric Hemato-Oncology Unit, CHU Toulouse - Hôpital des Enfants, URCP, Toulouse, France
| | - F Bautista
- Paediatric Haematology-Oncology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - E Thebaud
- Pediatric Oncology-Hematology and Immunology Department, CHU Nantes - Hôpital Mère-Enfant, Nantes, France
| | - I Aerts
- SIREDO Oncology Center, Institut Curie, PSL Research University, Paris, France
| | - B Morland
- Department of Paediatric Hematology/Oncology, Birmingham Children's Hospital, Birmingham, UK
| | - C Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - A Canete Nieto
- Children's Oncology Unit, Pediatric Service, Hospital Universitario y Politecnico La Fe, Valencia, Spain
| | - A Longhi
- Chemotherapy Service, Istituto Ortopedico Rizzoli IRCCS, Bologna, Italy
| | - C Lervat
- Pediatric and AYA Oncology Unit, Centre Oscar Lambret Lille, Lille, France
| | - N Entz-Werle
- Pediatric Onco-Hematology Unit, Chu Strasbourg-Hôpital Hautepierre, Strasbourg, France
| | - S J Strauss
- Clinical Research Facility, University College London Hospitals NHS Trust, London, UK
| | - P Marec-Berard
- Institute of Pediatric Hematology and Oncology, Centre Léon Bérard, Lyon, France
| | - C E Okpara
- Clinical Research, Oncology Business Group, Eisai Ltd., Hatfield, UK
| | - C He
- Biostatistics, Oncology Business Group, Eisai Inc., Woodcliff Lake, USA
| | - L Dutta
- Clinical Research, Oncology Business Group, Eisai Inc., Woodcliff Lake, USA
| | - M Casanova
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
15
|
The Effect of Fluid Flow Shear Stress and Substrate Stiffness on Yes-Associated Protein (YAP) Activity and Osteogenesis in Murine Osteosarcoma Cells. Cancers (Basel) 2021; 13:cancers13133128. [PMID: 34201496 PMCID: PMC8268052 DOI: 10.3390/cancers13133128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 01/06/2023] Open
Abstract
Osteosarcoma (OS) is an aggressive bone cancer originating in the mesenchymal lineage. Prognosis for metastatic disease is poor, with a mortality rate of approximately 40%; OS is an aggressive disease for which new treatments are needed. All bone cells are sensitive to their mechanical/physical surroundings and changes in these surroundings can affect their behavior. However, it is not well understood how OS cells specifically respond to fluid movement, or substrate stiffness-two stimuli of relevance in the tumor microenvironment. We used cells from spontaneous OS tumors in a mouse engineered to have a bone-specific knockout of pRb-1 and p53 in the osteoblast lineage. We silenced Sox2 (which regulates YAP) and tested the effect of fluid flow shear stress (FFSS) and substrate stiffness on YAP expression/activity-which was significantly reduced by loss of Sox2, but that effect was reversed by FFSS but not by substrate stiffness. Osteogenic gene expression was also reduced in the absence of Sox2 but again this was reversed by FFSS and remained largely unaffected by substrate stiffness. Thus we described the effect of two distinct stimuli on the mechanosensory and osteogenic profiles of OS cells. Taken together, these data suggest that modulation of fluid movement through, or stiffness levels within, OS tumors could represent a novel consideration in the development of new treatments to prevent their progression.
Collapse
|
16
|
He J, Ling L, Liu Z, Ren X, Wan L, Tu C, Li Z. Functional interplay between long non-coding RNAs and the Wnt signaling cascade in osteosarcoma. Cancer Cell Int 2021; 21:313. [PMID: 34130697 PMCID: PMC8207720 DOI: 10.1186/s12935-021-02013-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022] Open
Abstract
Osteosarcoma is a common and highly malignant bone tumor among children, adolescents and young adults. However, the underlying molecular mechanisms remain largely unexplored. LncRNAs are transcripts with no or limited protein-coding capacity in human genomes, and have been demonstrated to play crucial functions in initiation, progression, therapeutic resistance, recurrence and metastasis of tumor. Considerable studies revealed a dysregulated lncRNA expression pattern in osteosarcoma, which may act as oncogenes or suppressors to regulate osteosarcoma progression. Wnt signaling pathway is an important cascade in tumorigenesis by modulation of pleiotropic biological functions including cell proliferation, apoptosis, differentiation, stemness, genetic stability and chemoresistance. Hyperactivation or deficiency of key effectors in Wnt cascade is a common event in many osteosarcoma patients. Recently, increasing evidences have suggested that lncRNAs could interplay with component of Wnt pathway, and thereby contribute to osteosarcoma onset, progression and dissemination. In this review, we briefly summarize Wnt signaling-related lncRNAs in osteosarcoma progression, aiming to gain insights into their underlying crosstalk as well as clinical application in osteosarcoma therapeutic modalities.
Collapse
Affiliation(s)
- Jieyu He
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Lin Ling
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Zhongyue Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Xiaolei Ren
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No 139 Middle Renmin Road, Changsha, 410011, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Lu Wan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Chao Tu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
17
|
Wu Y, Jin Y, Yamamoto N, Takeuchi A, Miwa S, Tsuchiya H, Yang Z. MSX2 inhibits the growth and migration of osteosarcoma cells by repressing SOX2. Am J Transl Res 2021; 13:5851-5865. [PMID: 34306330 PMCID: PMC8290658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/19/2021] [Indexed: 06/13/2023]
Abstract
SRY (sex determining region Y)-box 2 (SOX2) plays a key role in the maintenance of stemness and resistance to drugs, whereas tumor necrosis factor (TNF)-α is essential for maintaining cancer cell proliferation and metastasis. Accumulation of muscle segment homeobox 2 (MSX2) leads to downregulation of SOX2 expression. Here, we explored the MSX2-SOX2-TNF-α signaling axis and its function in the tumor phenotypes of osteosarcoma cells. Colony formation assay, cell counting kit (CCK)-8 assay, and Flow cytometry were used to examine cell growth, viability, and death, respectively. Wound healing and Transwell invasive assay were employed to examine cell migratory and invasive activities, respectively. Western blotting and RT-qPCR were used to determine the protein and mRNA expressions of MSX2, SOX2, TNF-α, Bax, and matrix metalloproteinase-2 (MMP-2). Osteosarcoma clinical samples and cells showed lower levels of MSX2 than normal healthy control samples. Overexpression of MSX2 led to a reduced activity of SOX2 and TNF-α, whereas MSX2 depletion did not contribute to upregulated SOX2 levels. A gain-of-function experiment showed that osteosarcoma cell viability and growth were reduced, cell death was increased, and migration and invasion were inhibited in the MSX2 overexpression group compared with those in the non-transfected group. Furthermore, co-overexpression of MSX2 and SOX2 counteracted the inhibitory effects of MSX2 on the abovementioned tumor phenotypes of osteosarcoma cells. An in vivo tumor growth assay showed that MSX2 overexpression slowed the growth rate of osteosarcoma xenograft tumors. Thus, MSX2 loss plays a crucial role in the osteosarcoma phenotype by elevating SOX2 and TNF-α levels.
Collapse
Affiliation(s)
- Yue Wu
- Department of Orthopedics, Beijing United Family HealthcareBeijing, China
| | - Yi Jin
- Joint Surgery Department of Orthopedics, Changsha Central Hospital Affiliated to South China UniversityChangsha, China
| | - Norio Yamamoto
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa UniversityKanazawa, Japan
| | - Akihiko Takeuchi
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa UniversityKanazawa, Japan
| | - Shinji Miwa
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa UniversityKanazawa, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa UniversityKanazawa, Japan
| | - Zhijun Yang
- Department of Trauma Orthopedics, The First Affiliated Hospital of South China UniversityHengyang 421001, Hunan, China
| |
Collapse
|
18
|
Drug Resistance in Osteosarcoma: Emerging Biomarkers, Therapeutic Targets and Treatment Strategies. Cancers (Basel) 2021; 13:cancers13122878. [PMID: 34207685 PMCID: PMC8228414 DOI: 10.3390/cancers13122878] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/05/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Despite the adoption of aggressive, multimodal treatment schedules, the cure rate of high-grade osteosarcoma (HGOS) has not significantly improved in the last 30 years. The most relevant problem preventing improvement in HGOS prognosis is drug resistance. Therefore, validated novel biomarkers that help to identify those patients who could benefit from innovative treatment options and the development of drugs enabling personalized therapeutic protocols are necessary. The aim of this review was to give an overview on the most relevant emerging drug resistance-related biomarkers, therapeutic targets and new agents or novel candidate treatment strategies, which have been highlighted and suggested for HGOS to improve the success rate of clinical trials. Abstract High-grade osteosarcoma (HGOS), the most common primary malignant tumor of bone, is a highly aggressive neoplasm with a cure rate of approximately 40–50% in unselected patient populations. The major clinical problems opposing the cure of HGOS are the presence of inherent or acquired drug resistance and the development of metastasis. Since the drugs used in first-line chemotherapy protocols for HGOS and clinical outcome have not significantly evolved in the past three decades, there is an urgent need for new therapeutic biomarkers and targeted treatment strategies, which may increase the currently available spectrum of cure modalities. Unresponsive or chemoresistant (refractory) HGOS patients usually encounter a dismal prognosis, mostly because therapeutic options and drugs effective for rescue treatments are scarce. Tailored treatments for different subgroups of HGOS patients stratified according to drug resistance-related biomarkers thus appear as an option that may improve this situation. This review explores drug resistance-related biomarkers, therapeutic targets and new candidate treatment strategies, which have emerged in HGOS. In addition to consolidated biomarkers, specific attention has been paid to the role of non-coding RNAs, tumor-derived extracellular vesicles, and cancer stem cells as contributors to drug resistance in HGOS, in order to highlight new candidate markers and therapeutic targets. The possible use of new non-conventional drugs to overcome the main mechanisms of drug resistance in HGOS are finally discussed.
Collapse
|
19
|
Grube S, Freitag D, Kalff R, Ewald C, Walter J. Characterization of adherent primary cell lines from fresh human glioblastoma tissue, defining glial fibrillary acidic protein as a reliable marker in establishment of glioblastoma cell culture. Cancer Rep (Hoboken) 2020; 4:e1324. [PMID: 33251771 PMCID: PMC8451382 DOI: 10.1002/cnr2.1324] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Primary adherent glioblastoma cell lines are an important tool in investigating cellular and molecular tumor biology, as well as treatment options for patients. AIM The phenotypical and immunocytochemical characterization of primary cell lines from glioblastoma specimens during establishment is of great importance, in order to reliably identify these cell lines as primary glioblastoma cell lines. METHODS AND RESULTS Sixteen primary adherent cell lines out of 34 glioblastoma samples (47%) were established and further characterized. For phenotypical characterization, morphology and growth characteristics of the cells were classified. The cell lines had a high growth rate with a doubling time of 2 to 14 days. Morphologically, the cells displayed spindle-form or polygonal to amorphous shapes and grow as monolayer or in foci without evidence of contact inhibition. The cells were able to migrate and to form colonies. For further characterization, the protein expression of the astrocyte-specific protein glial fibrillary acidic protein (GFAP), the glial marker S100B, the neuronal marker TUBB3, and malignancy marker VIM, as well as the progenitor markers NES and SOX2, the proliferation marker MKI67, and the fibroblast marker TE7 were determined. Based on the immunocytochemical validation criterion of a coexpression of GFAP and S100B, 15 out of these 16 cell lines (94%) were defined as primary glioblastoma cell lines (pGCL). All 15 pGCL expressed TUBB3 and VIM. NES and SOX2 were stained positively in 13/15 and 6/15 pGCL. MKI67 was expressed in 11/15 and TE7 in 2/15 pGCL. CONCLUSION These results point out that in self-established primary adherent glioblastoma cell lines, the expression of the specific astrocytic and glial markers GFAP and S100B and of the malignancy and progenitor markers VIM, NES, and SOX2 has to be validated. These data show that primary cell lines of glioblastoma origin with high malignant potential are reliably to establish using standardized validation criteria.
Collapse
Affiliation(s)
- Susanne Grube
- Department of Neurosurgery, Section of Experimental Neurooncology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Diana Freitag
- Department of Neurosurgery, Section of Experimental Neurooncology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Rolf Kalff
- Department of Neurosurgery, Section of Experimental Neurooncology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Christian Ewald
- Department of Neurosurgery, Brandenburg Medical School, Brandenburg, Germany
| | - Jan Walter
- Department of Neurosurgery, Section of Experimental Neurooncology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany.,Department of Neurosurgery, Clinical Center Saarbruecken GmbH, Saarbrücken, Germany
| |
Collapse
|
20
|
Kaushal K, Ramakrishna S. Deubiquitinating Enzyme-Mediated Signaling Networks in Cancer Stem Cells. Cancers (Basel) 2020; 12:E3253. [PMID: 33158118 PMCID: PMC7694198 DOI: 10.3390/cancers12113253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs) have both the capacity for self-renewal and the potential to differentiate and contribute to multiple tumor properties, such as recurrence, metastasis, heterogeneity, multidrug resistance, and radiation resistance. Thus, CSCs are considered to be promising therapeutic targets for cancer therapy. The function of CSCs can be regulated by ubiquitination and deubiquitination of proteins related to the specific stemness of the cells executing various stem cell fate choices. To regulate the balance between ubiquitination and deubiquitination processes, the disassembly of ubiquitin chains from specific substrates by deubiquitinating enzymes (DUBs) is crucial. Several key developmental and signaling pathways have been shown to play essential roles in this regulation. Growing evidence suggests that overactive or abnormal signaling within and among these pathways may contribute to the survival of CSCs. These signaling pathways have been experimentally shown to mediate various stem cell properties, such as self-renewal, cell fate decisions, survival, proliferation, and differentiation. In this review, we focus on the DUBs involved in CSCs signaling pathways, which are vital in regulating their stem-cell fate determination.
Collapse
Affiliation(s)
- Kamini Kaushal
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea;
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea;
- College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
21
|
Eskandari A, Flamme M, Xiao Z, Suntharalingam K. The Bulk Osteosarcoma and Osteosarcoma Stem Cell Activity of a Necroptosis-Inducing Nickel(II)-Phenanthroline Complex. Chembiochem 2020; 21:2854-2860. [PMID: 32415808 DOI: 10.1002/cbic.202000231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/14/2020] [Indexed: 12/26/2022]
Abstract
We report the anti-osteosarcoma and anti-osteosarcoma stem cell (OSC) properties of a nickel(II) complex, 1. Complex 1 displays similar potency towards bulk osteosarcoma cells and OSCs, in the micromolar range. Notably, 1 displays similar or better OSC potency than the clinically approved platinum(II) anticancer drugs cisplatin and carboplatin in two- and three-dimensional osteosarcoma cell cultures. Mechanistic studies revealed that 1 induces osteosarcoma cell death by necroptosis, an ordered form of necrosis. The nickel(II) complex, 1 triggers necrosome-dependent mitrochondrial membrane depolarisation and propidium iodide uptake. Interestingly, 1 does not evoke necroptosis by elevating intracellular reactive oxygen species (ROS) or hyperactivation of poly ADP ribose polymerase (PARP-1). ROS elevation and PARP-1 activity are traits that have been observed for established necroptosis inducers such as shikonin, TRAIL and glutamate. Thus the necroptosis pathway evoked by 1 is distinct. To the best of our knowledge, this is the first report into the anti-osteosarcoma and anti-OSC properties of a nickel complex.
Collapse
Affiliation(s)
- Arvin Eskandari
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Marie Flamme
- Department of Structural Biology and Chemistry, Institut Pasteur, Paris, 75015, France
| | - Zhiyin Xiao
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| | | |
Collapse
|
22
|
Pushpam D, Garg V, Ganguly S, Biswas B. Management of Refractory Pediatric Sarcoma: Current Challenges and Future Prospects. Onco Targets Ther 2020; 13:5093-5112. [PMID: 32606731 PMCID: PMC7293381 DOI: 10.2147/ott.s193363] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
Paediatric sarcomas are a heterogeneous group of disorders constituting bone sarcoma and various soft tissue sarcomas. Almost one-third of these presents with metastasis at baseline and another one-third recur after initial curative treatment. There is a huge unmet need in this cohort in terms of curative options and/or prolongation of survival. In this review, we have discussed the current treatment options, challenges and future strategies of managing relapsed/refractory paediatric sarcomas. Upfront risk-adapted treatment with multidisciplinary management remains the main strategy to prevent future recurrence or relapse of the disease. In the case of limited local and/or systemic relapse or late relapse, initial multimodality management can be administered. In treatment-refractory cases or where cure is not feasible, the treatment options are limited to novel therapeutics, immunotherapeutic approach, targeted therapies, and metronomic therapies. A better understanding of disease biology, mechanism of treatment refractoriness, identifications of driver mutation, the discovery of novel targeted therapies, cellular vaccine and adapted therapies should be explored in relapsed/refractory cases. Close national and international collaboration for translation research is needed to fulfil the unmet need.
Collapse
Affiliation(s)
| | - Vikas Garg
- Department of Medical Oncology, AIIMS, New Delhi, India
| | - Sandip Ganguly
- Department of Medical Oncology, Tata Medical Center, Kolkata, India
| | - Bivas Biswas
- Department of Medical Oncology, Tata Medical Center, Kolkata, India
| |
Collapse
|
23
|
Molina ER, Chim LK, Barrios S, Ludwig JA, Mikos AG. Modeling the Tumor Microenvironment and Pathogenic Signaling in Bone Sarcoma. TISSUE ENGINEERING. PART B, REVIEWS 2020; 26:249-271. [PMID: 32057288 PMCID: PMC7310212 DOI: 10.1089/ten.teb.2019.0302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/07/2020] [Indexed: 12/17/2022]
Abstract
Investigations of cancer biology and screening of potential therapeutics for efficacy and safety begin in the preclinical laboratory setting. A staple of most basic research in cancer involves the use of tissue culture plates, on which immortalized cell lines are grown in monolayers. However, this practice has been in use for over six decades and does not account for vital elements of the tumor microenvironment that are thought to aid in initiation, propagation, and ultimately, metastasis of cancer. Furthermore, information gleaned from these techniques does not always translate to animal models or, more crucially, clinical trials in cancer patients. Osteosarcoma (OS) and Ewing sarcoma (ES) are the most common primary tumors of bone, but outcomes for patients with metastatic or recurrent disease have stagnated in recent decades. The unique elements of the bone tumor microenvironment have been shown to play critical roles in the pathogenesis of these tumors and thus should be incorporated in the preclinical models of these diseases. In recent years, the field of tissue engineering has leveraged techniques used in designing scaffolds for regenerative medicine to engineer preclinical tumor models that incorporate spatiotemporal control of physical and biological elements. We herein review the clinical aspects of OS and ES, critical elements present in the sarcoma microenvironment, and engineering approaches to model the bone tumor microenvironment. Impact statement The current paradigm of cancer biology investigation and therapeutic testing relies heavily on monolayer, monoculture methods developed over half a century ago. However, these methods often lack essential hallmarks of the cancer microenvironment that contribute to tumor pathogenesis. Tissue engineers incorporate scaffolds, mechanical forces, cells, and bioactive signals into biological environments to drive cell phenotype. Investigators of bone sarcomas, aggressive tumors that often rob patients of decades of life, have begun to use tissue engineering techniques to devise in vitro models for these diseases. Their efforts highlight how critical elements of the cancer microenvironment directly affect tumor signaling and pathogenesis.
Collapse
Affiliation(s)
- Eric R. Molina
- Department of Bioengineering, Rice University, Houston, Texas
| | - Letitia K. Chim
- Department of Bioengineering, Rice University, Houston, Texas
| | - Sergio Barrios
- Department of Bioengineering, Rice University, Houston, Texas
| | - Joseph A. Ludwig
- Division of Cancer Medicine, Department of Sarcoma Medical Oncology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | | |
Collapse
|
24
|
Bao J, Song Z, Song C, Wang Y, Li W, Mai W, Shi Q, Yu H, Ni L, Liu Y, Lu X, He C, Chen L, Qu G. Identification of Biomarkers for Osteosarcoma Based on Integration Strategy. Med Sci Monit 2020; 26:e920803. [PMID: 32173717 PMCID: PMC7101204 DOI: 10.12659/msm.920803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background Osteosarcoma (OS) is the most common primary malignant tumor of bone. The identification of novel biomarkers is necessary for the diagnosis and treatment of osteosarcoma. Material/Methods We obtained 11 paired fresh-frozen OS samples and normal controls from patients between September 2015 and February 2017. We used an integration strategy that analyzes next-generation sequencing data by bioinformatics methods based on the pathogenesis of osteosarcoma. Results One susceptibility lncRNA and 7 susceptibility genes regulated by the lncRNA for osteosarcoma were effectively identified, and real-time PCR and clinical index ALP data were used to test their effectiveness. Conclusions The results showed that the expression levels of the 7 genes were highly consistent in the training and test sample sets, especially between the expression value of the gene ALPL and the plasma detection value of its encoded protein ALP. In particular, both the expression of gene ALPL and the plasma detection values of protein ALP encoded by gene ALPL showed a high degree of consistency among different data types. The identified lncRNA and genes effectively classified the samples proved so that they could be used as potential biomarkers of osteosarcoma. Our strategy may also be helpful for the identification of biomarkers for other diseases.
Collapse
Affiliation(s)
- Junjie Bao
- Department of Orthopedic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China (mainland)
| | - Zhaona Song
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Chunyu Song
- Department of Orthopedic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China (mainland)
| | - Yahui Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Wan Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Wei Mai
- Department of Orthopedic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China (mainland)
| | - Qingyu Shi
- Department of Orthopedic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China (mainland)
| | - Hongwei Yu
- Department of Orthopedic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China (mainland)
| | - Linying Ni
- Department of Orthopedic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China (mainland)
| | - Yishu Liu
- Department of Orthopedic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China (mainland)
| | - Xiaolin Lu
- Department of Orthopedic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China (mainland)
| | - Chuan He
- Department of Orthopedic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China (mainland)
| | - Lina Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Guofan Qu
- Department of Orthopedic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China (mainland)
| |
Collapse
|
25
|
Robin P, Singh K, Suntharalingam K. Gallium(iii)-polypyridyl complexes as anti-osteosarcoma stem cell agents. Chem Commun (Camb) 2020; 56:1509-1512. [PMID: 31917383 DOI: 10.1039/c9cc08962d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gallium(iii) complexes with polypridyl ligands are shown to kill bulk osteosarcoma cells and osteosarcoma stem cells (OSCs) with up to nanomolar potency. The most effective complex induces apoptosis in osteosarcoma cells by damaging genomic DNA. To the best of our knowledge this is the first investigation into metal-based anti-OSC agents.
Collapse
Affiliation(s)
- Perrine Robin
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK.
| | | | | |
Collapse
|
26
|
Chen Y, Zhang T, Liu X, Li Z, Zhou D, Xu W. Melatonin suppresses epithelial‑to‑mesenchymal transition in the MG‑63 cell line. Mol Med Rep 2019; 21:1356-1364. [PMID: 31894324 DOI: 10.3892/mmr.2019.10902] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/31/2019] [Indexed: 11/06/2022] Open
Abstract
Epithelial‑to‑mesenchymal transition (EMT) is a major process involved in tumor progression and metastasis. Melatonin is secreted by the pineal gland and has been documented as a potential therapeutic agent for multiple tumors. However, the effects of melatonin on EMT during osteosarcoma (OA) development remain undefined. The present study explored the biological functions and effects of melatonin on EMT induced by transforming growth factor β1 (TGF‑β1) and its underlying mechanisms in MG‑63 cells. Using western‑blotting and immunofluorescence, it was found that the switch in E‑cadherin/N‑cadherin and vimentin expression was induced by TGF‑β1, which was reversed by melatonin through the suppression of Snail and matrix metalloproteinase 9 (MMP‑9), through hypoxia‑inducible factor 1α (HIF‑1α) inhibition. These findings demonstrated that the anticancer effects of melatonin against OA MG‑63 cells is through the suppression of EMT via HIF‑1α/Snail/MMP‑9 signaling.
Collapse
Affiliation(s)
- Yongjun Chen
- Department of Orthopaedics, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, P.R. China
| | - Tao Zhang
- Department of Immunology, Basic and Forensic Medicine of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014060, P.R. China
| | - Xiongwei Liu
- Department of Orthopaedics, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, P.R. China
| | - Zengyan Li
- Department of Nephrology, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, P.R. China
| | - Dongming Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, P.R. China
| | - Wensheng Xu
- Department of Orthopaedics, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, P.R. China
| |
Collapse
|
27
|
Cancer Stem Cells and Osteosarcoma: Opportunities and Limitations. Tech Orthop 2019. [DOI: 10.1097/bto.0000000000000408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
28
|
Izadpanah S, Shabani P, Aghebati-Maleki A, Baghbanzadeh A, Fotouhi A, Bisadi A, Aghebati-Maleki L, Baradaran B. Prospects for the involvement of cancer stem cells in the pathogenesis of osteosarcoma. J Cell Physiol 2019; 235:4167-4182. [PMID: 31709547 DOI: 10.1002/jcp.29344] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 08/26/2019] [Indexed: 12/31/2022]
Abstract
Osteosarcoma (OS) is one of the most common bone tumors in children and adolescents that cause a high rate of mortality in this age group and tends to be metastatic, in spite of chemotherapy and surgery. The main reason for this can be returned to a small group of malignant cells called cancer stem cells (CSCs). OS-CSCs play a key role in the resistance to treatment and relapse and metastasis through self-renewal and differentiation abilities. In this review, we intend to go through the different aspects of this malignant disease, including the cancer stem cell-phenotype, methods for isolating CSCs, signaling pathways, and molecular markers in this disease, and drugs showing resistance in treatment efforts of OS.
Collapse
Affiliation(s)
- Sama Izadpanah
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parastoo Shabani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Fotouhi
- Department of Orthopedic Surgery, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Bisadi
- Department of Orthopedic Surgery, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
ABCG1 and Pgp identify drug resistant, self-renewing osteosarcoma cells. Cancer Lett 2019; 453:142-157. [DOI: 10.1016/j.canlet.2019.03.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/11/2018] [Accepted: 03/04/2019] [Indexed: 12/20/2022]
|
30
|
Lee KS, Choi JS, Cho YW. Reprogramming of cancer stem cells into non-tumorigenic cells using stem cell exosomes for cancer therapy. Biochem Biophys Res Commun 2019; 512:511-516. [PMID: 30905410 DOI: 10.1016/j.bbrc.2019.03.072] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 03/12/2019] [Indexed: 01/06/2023]
Abstract
Cancer stem cells (CSCs) are a small population of cells with stem cell-like properties found in tumors. CSCs are closely associated with tumor heterogeneity, which influences tumor progress, metastasis, and drug resistance. Here, we propose a concept to enhance efficacy of cancer therapy through CSC reprogramming into non-tumorigenic cells using stem cell-derived exosomes with osteoinductive potential. We hypothesized that exosomes derived from osteogenic differentiating human adipose-derived stem cells (OD-EXOs) contain specific cargos capable of inducing osteogenic differentiation of CSCs. Quantitative RT-PCR analysis revealed that OD-EXOs enhanced the expression of osteogenic-related genes, such as alkaline phosphatase (ALPL), osteocalcin (BGLAP), and runt-related transcription factor 2 (RUNX2). In addition, expression of drug-resistance genes such as ATP binding cassette (ABC) transporter, the breast cancer gene family (BCRA1 and BCRA2), and the ErbB gene family were significantly decreased in OD-EXO-treated CSCs. Our findings suggest that OD-EXOs function as a biochemical cue for CSC reprogramming and contribute to overcoming therapeutic resistance.
Collapse
Affiliation(s)
- Kyoung Soo Lee
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do, 426-791, Republic of Korea
| | - Ji Suk Choi
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do, 426-791, Republic of Korea; Exostemtech Inc., Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Yong Woo Cho
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do, 426-791, Republic of Korea; Exostemtech Inc., Ansan, Gyeonggi-do, 15588, Republic of Korea.
| |
Collapse
|
31
|
Xi X, Wu Q, Bao Y, Lin M, Zhong X, Dai X, Lin H. Overexpression of TBL1XR1 confers tumorigenic capability and promotes recurrence of osteosarcoma. Eur J Pharmacol 2019; 844:259-267. [DOI: 10.1016/j.ejphar.2018.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 12/25/2022]
|
32
|
Zhang QH, Hu QX, Xie D, Chang B, Miao HG, Wang YG, Liu DZ, Li XD. Ganoderma lucidum Exerts an Anticancer Effect on Human Osteosarcoma Cells via Suppressing the Wnt/β-Catenin Signaling Pathway. Integr Cancer Ther 2019; 18:1534735419890917. [PMID: 31855073 PMCID: PMC6923688 DOI: 10.1177/1534735419890917] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/27/2019] [Accepted: 10/22/2019] [Indexed: 02/05/2023] Open
Abstract
Background: Current treatment of osteosarcoma is limited in part by side effects and low tolerability, problems generally avoided with traditional Chinese medicine. Ganoderma lucidum, a traditional Chinese medicine with antitumor effects, offers a potential alternative, but little is known about its molecular mechanisms in osteosarcoma cells. Objective: To investigate the effect of G lucidum on osteosarcoma cells and its mechanism. Methods: Osteosarcoma MG63 and U2-OS cells were treated with G lucidum, followed by assays for cell proliferation (Cell Counting Kit-8), colony formation, and apoptosis (Alexa Fluor 647-Annexin V/propidium iodide, flow cytometry). Migration and invasion of cells were assessed by wound healing and Transwell invasion assays, and the effect of G lucidum on Wnt/β-catenin signal transduction was studied by real-time quantitative polymerase chain reaction, western blot, and dual-luciferase assay. Results:G lucidum inhibited the proliferation, migration, and invasion, and induced apoptosis of human osteosarcoma MG63 and U2-OS cells. Dual-luciferase assay showed that G lucidum suppressed the transcriptional activity of T-cell factor/lymphocyte enhancer factor in the Wnt/β-catenin signaling pathway. Moreover, G lucidum blocked Wnt/β-catenin signaling by inhibiting the Wnt co-receptor LRP5 and Wnt-related target genes, such as β-catenin, cyclin D1, C-Myc, MMP-2, and MMP-9. At the same time, when Wnt/β-catenin was inhibited, the expression of E-cadherin was upregulated. Conclusions: Our results suggest that G lucidum broadly suppresses osteosarcoma cell growth by inhibiting Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Qi-Hao Zhang
- The First Affiliated Hospital of Shantou
University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Qin-Xiao Hu
- The First Affiliated Hospital of Shantou
University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Da Xie
- The First Affiliated Hospital of Shantou
University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Bo Chang
- The First Affiliated Hospital of Shantou
University Medical College, Shantou, Guangdong, People’s Republic of China
- The Third Affiliated Hospital (The
Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, Guangdong, People’s
Republic of China
| | - Hou-Guang Miao
- The Third Affiliated Hospital (The
Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, Guangdong, People’s
Republic of China
| | - Yun-Guo Wang
- The Second Hospital of Tianjin Medical
University, Tianjin, People’s Republic of China
| | - De-Zhong Liu
- The First Affiliated Hospital of Shantou
University Medical College, Shantou, Guangdong, People’s Republic of China
- De-Zhong Liu, Department of Emergency
Surgery, The First Affiliated Hospital of Shantou University Medical College,
Shantou, Guangdong 515041, People’s Republic of China.
| | - Xue-Dong Li
- The First Affiliated Hospital of Shantou
University Medical College, Shantou, Guangdong, People’s Republic of China
- De-Zhong Liu, Department of Emergency
Surgery, The First Affiliated Hospital of Shantou University Medical College,
Shantou, Guangdong 515041, People’s Republic of China.
| |
Collapse
|
33
|
Lv D, Zhen Z, Huang D. MicroRNA-432 is downregulated in osteosarcoma and inhibits cell proliferation and invasion by directly targeting metastasis-associated in colon cancer-1. Exp Ther Med 2018; 17:919-926. [PMID: 30651881 DOI: 10.3892/etm.2018.7029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/12/2018] [Indexed: 01/05/2023] Open
Abstract
The aberrant expression of microRNAs (miRNAs/miRs) in osteosarcoma (OS) has been demonstrated in previous studies, and deregulation of miRNA expression has been associated with several types of cancer, including OS development and progression. Therefore, identifying the functional role of miRNAs in OS onset and development may facilitate the identification of novel and effective therapeutic targets for the treatment of patients with OS. Previous studies have demonstrated that miR-432 is involved in tumor formation and progression in several types of cancer. However, the expression pattern, functional role and underlying mechanism of miR-432 in OS remain unknown. In the current study, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to measure miR-432 expression levels in OS tissue samples and cell lines. The effect of miR-432 overexpression on OS cell proliferation and invasion was detected using Cell Counting Kit-8 and Transwell invasion assays, respectively. Bioinformatics analysis was used to predict metastasis-associated in colon cancer 1 (MACC1) as a putative target of miR-432 and this was confirmed using a dual-luciferase reporter assay, RT-qPCR and western blot analysis. The current study demonstrated that miR-432 expression levels were significantly reduced in OS tissue samples and cell lines. In addition, functional assays revealed that overexpression of miR-432 significantly decreased OS cell proliferation and invasion. Furthermore, MACC1 was identified as a direct target gene of miR-432 in OS. MACC1 expression levels were significantly increased in OS tissue samples and an inverse correlation was observed between miR-432 and MACC1 expression in OS tissue samples. In addition, rescue experiments demonstrated that overexpression of MACC1 partially reversed the anti-proliferative and anti-invasive effects of miR-432 in OS cells. In conclusion, the present study demonstrated that miR-432 inhibited OS cell proliferation and invasion in vitro through direct targeting of MACC1, and miR-432 may be a potential therapeutic target for the treatment of OS.
Collapse
Affiliation(s)
- Dengkun Lv
- Department of Pediatric Surgery, Jining No. 1 People's Hospital, Jinan, Shandong 272011, P.R. China
| | - Zhen Zhen
- Department of Emergency Surgery, Jining No. 1 People's Hospital, Jinan, Shandong 272011, P.R. China
| | - Defa Huang
- Department of Pediatric Surgery, Jining No. 1 People's Hospital, Jinan, Shandong 272011, P.R. China
| |
Collapse
|
34
|
Xiong Q, Wang X, Wang L, Huang Y, Tian X, Fan Y, Lin CY. BMP-2 inhibits lung metastasis of osteosarcoma: an early investigation using an orthotopic model. Onco Targets Ther 2018; 11:7543-7553. [PMID: 30464502 PMCID: PMC6214601 DOI: 10.2147/ott.s176724] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Bone morphogenetic proteins (BMPs), members of the TGF-β superfamily, are known to regulate cell proliferation, differentiation, apoptosis, chemotaxis, and angiogenesis. BMPs also participate in the development of most tissues and organs in vertebrates. Recombinant human (rh) BMPs, such as rhBMP-2, rhBMP-4, and rhBMP-7, have been recently approved to augment spinal fusion and recalcitrant long-bone non-unions because of their equivalent or superior efficacy to autogenous bone graft in enhancing bony fusion. Nonetheless, the use of BMPs is contraindicated in surgery for bone tumors because of concerns that this anabolic growth factor may cause tumor proliferation. However, we have repeatedly reported that BMP-2 is effective in inducing osteogenic differentiation of a subpopulation of osteosarcoma (OSA) cells that acquire stem cell attributes and are capable of reconstituting tumor masses, which in turn suppress the malignancy of the bone tumor. Methods 3×105/20 µL human OSA 143B cells were inoculated into 5–6 weeks old BABL/c nude mice to establish orthotopic OSA. X-ray device was used to monitor the developed tumors in animals. Necropsy was performed and the pathology of lung metastasis were tested by Haemotoxylin and Eosin. Moreover, bone formation induced by rhBMP-2 was investigated through micro-computed tomography. In addition, immunohistochemistry staining was used to evaluate the tumorigenicity and growth of OSA cells after rhBMP-2 treatment. Results In the present study, we established an orthotopic model of OSA by inoculating 143B cells into BABL/c mice, which resulted in a tumor occurrence rate of 100%. Following the treatment with rhBMP-2, lung metastasis, which contributes to poor prognosis, was significantly restricted, indicating an additional aspect of rhBMP-2 to suppress expansion of OSA. Concurrently, our micro-computed tomography and radiographic analyses showed that rhBMP-2 reduced the invasion of tumor cells into adjacent bone tissue, which in turn helped to preserve the integrity of the affected bone tissue. Finally, the growth of Ki-67-positive cells and those cells that express high levels of aldehyde dehydrogenase (ALDHbr) was found to be inhibited in the developed tumors. Conclusion On the basis of these results, we conclude that rhBMP-2 can impede the malignancy of OSA by reducing lung metastasis of the tumor. Induction of the tumor cells by rhBMP-2 also helps to preserve the impaired skeleton. These results imply that BMP-2 or BMP-2-mimetic drugs, if properly combined with traditional therapies, may provide a new therapeutic option for the treatment of OSA.
Collapse
Affiliation(s)
- Qisheng Xiong
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China, .,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China,
| | - Xuesong Wang
- Spine Department, The No 2 Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lizhen Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China, .,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China,
| | - Yan Huang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China, .,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China,
| | - Xiaodong Tian
- Spine Department, The No 2 Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yubo Fan
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China, .,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China,
| | - Chia-Ying Lin
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China, .,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China, .,Department of Orthopaedic Surgery, University of Cincinnati Academic Health Center, Cincinnati, OH, USA, .,Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA,
| |
Collapse
|
35
|
Otoukesh B, Boddouhi B, Moghtadaei M, Kaghazian P, Kaghazian M. Novel molecular insights and new therapeutic strategies in osteosarcoma. Cancer Cell Int 2018; 18:158. [PMID: 30349420 PMCID: PMC6192346 DOI: 10.1186/s12935-018-0654-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma (OS) is one of the most prevalent malignant cancers with lower survival and poor overall prognosis mainly in children and adolescents. Identifying the molecular mechanisms and OS stem cells (OSCs) as new concepts involved in disease pathogenesis and progression may potentially lead to new therapeutic targets. Therefore, therapeutic targeting of OSCs can be one of the most important and effective strategies for the treatment of OS. This review describes the new molecular targets of OS as well as novel therapeutic approaches in the design of future investigations and treatment.
Collapse
Affiliation(s)
- Babak Otoukesh
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, 1445613131 Iran
| | - Bahram Boddouhi
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, 1445613131 Iran
| | - Mehdi Moghtadaei
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, 1445613131 Iran
| | - Peyman Kaghazian
- Department of Orthopedic and Traumatology, Universitätsklinikum Bonn, Bonn, Germany
| | - Maria Kaghazian
- Department of Biology, Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
36
|
Zheng J, You W, Zheng C, Wan P, Chen J, Jiang X, Zhu Z, Zhang Z, Gong A, Li W, Tan J, Ji T, Guo W, Zhang S. Knockdown of FBXO39 inhibits proliferation and promotes apoptosis of human osteosarcoma U-2OS cells. Oncol Lett 2018; 16:1849-1854. [PMID: 30008875 DOI: 10.3892/ol.2018.8876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 04/16/2018] [Indexed: 11/05/2022] Open
Abstract
F-box proteins are essential components of the Skp-cullin-F-box complex (a type of E3 ubiquitin ligase), and participate in cell cycle and immune responses through the ubiquitin proteasome system. F-box protein 39 (FBXO39) belongs to the F-box family, which has been reported to be associated with cancer oncogenesis and progression. The present study aimed to investigate the role of FBXO39 in osteosarcoma (OS) cell proliferation and apoptosis in vitro. It was demonstrated that U-2OS cells exhibited high expression of FBXO39 compared with HOS and SaOS-2 osteosarcoma cells. Thus, knockdown of FBXO39 was performed using lentivirus-mediated short hairpin RNA (shRNA) transfection to validate the effect of FBXO39 in U-2OS cells. Western blotting and RT-qPCR analysis were used to confirm the efficiency of infection by analyzing the expression level of FBXO39. Using Celigo-based cell counting and MTT assays, it was demonstrated that FBXO39 knockdown significantly reduced the rate of cell proliferation compared with control. Caspase 3/7 activity assays and fluorescence-activated cell sorting confirmed the induction of apoptosis in U-2OS cells following FBXO39 knockdown. In conclusion, it was demonstrated that FBXO39 knockdown may significantly inhibit proliferation and promote apoptosis of U-2OS cells. Thus, FBXO39 may serve an important role in OS progression.
Collapse
Affiliation(s)
- Jianrong Zheng
- Department of Joint and Musculoskeletal Tumor, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, P.R. China.,Department of Traumatic Orthopedics, Huizhou Municipal Central Hospital, Huizhou, Guangdong 516000, P.R. China
| | - Wei You
- Department of Joint and Musculoskeletal Tumor, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Chuanxi Zheng
- Department of Joint and Musculoskeletal Tumor, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Peng Wan
- Department of Joint and Musculoskeletal Tumor, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Jinquan Chen
- Department of Joint and Musculoskeletal Tumor, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Xiaochun Jiang
- Department of Joint and Musculoskeletal Tumor, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Zhixiang Zhu
- Department of Joint and Musculoskeletal Tumor, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Zhixiong Zhang
- Department of Joint and Musculoskeletal Tumor, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Anqi Gong
- Department of Joint and Musculoskeletal Tumor, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Wei Li
- Department of Joint and Musculoskeletal Tumor, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Jifeng Tan
- Department of Joint and Musculoskeletal Tumor, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Tao Ji
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Shiquan Zhang
- Department of Joint and Musculoskeletal Tumor, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|
37
|
Sox2 is required for tumor development and cancer cell proliferation in osteosarcoma. Oncogene 2018; 37:4626-4632. [PMID: 29743593 PMCID: PMC6195857 DOI: 10.1038/s41388-018-0292-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/09/2018] [Accepted: 04/06/2018] [Indexed: 01/06/2023]
Abstract
The stem cell transcription factor Sox2 is highly expressed in many cancers where it is thought to mark cancer stem cells (CSC). In osteosarcomas, the most common bone malignancy, high Sox2 expression marks and maintains a fraction of tumor initiating cells that show all the properties of CSC. Knock down of Sox2 expression abolishes tumorigenicity and suppresses the CSC phenotype. Here we show that, in a mouse model of osteosarcoma, osteoblast-specific Sox2 conditional knockout (CKO) causes a drastic reduction in the frequency and onset of tumors. The rare tumors detected in the Sox2 CKO animals were all Sox2 positive, indicating that they arose from cells that had escaped Sox2 deletion. Furthermore Sox2 inactivation in cultured osteosarcoma cells by CRISPR/CAS technology leads to a loss of viability and proliferation of the entire cell population. Inactivation of the YAP gene, a major Hippo Pathway effector which is a direct Sox2 target, causes similar results and YAP overexpression rescues cells from the lethality caused by Sox2 inactivation. These effects were osteosarcoma-specific, suggesting a mechanism of cell “addiction” to Sox2 initiated pathways. The requirement for Sox2 for osteosarcoma formation as well as for the survival of the tumor cells suggests that disruption of Sox2-initiated pathways could be an effective strategy for the treatment of osteosarcoma.
Collapse
|
38
|
Qu H, Xue Y, Lian W, Wang C, He J, Fu Q, Zhong L, Lin N, Lai L, Ye Z, Wang Q. Melatonin inhibits osteosarcoma stem cells by suppressing SOX9-mediated signaling. Life Sci 2018; 207:253-264. [PMID: 29689273 DOI: 10.1016/j.lfs.2018.04.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 04/15/2018] [Accepted: 04/17/2018] [Indexed: 12/30/2022]
Abstract
AIMS Melatonin (N-acetyl-5-methoxytryptamine) has been reported to suppress epithelial-mesenchymal transition and cancer stem cells in some types of cancer. However, the effects of melatonin on the osteosarcoma stem cells, epithelial-mesenchymal transition and metastasis of osteosarcoma are still not clear. The present study was conducted to dissect the activity of melatonin on the osteosarcoma stem cells and the underlying mechanisms. MAIN METHODS MTT, wound healing, transwell assay and western blotting were conducted to determine the effect of melatonin on osteosarcoma cell invasion and migration and downregulation of SOX9-mediated signaling. Tumor spheroid assay and FACS analysis were performed to analyze the inhibition of the osteosarcoma stem cells. In vivo model for tumor formation and metastasis from single cell clone was used to evaluate the suppression of osteosarcoma stem cells by melatonin. KEY FINDINGS We demonstrated that melatonin potently suppresses the migration and invasion of osteosarcoma cells. Furthermore, melatonin significantly inhibits the sarcosphere formation of osteosarcoma stem cells and regulates EMT markers of osteosarcoma cells. In vivo mice model showed that melatonin significantly inhibits the initiation and metastasis of osteosarcoma. SOX9 is the key transcription factor mediating the effect of melatonin. Melatonin inhibited of cancer stem cell by down-regulation of SOX9-mediated signaling pathway in osteosarcoma. SIGNIFICANCE Collectively, these results deepen the understanding of the biological functions of melatonin and provide new insights for the intervention of osteosarcoma stem cells.
Collapse
Affiliation(s)
- Hao Qu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yue Xue
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wenwen Lian
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Cong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jia He
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qihong Fu
- Hangzhou Normal University School of Clinical Medicine, Hangzhou 311121, China
| | - Lijia Zhong
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Nong Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Lihua Lai
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhaoming Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
39
|
Li Z, Ni J, Song D, Ding M. Regulatory mechanism of microRNA-128 in osteosarcoma tumorigenesis and evolution through targeting SASH1. Oncol Lett 2018; 15:8687-8694. [PMID: 29805606 DOI: 10.3892/ol.2018.8397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/29/2017] [Indexed: 12/26/2022] Open
Abstract
Osteosarcoma, which commonly occurs in young individuals, is a type of malignant tumor of growing bones. MicroRNAs (miRNAs) have been found to be involved in various cancer-related processes. In the present study, it was reported that miRNA-128 (miR-128) was overexpressed in pathological tissues from patients with osteosarcoma. The present study investigated the possible regulatory mechanism of miR-128 on the progression of osteosarcoma and offered a foundation for clinical therapeutics in osteosarcoma. First, the expressions levels of miR-128 and its target gene, SAM and SH3 domain-containing 1 (SASH1), were measured in tissues from patients with osteosarcoma, and their correlation with osteosarcoma in terms of the pathological level were examined. The effects of miR-128 on osteosarcoma cell proliferation and apoptosis were examined, and its regulation of the expression levels of SASH1 and associated proteins was analyzed. Subsequently, the association between SASH1 and miR-128 was evaluated using a dual luciferase gene reporter assay. Finally, an in vivo xenograft tumor mouse model of osteosarcoma was established to confirm the in vitro results. The results demonstrated a higher expression of miR-128 in pathological tissues, compared with that in normal tissues. From examining the patient osteosarcoma tissues, marked correlations were found between the expression of miR-128 and that of SASH1, particularly with tumor size, invasion depth, lymph node metastasis, and tumor-node-metastasis stage. Compared with the negative control group and blank control group, the results showed that the inhibition of miR-128 led to a lower cell proliferation rate and higher apoptotic rate in MG-63 cells (P<0.05). Additionally, the expression of B-cell lymphoma 2 (Bcl-2) was downregulated in the miR-128-inhibited group, compared with that in the control group, whereas the expression levels of SASH1, Bcl-2-associated X protein and caspase-3 were upregulated in the group with miR-128 inhibition (P<0.05). SASH1 was confirmed as a direct target of miR-128 using a dual luciferase gene reporter assay. Finally, the downregulation of miR-128 was found to induce tumor suppressive effects on xenograft tumor models of osteosarcoma in mice in vivo. The results of the present study suggested that miR-128 may regulate the tumorigenesis and evolution of osteosarcoma through targeting SASH1.
Collapse
Affiliation(s)
- Zi Li
- Department of Orthopedics, The Second Hospital of Xiangya Medical College of Central South University, Changsha, Hunan 410011, P.R. China
| | - Jiangdong Ni
- Department of Orthopedics, The Second Hospital of Xiangya Medical College of Central South University, Changsha, Hunan 410011, P.R. China
| | - Deye Song
- Department of Orthopedics, The Second Hospital of Xiangya Medical College of Central South University, Changsha, Hunan 410011, P.R. China
| | - Muliang Ding
- Department of Orthopedics, The Second Hospital of Xiangya Medical College of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
40
|
Gozo MC, Jia D, Aspuria PJ, Cheon DJ, Miura N, Walts AE, Karlan BY, Orsulic S. FOXC2 augments tumor propagation and metastasis in osteosarcoma. Oncotarget 2018; 7:68792-68802. [PMID: 27634875 PMCID: PMC5356590 DOI: 10.18632/oncotarget.11990] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 09/02/2016] [Indexed: 11/25/2022] Open
Abstract
Osteosarcoma is a highly malignant tumor that contains a small subpopulation of tumor-propagating cells (also known as tumor-initiating cells) characterized by drug resistance and high metastatic potential. The molecular mechanism by which tumor-propagating cells promote tumor growth is poorly understood. Here, we report that the transcription factor forkhead box C2 (FOXC2) is frequently expressed in human osteosarcomas and is important in maintaining osteosarcoma cells in a stem-like state. In osteosarcoma cell lines, we show that anoikis conditions stimulate FOXC2 expression. Downregulation of FOXC2 decreases anchorage-independent growth and invasion in vitro and lung metastasis in vivo, while overexpression of FOXC2 increases tumor propagation in vivo. In osteosarcoma cell lines, we demonstrate that high levels of FOXC2 are associated with and required for the expression of osteosarcoma tumor-propagating cell markers. In FOXC2 knockdown cell lines, we show that CXCR4, a downstream target of FOXC2, can restore osteosarcoma cell invasiveness and metastasis to the lung.
Collapse
Affiliation(s)
- Maricel C Gozo
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Graduate Program in Biomedical Science and Translational Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dongyu Jia
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Paul-Joseph Aspuria
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dong-Joo Cheon
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Naoyuki Miura
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ann E Walts
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Beth Y Karlan
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sandra Orsulic
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
41
|
Le Nail LR, Brennan M, Rosset P, Deschaseaux F, Piloquet P, Pichon O, Le Caignec C, Crenn V, Layrolle P, Hérault O, De Pinieux G, Trichet V. Comparison of Tumor- and Bone Marrow-Derived Mesenchymal Stromal/Stem Cells from Patients with High-Grade Osteosarcoma. Int J Mol Sci 2018; 19:E707. [PMID: 29494553 PMCID: PMC5877568 DOI: 10.3390/ijms19030707] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/10/2018] [Accepted: 02/12/2018] [Indexed: 01/09/2023] Open
Abstract
Osteosarcoma (OS) is suspected to originate from dysfunctional mesenchymal stromal/stem cells (MSC). We sought to identify OS-derived cells (OSDC) with potential cancer stem cell (CSC) properties by comparing OSDC to MSC derived from bone marrow of patients. This study included in vitro characterization with sphere forming assays, differentiation assays, cytogenetic analysis, and in vivo investigations of their tumorigenicity and tumor supportive capacities. Primary cell lines were isolated from nine high-grade OS samples. All primary cell lines demonstrated stromal cell characteristics. Compared to MSC, OSDC presented a higher ability to form sphere clones, indicating a potential CSC phenotype, and were more efficient at differentiation towards osteoblasts. None of the OSDC displayed the complex chromosome rearrangements typical of high grade OS and none of them induced tumors in immunodeficient mice. However, two OSDC demonstrated focused genomic abnormalities. Three out of seven, and six out of seven OSDC showed a supportive role on local tumor development, and on metastatic progression to the lungs, respectively, when co-injected with OS cells in nude mice. The observation of OS-associated stromal cells with rare genetic abnormalities and with the capacity to sustain tumor progression may have implications for future tumor treatments.
Collapse
Affiliation(s)
- Louis-Romée Le Nail
- Laboratoire d'étude des sarcomes osseux et remodelage des tissus calcifiés, INSERM UMR 1238, Université de Nantes, PhyOS, 44034 Nantes CEDEX 1, France.
- Centre Hospitalier Régional Universitaire de Tours, Service de Chirurgie Orthopédique 2, Faculté de Médecine de Tours, Université de Tours, 37044 CEDEX 9 Tours, France.
| | - Meadhbh Brennan
- Laboratoire d'étude des sarcomes osseux et remodelage des tissus calcifiés, INSERM UMR 1238, Université de Nantes, PhyOS, 44034 Nantes CEDEX 1, France.
- Harvard School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| | - Philippe Rosset
- Laboratoire d'étude des sarcomes osseux et remodelage des tissus calcifiés, INSERM UMR 1238, Université de Nantes, PhyOS, 44034 Nantes CEDEX 1, France.
- Centre Hospitalier Régional Universitaire de Tours, Service de Chirurgie Orthopédique 2, Faculté de Médecine de Tours, Université de Tours, 37044 CEDEX 9 Tours, France.
| | - Frédéric Deschaseaux
- STROMA Lab, INSERM U1031, Etablissement Français du Sang Occitanie, Université de Toulouse, 31432 Toulouse, France.
| | - Philippe Piloquet
- Centre Hospitalier Universitaire de Nantes, Service de Génétique Médicale, Faculté de Médecine de Nantes, 44034 CEDEX 1 Nantes, France.
| | - Olivier Pichon
- Centre Hospitalier Universitaire de Nantes, Service de Génétique Médicale, Faculté de Médecine de Nantes, 44034 CEDEX 1 Nantes, France.
| | - Cédric Le Caignec
- Laboratoire d'étude des sarcomes osseux et remodelage des tissus calcifiés, INSERM UMR 1238, Université de Nantes, PhyOS, 44034 Nantes CEDEX 1, France.
- Centre Hospitalier Universitaire de Nantes, Service de Génétique Médicale, Faculté de Médecine de Nantes, 44034 CEDEX 1 Nantes, France.
| | - Vincent Crenn
- Laboratoire d'étude des sarcomes osseux et remodelage des tissus calcifiés, INSERM UMR 1238, Université de Nantes, PhyOS, 44034 Nantes CEDEX 1, France.
- Centre Hospitalier Universitaire de Nantes, Service de Chirurgie Orthopédique, Faculté de Médecine de Nantes, Université de Nantes, 44034 CEDEX 1 Nantes, France.
| | - Pierre Layrolle
- Laboratoire d'étude des sarcomes osseux et remodelage des tissus calcifiés, INSERM UMR 1238, Université de Nantes, PhyOS, 44034 Nantes CEDEX 1, France.
| | - Olivier Hérault
- Centre Hospitalier Régional Universitaire de Tours, Service d'Hématologie Biologique, 37044 CEDEX 9 Tours, France.
- National Center for Scientific Research (CNRS) GDR 3697, 75020 Paris, France.
- National Center for Scientific Research (CNRS) ERL 7001 LNOx, 37032 CEDEX 1 Tours, Université de Tours, 37044 Tours, France.
| | - Gonzague De Pinieux
- Laboratoire d'étude des sarcomes osseux et remodelage des tissus calcifiés, INSERM UMR 1238, Université de Nantes, PhyOS, 44034 Nantes CEDEX 1, France.
- Centre Hospitalier Régional Universitaire de Tours, Hôpital Trousseau, Service d'Anatomie Pathologique, Faculté de Médecine de Tours, Université de Tours, 37044 CEDEX 9 Tours, France.
| | - Valérie Trichet
- Laboratoire d'étude des sarcomes osseux et remodelage des tissus calcifiés, INSERM UMR 1238, Université de Nantes, PhyOS, 44034 Nantes CEDEX 1, France.
- National Center for Scientific Research (CNRS) GDR 3697, 75020 Paris, France.
| |
Collapse
|
42
|
Gatti M, Solari A, Pattarozzi A, Campanella C, Thellung S, Maniscalco L, De Maria R, Würth R, Corsaro A, Bajetto A, Ratto A, Ferrari A, Daga A, Barbieri F, Florio T. In vitro and in vivo characterization of stem-like cells from canine osteosarcoma and assessment of drug sensitivity. Exp Cell Res 2018; 363:48-64. [PMID: 29305964 DOI: 10.1016/j.yexcr.2018.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/22/2017] [Accepted: 01/02/2018] [Indexed: 12/19/2022]
Abstract
Cancer stem cell (CSC) self-renewing and drug resistance cause treatment failure and tumor recurrence. Osteosarcoma is an aggressive bone tumor characterized by biological and molecular heterogeneity, possibly dependent on CSCs. CSC identification in osteosarcoma and their efficient targeting are still open questions. Spontaneous canine osteosarcoma shares clinical and biological features with the human tumors, representing a model for translational studies. We characterized three CSC-enriched canine osteosarcoma cultures. In serum-free conditions, these CSC cultures grow as anchorage-independent spheroids, show mesenchymal-like properties and in vivo tumorigenicity, recapitulating the heterogeneity of the original osteosarcoma. Osteosarcoma CSCs express stem-related factors (Sox2, Oct4, CD133) and chemokine receptors and ligands (CXCR4, CXCL12) involved in tumor proliferation and self-renewal. Standard drugs for osteosarcoma treatment (doxorubicin and cisplatin) affected CSC-enriched and parental primary cultures, showing different efficacy within tumors. Moreover, metformin, a type-2 diabetes drug, significantly inhibits osteosarcoma CSC viability, migration and self-renewal and, in co-treatment with doxorubicin and cisplatin, enhances drug cytotoxicity. Collectively, we demonstrate that canine osteosarcoma primary cultures contain CSCs exhibiting distinctive sensitivity to anticancer agents, as a reliable experimental model to assay drug efficacy. We also provide proof-of-principle of metformin efficacy, alone or in combination, as pharmacological strategy to target osteosarcoma CSCs.
Collapse
Affiliation(s)
- Monica Gatti
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2, 16132 Genova, Italy
| | - Agnese Solari
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2, 16132 Genova, Italy
| | - Alessandra Pattarozzi
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2, 16132 Genova, Italy
| | - Chiara Campanella
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Piazza Borgo Pila 39, 16129 Genova, Italy
| | - Stefano Thellung
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2, 16132 Genova, Italy
| | - Lorella Maniscalco
- Department of Veterinary Sciences, University of Torino, Largo Braccini 2, 10095 Grugliasco (Torino), Italy
| | - Raffaella De Maria
- Department of Veterinary Sciences, University of Torino, Largo Braccini 2, 10095 Grugliasco (Torino), Italy
| | - Roberto Würth
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2, 16132 Genova, Italy
| | - Alessandro Corsaro
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2, 16132 Genova, Italy
| | - Adriana Bajetto
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2, 16132 Genova, Italy
| | - Alessandra Ratto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Piazza Borgo Pila 39, 16129 Genova, Italy
| | - Angelo Ferrari
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Piazza Borgo Pila 39, 16129 Genova, Italy
| | - Antonio Daga
- IRCCS-AOU San Martino-IST, Largo Benzi 10, 16132 Genova, Italy
| | - Federica Barbieri
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2, 16132 Genova, Italy.
| | - Tullio Florio
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2, 16132 Genova, Italy.
| |
Collapse
|
43
|
Association between expression of nuclear receptor co-activator 5 protein and prognosis in postoperative patients with osteosarcoma. Oncol Lett 2017; 15:1888-1892. [PMID: 29434886 DOI: 10.3892/ol.2017.7513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/01/2017] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to investigate the association between the expression of nuclear receptor co-activator 5 protein (NCOA5) and the prognosis of postoperative patients with osteosarcoma. Human osteosarcoma samples were collected from 145 patients and normal bone tissues were collected from 100 individuals as controls. Immunohistochemistry (IHC) and reverse transcription-polymerase chain reaction (RT-PCR) were employed to measure the levels of NCOA5 protein in cases of human osteosarcoma. The results from the RT-PCR analysis demonstrated that the positive rate of NCOA5 mRNA expression in human osteosarcoma was 17.24% (25/145). The positive rate in normal bone tissues was 84.00% (84/100), which was significantly higher compared with that of human osteosarcoma tissues (χ2=33.166; P<0.001). IHC staining indicated that the positive rate of NCOA5 protein in the osteosarcoma samples was 26.21% (38/145). The positive rate in normal bone tissues was 82.00% (82/100), which was significantly increased compared with that of human osteosarcoma tissues (χ2=28.166; P<0.001). NCOA5 mRNA and protein expression levels were consistent in human osteosarcoma tissues, and were lower than in control tissues. The expression of NCOA5 was low in human osteosarcoma tissues, while it was high in normal bone tissues. These low NCOA5 expression levels were associated with postoperative survival of human osteosarcoma.
Collapse
|
44
|
Xie D, Zheng GZ, Xie P, Zhang QH, Lin FX, Chang B, Hu QX, Du SX, Li XD. Antitumor activity of resveratrol against human osteosarcoma cells: a key role of Cx43 and Wnt/β-catenin signaling pathway. Oncotarget 2017; 8:111419-111432. [PMID: 29340064 PMCID: PMC5762332 DOI: 10.18632/oncotarget.22810] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 11/13/2017] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma is a high-grade bone sarcoma with strong invasive ability. However, treatment with traditional chemotherapeutic drugs is limited by low tolerability and side effects. Resveratrol has been reported previously to have selective antitumor effect on various tumor cells while little is known about its effects and underlying mechanism in osteosarcoma biology. In this study, we found that resveratrol inhibits proliferation and glycolysis, induces apoptosis and reduces the invasiveness of U2-OS cells in vitro. After treatment with resveratrol, the expression of related Wnt/β-catenin signaling pathway target genes, such as β-catenin, c-myc, cyclin D1, MMP-2 and MMP-9, was downregulated and an increased E-cadherin level was observed as well. Additionally, the dual luciferase assay results also indicated that resveratrol suppressed the activity of Wnt/β-catenin signaling pathway. Interestingly, we noticed that the expression of connexin 43 (Cx43) increased with the prolongation of resveratrol treatment time. To further investigate the relationship between Cx43 and the Wnt/β-catenin signaling pathway in osteosarcoma, we used lentiviral-mediated shRNA to knockdown the expression of Cx43. Knockdown of Cx43 activated the Wnt/β-catenin signaling pathway, promoted proliferation and invasion, and inhibited apoptosis of U2-OS cells. Taken together, our results demonstrate that the antitumor activity of resveratrol against U2-OS cells in vitro occurs through up-regulating Cx43 and E-cadherin, and suppressing the Wnt/β-catenin signaling pathway. Moreover, Cx43 expression is negatively related to the activity of the Wnt/β-catenin pathway in U2-OS cells.
Collapse
Affiliation(s)
- Da Xie
- Department of Orthopedics, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518000, Guangdong, P. R. China
| | - Gui-Zhou Zheng
- Department of Orthopedics, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518000, Guangdong, P. R. China
| | - Peng Xie
- Department of Orthopedics, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518000, Guangdong, P. R. China
| | - Qi-Hao Zhang
- Department of Orthopedics, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518000, Guangdong, P. R. China
| | - Fei-Xiang Lin
- Department of Orthopedics, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518000, Guangdong, P. R. China
| | - Bo Chang
- Department of Orthopedics, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518000, Guangdong, P. R. China
| | - Qin-Xiao Hu
- Department of Orthopedics, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518000, Guangdong, P. R. China
| | - Shi-Xin Du
- Department of Orthopedics, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518000, Guangdong, P. R. China
| | - Xue-Dong Li
- Department of Orthopedics, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518000, Guangdong, P. R. China
| |
Collapse
|
45
|
Paiva-Oliveira DI, Martins-Neves SR, Abrunhosa AJ, Fontes-Ribeiro C, Gomes CMF. Therapeutic potential of the metabolic modulator Metformin on osteosarcoma cancer stem-like cells. Cancer Chemother Pharmacol 2017; 81:49-63. [PMID: 29086064 DOI: 10.1007/s00280-017-3467-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/21/2017] [Indexed: 12/21/2022]
Abstract
PURPOSE Osteosarcoma is the most common primary bone tumour appearing in children and adolescents. Recent studies demonstrate that osteosarcoma possesses a stem-like cell subset, so-called cancer stem-like cells, refractory to conventional chemotherapeutics and pointed out as responsible for relapses frequently observed in osteosarcoma patients. Here, we explored the therapeutic potential of Metformin on osteosarcoma stem-like cells, alone and as a chemosensitizer of doxorubicin. METHODS Stem-like cells were isolated from human osteosarcoma cell lines, MNNG/HOS and MG-63, using the sphere-forming assay. Metformin cytotoxicity alone and combined with doxorubicin were evaluated using MTT/BrdU assays. Protein levels of AMPK and AKT were evaluated by Western Blot. Cellular metabolic status was assessed based on [18F]-FDG uptake and lactate production measurements. Sphere-forming efficiency and expression of pluripotency transcription factors analysed by qRT-PCR were tested as readout of Metformin effects on stemness features. RESULTS Metformin induced a concentration-dependent decrease in the metabolic activity and proliferation of sphere-forming cells and improved doxorubicin-induced cytotoxicity. This drug also down-regulated the expression of master regulators of pluripotency (OCT4, SOX2, NANOG), and decreased spheres' self-renewal ability. Metformin effects on mitochondria led to the activation and phosphorylation of the energetic sensor AMPK along with an upregulation of the pro-survival AKT pathway in both cell populations. Furthermore, Metformin-induced mitochondrial stress increased [18F]-FDG uptake and lactate production in parental cells but not in the quiescent stem-like cells, suggesting the inability of the latter to cope with the energy crisis induced by metformin. CONCLUSIONS This preclinical study suggests that Metformin may be a potentially useful therapeutic agent and chemosensitizer of osteosarcoma stem-like cells to doxorubicin.
Collapse
Affiliation(s)
- Daniela I Paiva-Oliveira
- Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta. Comba, Celas, 3000-354, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Sara R Martins-Neves
- Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta. Comba, Celas, 3000-354, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Antero J Abrunhosa
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Carlos Fontes-Ribeiro
- Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta. Comba, Celas, 3000-354, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Célia M F Gomes
- Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta. Comba, Celas, 3000-354, Coimbra, Portugal. .,CNC.IBILI, University of Coimbra, Coimbra, Portugal. .,Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
46
|
SPARCL1 suppresses osteosarcoma metastasis and recruits macrophages by activation of canonical WNT/β-catenin signaling through stabilization of the WNT-receptor complex. Oncogene 2017; 37:1049-1061. [PMID: 29084211 PMCID: PMC5851113 DOI: 10.1038/onc.2017.403] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 08/09/2017] [Accepted: 09/15/2017] [Indexed: 12/25/2022]
Abstract
Metastasis significantly reduces the survival rate of osteosarcoma (OS) patients. Therefore, identification of novel targets remains extremely important to prevent metastasis and treat OS. In this report, we show that SPARCL1 is downregulated in OS by epigenetic methylation of promoter DNA. In vitro and in vivo experiments revealed that SPARCL1 inhibits OS metastasis. We further demonstrated that SPARCL1-activated WNT/β-catenin signaling by physical interaction with various frizzled receptors and lipoprotein receptor-related protein 5/6, leading to WNT–receptor complex stabilization. Activation of WNT/β-catenin signaling contributes to the SPARCL1-mediated inhibitory effects on OS metastasis. Furthermore, we uncovered a paracrine effect of SPARCL1 on macrophage recruitment through activated WNT/β-catenin signaling-mediated secretion of chemokine ligand5 from OS cells. These findings suggest that the targeting of SPARCL1 as a new anti-metastatic strategy for OS patients.
Collapse
|
47
|
lncRNA DANCR promotes tumor progression and cancer stemness features in osteosarcoma by upregulating AXL via miR-33a-5p inhibition. Cancer Lett 2017. [DOI: 10.1016/j.canlet.2017.06.009] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
48
|
Yan GN, Tang XF, Zhang XC, He T, Huang YS, Zhang X, Meng G, Guo DY, Lv YF, Guo QN. TSSC3 represses self-renewal of osteosarcoma stem cells and Nanog expression by inhibiting the Src/Akt pathway. Oncotarget 2017; 8:85628-85641. [PMID: 29156746 PMCID: PMC5689636 DOI: 10.18632/oncotarget.20429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/10/2017] [Indexed: 11/25/2022] Open
Abstract
Osteosarcoma is the most common type of bone cancer, and the second leading cause of cancer-related death in children and young adults. Osteosarcoma stem cells are essential for osteosarcoma initiation, metastasis, chemoresistance and recurrence. In the present study, we report that: 1) higher TSSC3 expression indicates a better prognosis for osteosarcoma patients, and; 2) overexpression of TSSC3 significantly decreases sphere-forming capacity, tumor initiation, stemness-related surface markers and Nanog expression in osteosarcoma cells. We also discovered that higher Nanog expression correlates to a worse prognosis for osteosarcoma patients, and overexpression of Nanog increases the stem-related phenotype in osteosarcoma cells. Knockdown of Nanog suppresses these phenotypes. Inhibition of Nanog expression and self-renewal of osteosarcoma cells by TSSC3 overexpression appears to be mediated through inactivation of the Src/Akt pathway. In the clinical setting, expression of TSSC3, p-Src and Nanog is associated with recurrence, metastasis and surgical intervention. Lower TSSC3 expression, higher Nanog expression or higher p-Src expression indicate a poor prognosis for osteosarcoma patients. Overall, our study demonstrates that TSSC3 inhibits the stem-like phenotype and Nanog expression by inactivation of the Src/Akt pathway; this emphasizes the importance of Nanog in osteosarcoma stem cells.
Collapse
Affiliation(s)
- Guang-Ning Yan
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Xue-Feng Tang
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Xian-Chao Zhang
- Institute of Pathology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Ting He
- Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Yu-Sheng Huang
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Xi Zhang
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Gang Meng
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - De-Yu Guo
- Institute of Pathology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Yang-Fan Lv
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Qiao-Nan Guo
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, PR China
| |
Collapse
|
49
|
Mukherjee S, Dash S, Lohitesh K, Chowdhury R. The dynamic role of autophagy and MAPK signaling in determining cell fate under cisplatin stress in osteosarcoma cells. PLoS One 2017; 12:e0179203. [PMID: 28598976 PMCID: PMC5466322 DOI: 10.1371/journal.pone.0179203] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/25/2017] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma (OS) is an aggressive bone malignancy commonly observed in children and adolescents. Sub-optimal therapy for years has irretrievably compromised the chances of OS patient survival; also, lack of extensive research on this rare disease has hindered therapeutic development. Cisplatin, a common anti-tumor drug, is currently an integral part of treatment regime for OS along with methotrexate and doxorubicin. However, toxicity issues associated with combination module impede OS therapy. Also, despite the proven benefits of cisplatin, acquisition of resistance remains a concern with cisplatin-based therapy. This prompted us to investigate the molecular effects of cisplatin exposure and changes associated with acquired resistance in OS cells. Cisplatin shock was found to activate MAPK signaling and autophagy in OS cells. An activation of JNK and autophagy acted as pro-survival strategy, while ERK1/2 triggered apoptotic signals upon cisplatin stress. A crosstalk between JNK and autophagy was observed. Maximal sensitivity to cisplatin was obtained with simultaneous inhibition of both autophagy and JNK pathway. Cisplatin resistant cells were further developed by repetitive drug exposure followed by clonal selection. The resistant cells showed an altered signaling circuitry upon cisplatin exposure. Our results provide valuable cues to possible molecular alterations that can be considered for development of improved therapeutic strategy against osteosarcoma.
Collapse
Affiliation(s)
- Sudeshna Mukherjee
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India
| | - Subhra Dash
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India
| | - K. Lohitesh
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India
| | - Rajdeep Chowdhury
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India
- * E-mail:
| |
Collapse
|
50
|
Brown HK, Schiavone K, Tazzyman S, Heymann D, Chico TJ. Zebrafish xenograft models of cancer and metastasis for drug discovery. Expert Opin Drug Discov 2017; 12:379-389. [PMID: 28277839 DOI: 10.1080/17460441.2017.1297416] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Patients with metastatic cancer suffer the highest rate of cancer-related death, but existing animal models of metastasis have disadvantages that limit our ability to understand this process. The zebrafish is increasingly used for cancer modelling, particularly xenografting of human cancer cell lines, and drug discovery, and may provide novel scientific and therapeutic insights. However, this model system remains underexploited. Areas covered: The authors discuss the advantages and disadvantages of the zebrafish xenograft model for the study of cancer, metastasis and drug discovery. They summarise previous work investigating the metastatic cascade, such as tumour-induced angiogenesis, intravasation, extravasation, dissemination and homing, invasion at secondary sites, assessing metastatic potential and evaluation of cancer stem cells in zebrafish. Expert opinion: The practical advantages of zebrafish for basic biological study and drug discovery are indisputable. However, their ability to sufficiently reproduce and predict the behaviour of human cancer and metastasis remains unproven. For this to be resolved, novel mechanisms must to be discovered in zebrafish that are subsequently validated in humans, and for therapeutic interventions that modulate cancer favourably in zebrafish to successfully translate to human clinical studies. In the meantime, more work is required to establish the most informative methods in zebrafish.
Collapse
Affiliation(s)
- Hannah K Brown
- a Department of Oncology and Metabolism , The Medical School, University of Sheffield , Sheffield , UK.,b Sarcoma Research Unit, Medical School , INSERM, European Associated Laboratory, University of Sheffield , Sheffield , UK
| | - Kristina Schiavone
- a Department of Oncology and Metabolism , The Medical School, University of Sheffield , Sheffield , UK.,b Sarcoma Research Unit, Medical School , INSERM, European Associated Laboratory, University of Sheffield , Sheffield , UK
| | - Simon Tazzyman
- a Department of Oncology and Metabolism , The Medical School, University of Sheffield , Sheffield , UK.,c The Bateson Centre for Lifecourse Biology , University of Sheffield, Western Bank , Sheffield , UK
| | - Dominique Heymann
- a Department of Oncology and Metabolism , The Medical School, University of Sheffield , Sheffield , UK.,b Sarcoma Research Unit, Medical School , INSERM, European Associated Laboratory, University of Sheffield , Sheffield , UK.,d UMR 957, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours , Nantes University Hospital , Nantes , France.,e Faculty of Medicine , INSERM, UMR 957, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Equipe Ligue 2012, University of Nantes , Nantes , France
| | - Timothy Ja Chico
- c The Bateson Centre for Lifecourse Biology , University of Sheffield, Western Bank , Sheffield , UK.,f Department of Infection, Immunity & Cardiovascular Disease , The Medical School, University of Sheffield , Sheffield , UK
| |
Collapse
|