1
|
Baxter RC. Signaling Pathways of the Insulin-like Growth Factor Binding Proteins. Endocr Rev 2023; 44:753-778. [PMID: 36974712 PMCID: PMC10502586 DOI: 10.1210/endrev/bnad008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/25/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
The 6 high-affinity insulin-like growth factor binding proteins (IGFBPs) are multifunctional proteins that modulate cell signaling through multiple pathways. Their canonical function at the cellular level is to impede access of insulin-like growth factor (IGF)-1 and IGF-2 to their principal receptor IGF1R, but IGFBPs can also inhibit, or sometimes enhance, IGF1R signaling either through their own post-translational modifications, such as phosphorylation or limited proteolysis, or by their interactions with other regulatory proteins. Beyond the regulation of IGF1R activity, IGFBPs have been shown to modulate cell survival, migration, metabolism, and other functions through mechanisms that do not appear to involve the IGF-IGF1R system. This is achieved by interacting directly or functionally with integrins, transforming growth factor β family receptors, and other cell-surface proteins as well as intracellular ligands that are intermediates in a wide range of pathways. Within the nucleus, IGFBPs can regulate the diverse range of functions of class II nuclear hormone receptors and have roles in both cell senescence and DNA damage repair by the nonhomologous end-joining pathway, thus potentially modifying the efficacy of certain cancer therapeutics. They also modulate some immune functions and may have a role in autoimmune conditions such as rheumatoid arthritis. IGFBPs have been proposed as attractive therapeutic targets, but their ubiquity in the circulation and at the cellular level raises many challenges. By understanding the diversity of regulatory pathways with which IGFBPs interact, there may still be therapeutic opportunities based on modulation of IGFBP-dependent signaling.
Collapse
Affiliation(s)
- Robert C Baxter
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital,St Leonards, NSW 2065, Australia
| |
Collapse
|
2
|
Wang Y, Liu Y, Wang C, Kang R, Tang D, Liu J. EP300 promotes ferroptosis via HSPA5 acetylation in pancreatic cancer. Sci Rep 2023; 13:15004. [PMID: 37696842 PMCID: PMC10495396 DOI: 10.1038/s41598-023-42136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023] Open
Abstract
Ferroptosis is a form of regulated cell death characterized by oxidative injury-induced lipid peroxidation. However, the detailed protein post-translational modification regulatory mechanism of ferroptosis remains largely unknown. Here, we report that E1A binding protein P300 (EP300) acetyltransferase promotes ferroptosis in human pancreatic ductal adenocarcinoma (PDAC) cells via the acetylation of heat shock protein family A (Hsp70) member 5 (HSPA5), also known as GRP78 or BIP) on the site of K353. Acetylated HSPA5 loses its ability to inhibit lipid peroxidation and subsequent ferroptotic cell death. Genetic or pharmacological inhibition of EP300-mediated HSPA5 acetylation on K353 increases PDAC cell resistance to ferroptosis. Moreover, histone deacetylase 6 (HDAC6) limits HSPA5 acetylation and subsequent ferroptosis. Collectively, these findings not only identify regulatory pathways for HSPA5 acetylation during ferroptosis, but also highlight promising strategies to increase ferroptosis sensitivity in PDAC cells.
Collapse
Affiliation(s)
- Yuan Wang
- DAMP Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Yang Liu
- DAMP Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Cong Wang
- DAMP Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Jiao Liu
- DAMP Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.
| |
Collapse
|
3
|
Liu X, Jin Y, Wan X, Liang X, Wang K, Liu J, Jiang J, Meng B, Han S, Zhou L, Cai S, Zou F. SALIS transcriptionally represses IGFBP3/Caspase-7-mediated apoptosis by associating with STAT5A to promote hepatocellular carcinoma. Cell Death Dis 2022; 13:642. [PMID: 35871161 PMCID: PMC9308799 DOI: 10.1038/s41419-022-05094-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 01/21/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common subtype of liver cancer and the second most fatal cancer in the world despite the great therapeutic advances in the past two decades, which reminds us of the gap in fully understanding the oncogenic mechanism of HCC. To explore the key factors contributing to the progression of HCC, we identified a LncRNA, termed SALIS (Suppression of Apoptosis by LINC01186 Interacting with STAT5A), functions in promoting the proliferation, colony formation, migration and invasion while suppressing apoptosis in HCC cells. Mechanistic study indicated SALIS physically associates with transcription factor STAT5A and binds to the promoter regions of IGFBP3 and Caspase-7 to transcriptionally repress their expression and further inhibit apoptosis. Our findings identified SALIS as an oncogene to promote HCC by physically binding with STAT5A to inhibit the expression of pro-apoptotic IGFBP3 and Caspase-7, which suggests novel therapeutic targets for HCC treatments.
Collapse
Affiliation(s)
- Xingyuan Liu
- grid.284723.80000 0000 8877 7471Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yi Jin
- grid.284723.80000 0000 8877 7471Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xuan Wan
- grid.284723.80000 0000 8877 7471Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoting Liang
- grid.284723.80000 0000 8877 7471Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ke Wang
- grid.284723.80000 0000 8877 7471Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jieyu Liu
- grid.284723.80000 0000 8877 7471Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiale Jiang
- grid.284723.80000 0000 8877 7471Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Bingyao Meng
- grid.284723.80000 0000 8877 7471Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shuo Han
- grid.284723.80000 0000 8877 7471Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Liang Zhou
- grid.284723.80000 0000 8877 7471Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shaoxi Cai
- grid.284723.80000 0000 8877 7471Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fei Zou
- grid.284723.80000 0000 8877 7471Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Jiang X, Zhang W, Li L, Xie S. Integrated Transcriptomic Analysis Revealed Hub Genes and Pathways Involved in Sorafenib Resistance in Hepatocellular Carcinoma. Pathol Oncol Res 2021; 27:1609985. [PMID: 34737677 PMCID: PMC8560649 DOI: 10.3389/pore.2021.1609985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/28/2021] [Indexed: 12/31/2022]
Abstract
Hepatocellular carcinoma (HCC), a high mortality malignancy, has become a worldwide public health concern. Acquired resistance to the multikinase inhibitor sorafenib challenges its clinical efficacy and the survival benefits it provides to patients with advanced HCC. This study aimed to identify critical genes and pathways associated with sorafenib resistance in HCC using integrated bioinformatics analysis. Differentially expressed genes (DEGs) were identified using four HCC gene expression profiles (including 34 sorafenib-resistant and 29 sorafenib-sensitive samples) based on the robust rank aggregation method and R software. Gene ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) online tool. A protein–protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes (STRING), and small molecules reversing sorafenib resistance were searched for using the connectivity map (CMAP) database. Pearson correlation and survival analyses of hub genes were performed using cBioPortal and Gene Expression Profiling and Interactive Analysis (GEPIA). Finally, the expression levels of hub genes in sorafenib-resistant HCC cells were verified using quantitative polymerase chain reaction (q-PCR). A total of 165 integrated DEGs (66 upregulated and 99 downregulated in sorafenib resistant samples compared sorafenib sensitive ones) primarily enriched in negative regulation of endopeptidase activity, extracellular exosome, and protease binding were identified. Some pathways were commonly shared between the integrated DEGs. Seven promising therapeutic agents and 13 hub genes were identified. These findings provide a strategy and theoretical basis for overcoming sorafenib resistance in HCC patients.
Collapse
Affiliation(s)
- Xili Jiang
- Department of Radiology, The Second People's Hospital of Hunan Province/Brain Hospital of Hunan Province, Changsha, China
| | - Wei Zhang
- Department of Radiology, The Second People's Hospital of Hunan Province/Brain Hospital of Hunan Province, Changsha, China
| | - Lifeng Li
- Department of Radiology, Changsha Central Hospital, Changsha, China
| | - Shucai Xie
- Department of Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
Plangger A, Haslik W, Rath B, Neumayer C, Hamilton G. Interactions of BRCA1-mutated Breast Cancer Cell Lines with Adipose-derived Stromal Cells (ADSCs). J Mammary Gland Biol Neoplasia 2021; 26:235-245. [PMID: 34228231 PMCID: PMC8566642 DOI: 10.1007/s10911-021-09493-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/17/2021] [Indexed: 12/04/2022] Open
Abstract
Lipofilling may constitute a technique to assist reconstruction of breasts following prophylactic mastectomy for patients with mutated BRCA1 or BRCA2 genes. However, to date it is not clear whether adipose-derived stromal cells (ADSCs) increase the risk of tumor initiation and progression in this situation. Therefore, the interactions of BRCA1 mutated breast cancer cell lines with normal ADSCs were investigated in the present study. Characteristics of MDA-MB-436 (BRCA1 c.5277 + 1G > A) and HCC1937 (BRCA1 p.Gln1756.Profs*74) were compared to MDA-MB-231 and T47D BRCA1/2 wild-type breast cancer cell lines. ADSCs were cultivated from lipoaspirates of a panel of BRCA1/2- wildtype patients. Interactions of conditioned medium (CM) of these cells with the breast cancer lines were studied using proliferation and migration assays as well as adipokine expression western blot arrays. CM of ADSCs exhibit a dose-dependent stimulation of the proliferation of the breast cancer cell lines. However, of the ADSC preparations tested, only 1 out of 18 samples showed a significant higher stimulation of BRCA1-mutated MDA-MB-436 versus wildtype MDA-MB-231 cells, and all CM revealed lower stimulatory activity for BRCA1-mutated HCC1937 versus wildtype T47D cells. Additionally, migration of breast cancer cells in response to CM of ADSCs proved to be equivalent or slower for BRCA1/2 mutated versus nonmutated cancer cells and, with exception of angiopoietin-like 2, induced expression of adipokines showed no major difference. Effects of media conditioned by normal ADSCs showed largely comparable effects on BRCA1-mutated and wildtype breast cancer cell lines thus advocating lipofilling, preferentially employing allogeneic non-mutated ADSCs.
Collapse
Affiliation(s)
- Adelina Plangger
- Department of Vascular Surgery, Medical University of Vienna, Vienna, Austria
| | - Werner Haslik
- Department for General Gynecology and Gynecologic Oncology, Medical University of Vienna, Vienna, Austria
| | - Barbara Rath
- Department of Vascular Surgery, Medical University of Vienna, Vienna, Austria
| | - Christoph Neumayer
- Department of Vascular Surgery, Medical University of Vienna, Vienna, Austria
| | - Gerhard Hamilton
- Department of Vascular Surgery, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
The IGF-1 Signaling Pathway in Viral Infections. Viruses 2021; 13:v13081488. [PMID: 34452353 PMCID: PMC8402757 DOI: 10.3390/v13081488] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/12/2021] [Accepted: 07/21/2021] [Indexed: 01/29/2023] Open
Abstract
Insulin-like growth factor-1 (IGF-1) and the IGF-1 receptor (IGF-1R) belong to the insulin-like growth factor family, and IGF-1 activates intracellular signaling pathways by binding specifically to IGF-1R. The interaction between IGF-1 and IGF-1R transmits a signal through a number of intracellular substrates, including the insulin receptor substrate (IRS) and the Src homology collagen (Shc) proteins, which activate two major intracellular signaling pathways: the phosphatidylinositol 3-kinase (PI3K)/AKT and mitogen-activated protein kinase (MAPK) pathways, specifically the extracellular signal-regulated kinase (ERK) pathways. The PI3K/AKT kinase pathway regulates a variety of cellular processes, including cell proliferation and apoptosis. IGF1/IGF-1R signaling also promotes cell differentiation and proliferation via the Ras/MAPK pathway. Moreover, upon IGF-1R activation of the IRS and Shc adaptor proteins, Shc stimulates Raf through the GTPase Ras to activate the MAPKs ERK1 and ERK2, phosphorylate and several other proteins, and to stimulate cell proliferation. The IGF-1 signaling pathway is required for certain viral effects in oncogenic progression and may be induced as an effect of viral infection. The mechanisms of IGF signaling in animal viral infections need to be clarified, mainly because they are involved in multifactorial signaling pathways. The aim of this review is to summarize the current data obtained from virological studies and to increase our understanding of the complex role of the IGF-1 signaling axis in animal virus infections.
Collapse
|
7
|
Insulin-Like Growth Factor Binding Protein-3 Binds to Histone 3. Int J Mol Sci 2021; 22:ijms22010407. [PMID: 33401705 PMCID: PMC7796407 DOI: 10.3390/ijms22010407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
Insulin-like growth factor (IGF) binding protein-3 (IGFBP-3) is an essential protein that regulates cellular processes such as cell proliferation, apoptosis, and differentiation. It is known to bind with several proteins to carry out various cellular functions. In this study, we report for the first time that IGFBP-3 is a histone 3 (H3) binding protein. Sub-cellular fractionation was performed to separate into cytosolic fraction, nucleic acid binding protein fraction and insoluble nuclear fraction. Using ligand blot analysis, we identified a ~15 kDa protein that can interact with IGFBP-3 in the insoluble nuclear fraction. The 15 kDa protein was confirmed as histone 3 by far-Western blot analysis and co-immunoprecipitation experiments. A dot-blot experiment further validated the binding of IGFBP-3 with H3. The intensity of IGFBP-3 on dot-blot showed a proportional increase with H3 concentrations between 2.33 pmol–37.42 pmol. Our results support the presence of protein-protein interaction between IGFBP-3 and H3. The physical binding between IGFBP-3 and H3 could indicate its yet another cellular role in regulating the chromatin remodeling for gene transcription.
Collapse
|
8
|
Zielinska HA, Daly CS, Alghamdi A, Bahl A, Sohail M, White P, Dean SR, Holly JMP, Perks CM. Interaction between GRP78 and IGFBP-3 Affects Tumourigenesis and Prognosis in Breast Cancer Patients. Cancers (Basel) 2020; 12:E3821. [PMID: 33352865 PMCID: PMC7767108 DOI: 10.3390/cancers12123821] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/26/2020] [Accepted: 12/15/2020] [Indexed: 01/09/2023] Open
Abstract
Insulin-like growth factor binding protein 3 (IGFBP-3) plays a key role in breast cancer progression and was recently shown to bind to the chaperone protein glucose-regulated protein 78 (GRP78); however, the clinical significance of this association remains poorly investigated. Here we report a direct correlation between the expression of GRP78 and IGFBP-3 in breast cancer cell lines and tumour sections. Kaplan-Meier survival plots revealed that patients with low GRP78 expression that are positive for IGFBP-3 had poorer survival rates than those with low IGFBP-3 levels, and we observed a similar trend in the publicly available METABRIC gene expression database. With breast cancer cells, in vitro IGFBP-3 enhanced induced apoptosis, however when GRP78 expression was silenced the actions of IGFBP-3 were switched from increasing to inhibiting ceramide (C2)-induced cell death and promoted cell invasion. Using immunofluorescence and cell surface biotinylation, we showed that knock-down of GRP78 negated the entry of IGFBP-3 into the cells. Together, our clinical and experimental results suggest that loss of GRP78 reduces IGFBP-3 entry into cells switching its actions to promote tumorigenesis and predicts a poor prognosis in breast cancer patients.
Collapse
Affiliation(s)
- Hanna A. Zielinska
- IGFs & Metabolic Endocrinology Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Southmead Hospital, Bristol BS10 5NB, UK; (H.A.Z.); (A.A.); (J.M.P.H.)
| | - Carl S. Daly
- Faculty of Health Sciences, University of the West England, Bristol BS16 1QY, UK; (C.S.D.); (P.W.); (S.R.D.)
| | - Ahmad Alghamdi
- IGFs & Metabolic Endocrinology Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Southmead Hospital, Bristol BS10 5NB, UK; (H.A.Z.); (A.A.); (J.M.P.H.)
- Faculty of Applied medical Sciences, Taif University, Taif, Saudi Arabia
| | - Amit Bahl
- Bristol Haematology and Oncology Centre, Department of Clinical Oncology, University Hospitals Bristol, Bristol BS2 8ED, UK;
| | - Muhammed Sohail
- Faculty of Life Sciences, School of Cellular and Molecular Medicine, Bristol University, Bristol BS8 1TD, UK;
| | - Paul White
- Faculty of Health Sciences, University of the West England, Bristol BS16 1QY, UK; (C.S.D.); (P.W.); (S.R.D.)
| | - Sarah R. Dean
- Faculty of Health Sciences, University of the West England, Bristol BS16 1QY, UK; (C.S.D.); (P.W.); (S.R.D.)
| | - Jeff M. P. Holly
- IGFs & Metabolic Endocrinology Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Southmead Hospital, Bristol BS10 5NB, UK; (H.A.Z.); (A.A.); (J.M.P.H.)
| | - Claire M. Perks
- IGFs & Metabolic Endocrinology Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Southmead Hospital, Bristol BS10 5NB, UK; (H.A.Z.); (A.A.); (J.M.P.H.)
| |
Collapse
|
9
|
Cai Q, Dozmorov M, Oh Y. IGFBP-3/IGFBP-3 Receptor System as an Anti-Tumor and Anti-Metastatic Signaling in Cancer. Cells 2020; 9:cells9051261. [PMID: 32443727 PMCID: PMC7290346 DOI: 10.3390/cells9051261] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
Insulin-like growth factor binding protein-3 (IGFBP-3) is a p53 tumor suppressor-regulated protein and a major carrier for IGFs in circulation. Among six high-affinity IGFBPs, which are IGFBP-1 through 6, IGFBP-3 is the most extensively investigated IGFBP species with respect to its IGF/IGF-I receptor (IGF-IR)-independent biological actions beyond its endocrine/paracrine/autocrine role in modulating IGF action in cancer. Disruption of IGFBP-3 at transcriptional and post-translational levels has been implicated in the pathophysiology of many different types of cancer including breast, prostate, and lung cancer. Over the past two decades, a wealth of evidence has revealed both tumor suppressing and tumor promoting effects of IGF/IGF-IR-independent actions of IGFBP-3 depending upon cell types, post-translational modifications, and assay methods. However, IGFBP-3′s anti-tumor function has been well accepted due to identification of functional IGFBP-3-interacting proteins, putative receptors, or crosstalk with other signaling cascades. This review mainly focuses on transmembrane protein 219 (TMEM219), which represents a novel IGFBP-3 receptor mediating antitumor effect of IGFBP-3. Furthermore, this review delineates the potential underlying mechanisms involved and the subsequent biological significance, emphasizing the clinical significance of the IGFBP-3/TMEM219 axis in assessing both the diagnosis and the prognosis of cancer as well as the therapeutic potential of TMEM219 agonists for cancer treatment.
Collapse
Affiliation(s)
- Qing Cai
- Department of Pathology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA; (Q.C.); (M.D.)
| | - Mikhail Dozmorov
- Department of Pathology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA; (Q.C.); (M.D.)
- Department of Biostatistics, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Youngman Oh
- Department of Pathology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA; (Q.C.); (M.D.)
- Correspondence: ; Tel.: +1-804-827-1324
| |
Collapse
|
10
|
Varma Shrivastav S, Bhardwaj A, Pathak KA, Shrivastav A. Insulin-Like Growth Factor Binding Protein-3 (IGFBP-3): Unraveling the Role in Mediating IGF-Independent Effects Within the Cell. Front Cell Dev Biol 2020; 8:286. [PMID: 32478064 PMCID: PMC7232603 DOI: 10.3389/fcell.2020.00286] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 04/02/2020] [Indexed: 12/22/2022] Open
Abstract
Insulin-like growth factor (IGF) binding protein-3 (IGFBP-3), one of the six members of the IGFBP family, is a key protein in the IGF pathway. IGFBP-3 can function in an IGF-dependent as well as in an IGF-independent manner. The IGF-dependent roles of IGFBP-3 include its endocrine role in the delivery of IGFs from the site of synthesis to the target cells that possess IGF receptors and the activation of associated downstream signaling. IGF-independent role of IGFBP-3 include its interactions with the proteins of the extracellular matrix and the proteins of the plasma membrane, its translocation through the plasma membrane into the cytoplasm and into the nucleus. The C-terminal domain of IGFBP-3 has the ability to undergo cell penetration therefore, generating a short 8-22-mer C-terminal domain peptides that can be conjugated to drugs or genes for effective intracellular delivery. This has opened doors for biotechnological applications of the molecule in molecular medicine. The aim of this this review is to summarize the complex roles of IGFBP-3 within the cell, including its mechanisms of cellular uptake and its translocation into the nucleus, various molecules with which it is capable of interacting, and its ability to regulate IGF-independent cell growth, survival and apoptosis. This would pave way into understanding the modus operandi of IGFBP-3 in regulating IGF-independent processes and its pleiotropic ability to bind with potential partners thus regulating several cellular functions implicated in metabolic diseases, including cancer.
Collapse
Affiliation(s)
- Shailly Varma Shrivastav
- VastCon Inc., Winnipeg, MB, Canada.,Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | - Apurva Bhardwaj
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | - Kumar Alok Pathak
- Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada.,Department of Surgery, University of Manitoba, Winnipeg, MB, Canada
| | - Anuraag Shrivastav
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada.,Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
11
|
Chai Z, Gong J, Zheng P, Zheng J. Inhibition of miR-19a-3p decreases cerebral ischemia/reperfusion injury by targeting IGFBP3 in vivo and in vitro. Biol Res 2020; 53:17. [PMID: 32312329 PMCID: PMC7171820 DOI: 10.1186/s40659-020-00280-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 03/19/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Inflammation and apoptosis are considered to be two main factors affecting ischemic brain injury and the subsequent reperfusion damage. MiR-19a-3p has been reported to be a possible novel biomarker in ischemic stroke. However, the function and molecular mechanisms of miR-19a-3p remain unclear in cerebral ischemia/reperfusion (I/R) injury. METHODS The I/R injury model was established in vivo by middle cerebral artery occlusion/reperfusion (MCAO/R) in rats and in vitro by oxygen-glucose deprivation and reperfusion (OGD/R) induced SH-SY5Y cells. The expression of miR-19a-3p was determined by reverse transcription quantitative PCR. The infarction volumes, Neurological deficit scores, apoptosis, cell viability, pro-inflammatory cytokines and apoptosis were evaluated using Longa score, Bederson score, TTC, TUNEL staining, CCK-8, ELISA, flow cytometry assays. Luciferase reporter assay was utilized to validate the target gene of miR-19a-3p. RESULTS We first found miR-19a-3p was significantly up-regulated in rat I/R brain tissues and OGD/R induced SH-SY5Y cells. Using the in vivo and in vitro I/R injury model, we further demonstrated that miR-19a-3p inhibitor exerted protective role against injury to cerebral I/R, which was reflected by reduced infarct volume, improved neurological outcomes, increased cell viability, inhibited inflammation and apoptosis. Mechanistically, miR-19a-3p binds to 3'UTR region of IGFBP3 mRNA. Inhibition of miR-19a-3p caused the increased expression of IGFBP3 in OGD/R induced SH-SY5Y cells. Furthermore, we showed that IGFBP3 overexpression imitated, while knockdown reversed the protective effects of miR-19a-3p inhibitor against OGD/R-induced injury. CONCLUSIONS In summary, our findings showed miR-19a-3p regulated I/R-induced inflammation and apoptosis through targeting IGFBP3, which might provide a potential therapeutic target for cerebral I/R injury.
Collapse
Affiliation(s)
- Zhaohui Chai
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Jiangbiao Gong
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Peidong Zheng
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Jiesheng Zheng
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China.
| |
Collapse
|
12
|
Yang L, Li J, Fu S, Ren P, Tang J, Wang N, Shi X, Wu J, Lin S. Up-regulation of Insulin-like Growth Factor Binding Protein-3 Is Associated with Brain Metastasis in Lung Adenocarcinoma. Mol Cells 2019; 42:321-332. [PMID: 31085806 PMCID: PMC6530643 DOI: 10.14348/molcells.2019.2441] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/16/2018] [Accepted: 02/12/2019] [Indexed: 01/23/2023] Open
Abstract
The brain is the most common metastatic site of lung adenocarcinoma; however, the mechanism of this selective metastasis remains unclear. We aimed to verify the hypothesis that exposure of tumor cells to the brain microenvironment leads to changes in their gene expression, which promotes their oriented transfer to the brain. A549 and H1299 lung adenocarcinoma cells were exposed to human astrocyte-conditioned medium to simulate the brain microenvironment. Microarray analysis was used to identify differentially expressed genes, which were confirmed by quantitative real-time PCR and western blotting. Knockdown experiments using microRNAs and the overexpression of genes by cell transfection were performed in addition to migration and invasion assays. In vitro findings were confirmed in clinical specimens using immunohistochemistry. We found and confirmed a significant increase in insulin-like growth factor binding protein-3 (IGFBP3) levels. Our results also showed that the up-regulation of IGFBP3 promoted A549 cell epithelial-mesenchymal transition, migration, and invasion, while the knockdown of IGFBP3 resulted in decreased cell motility. We also found that Transforming growth factor-β (TGF-β)/Mothers against decapentaplegic homolog 4 (Smad4)-induced epithelial-mesenchymal transition was likely IGFBP3-dependent in A549 cells. Finally, expression of IGFBP3 was significantly elevated in pulmonary cancer tissues and intracranial metastatic tissues. Our data indicate that up-regulation of IGFBP3 might mediate brain metastasis in lung adenocarcinoma, which makes it a potential therapeutic target.
Collapse
Affiliation(s)
- Lishi Yang
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000,
China
| | - Junyang Li
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000,
China
| | - Shaozhi Fu
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000,
China
| | - Peirong Ren
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000,
China
| | - Juan Tang
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000,
China
| | - Na Wang
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000,
China
| | - Xiangxiang Shi
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000,
China
| | - Jingbo Wu
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000,
China
| | - Sheng Lin
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000,
China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou 646000,
China
| |
Collapse
|
13
|
Christopoulos PF, Corthay A, Koutsilieris M. Aiming for the Insulin-like Growth Factor-1 system in breast cancer therapeutics. Cancer Treat Rev 2017; 63:79-95. [PMID: 29253837 DOI: 10.1016/j.ctrv.2017.11.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 12/23/2022]
Abstract
Despite the major discoveries occurred in oncology the recent years, breast malignancies remain one of the most common causes of cancer-related deaths for women in developed countries. Development of HER2-targeting drugs has been considered a breakthrough in anti-cancer approaches and alluded to the potential of targeting growth factors in breast cancer (BrCa) therapeutics. More than twenty-five years have passed since the Insulin-like Growth Factor-1 (IGF-1) system was initially recognized as a potential target candidate in BrCa therapy. To date, a growing body of studies have implicated the IGF-1 signaling with the BrCa biology. Despite the promising experimental evidence, the impression from clinical trials is rather disappointing. Several reasons may account for this and the last word regarding the efficacy of this system as a target candidate in BrCa therapeutics is probably not written yet. Herein, we provide the theoretical basis, as well as, a comprehensive overview of the current literature, regarding the different strategies targeting the various components of the IGF-1/IGF-1R axis in several pathophysiological aspects of BrCa, including the tumor micro-environment and cancer stemness. In addition, we review the rationale for targeting the IGF-1 system in the different BrCa molecular subtypes and in treatment resistant breast tumors with a focus on both the molecular mechanisms and on the clinical perspectives of such approaches in specific population subgroups. We also discuss the future challenges, as well as, the development of novel molecules and strategies targeting the system and suggest potential improvements in the field.
Collapse
Affiliation(s)
- Panagiotis F Christopoulos
- Department of Experimental Physiology, Medical School, National & Kapodistrian University of Athens, Athens, Greece; Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway; Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway.
| | - Alexandre Corthay
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Michael Koutsilieris
- Department of Experimental Physiology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
14
|
Luo J, Xia Y, Luo J, Li J, Zhang C, Zhang H, Ma T, Yang L, Kong L. GRP78 inhibition enhances ATF4-induced cell death by the deubiquitination and stabilization of CHOP in human osteosarcoma. Cancer Lett 2017; 410:112-123. [PMID: 28947141 DOI: 10.1016/j.canlet.2017.09.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/05/2017] [Accepted: 09/16/2017] [Indexed: 12/20/2022]
Abstract
New targeted therapies are urgently needed to improve the survival of patients with refractory osteosarcoma (OS). In this study, we show that bortezomib (BTZ), not for OS treatment in the clinic, induces endoplasmic reticulum (ER) stress in U-2 OS cells. Loss of GRP78 sensitizes OS to BTZ with concomitant upregulation of ATF4 and CHOP, which indicates excessive protein synthesis. The relevance of these findings is confirmed in vivo as shown by GRP78 knockdown that delays the growth of U-2 OS xenografts in the presence of BTZ. Here, we demonstrate that MG7, a natural polyyne, can trigger apoptosis. Of note, the apoptotic response to MG7 is dependent on ATF4 but not on the upstream PERK signaling pathway. Interestingly, MG7-induced ATF4 expression does not result in an increase in the levels of CHOP. We demonstrate for the first time that GRP78 physically interacts with the N-terminal domain of CHOP to accelerate its ubiquitination in a p300-dependent manner, which in turn desensitize the tumors to ER stress. Overall, inhibiting GRP78 to strengthen the molecular mechanism of ATF4 via stabilizing CHOP protein may provide a potential vulnerability in OS.
Collapse
Affiliation(s)
- Jie Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nan Jing 210009, China
| | - Yuanzheng Xia
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nan Jing 210009, China
| | - Jun Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nan Jing 210009, China
| | - Junhe Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nan Jing 210009, China
| | - Chao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nan Jing 210009, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nan Jing 210009, China
| | - Ting Ma
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nan Jing 210009, China
| | - Lei Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nan Jing 210009, China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nan Jing 210009, China.
| |
Collapse
|
15
|
Wang YA, Sun Y, Palmer J, Solomides C, Huang LC, Shyr Y, Dicker AP, Lu B. IGFBP3 Modulates Lung Tumorigenesis and Cell Growth through IGF1 Signaling. Mol Cancer Res 2017; 15:896-904. [PMID: 28330997 DOI: 10.1158/1541-7786.mcr-16-0390] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/03/2016] [Accepted: 03/16/2017] [Indexed: 11/16/2022]
Abstract
Insulin-like growth factor binding protein 3 (IGFBP3) modulates cell growth through IGF-dependent and -independent mechanisms. Reports suggest that the serum levels of IGFBP3 are associated with various cancers and that IGFBP3 expression is significantly decreased in cisplatin (CDDP)-resistant lung cancer cells. Based on these findings, we investigated whether Igfbp3 deficiency accelerates mouse lung tumorigenesis and if expression of IGFBP3 enhances CDDP response by focusing on the IGF1 signaling cascade. To this end, an Igfbp3-null mouse model was generated in combination with KrasG12D to compare the tumor burden. Then, IGF-dependent signaling was assessed after expressing wild-type or a mutant IGFBP3 without IGF binding capacity in non-small cell lung cancer (NSCLC) cells. Finally, the treatment response to CDDP chemotherapy was evaluated under conditions of IGFBP3 overexpression. Igfbp3-null mice had increased lung tumor burden (>2-fold) and only half of human lung cancer cells survived after expression of IGFBP3, which corresponded to increased cleaved caspase-3 (10-fold), inactivation of IGF1 and MAPK signaling. In addition, overexpression of IGFBP3 increased susceptibility to CDDP treatment in lung cancer cells. These results, for the first time, demonstrate that IGFBP3 mediates lung cancer progression in a KrasG12D mouse model. Furthermore, overexpression of IGFBP3 induced apoptosis and enhanced cisplatin response in vitro and confirmed that the suppression is in part by blocking IGF1 signaling.Implications: These findings reveal that IGFBP3 is effective in lung cancer cells with high IGF1 signaling activity and imply that relevant biomarkers are essential in selecting lung cancer patients for IGF1-targeted therapy. Mol Cancer Res; 15(7); 896-904. ©2017 AACR.
Collapse
Affiliation(s)
- Yong Antican Wang
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Yunguang Sun
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Joshua Palmer
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | - Li-Ching Huang
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yu Shyr
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Adam P Dicker
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Bo Lu
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
16
|
Lodhia KA, Tienchaiananda P, Haluska P. Understanding the Key to Targeting the IGF Axis in Cancer: A Biomarker Assessment. Front Oncol 2015. [PMID: 26217584 PMCID: PMC4495315 DOI: 10.3389/fonc.2015.00142] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Type 1 insulin like growth factor receptor (IGF-1R) targeted therapies showed compelling pre-clinical evidence; however, to date, this has failed to translate into patient benefit in Phase 2/3 trials in unselected patients. This was further complicated by the toxicity, including hyperglycemia, which largely results from the overlap between IGF and insulin signaling systems and associated feedback mechanisms. This has halted the clinical development of inhibitors targeting IGF signaling, which has limited the availability of biopsy samples for correlative studies to understand biomarkers of response. Indeed, a major factor contributing to lack of clinical benefit of IGF targeting agents has been difficulty in identifying patients with tumors driven by IGF signaling due to the lack of predictive biomarkers. In this review, we will describe the IGF system, rationale for targeting IGF signaling, the potential liabilities of targeting strategies, and potential biomarkers that may improve success.
Collapse
Affiliation(s)
| | | | - Paul Haluska
- Department of Oncology, Mayo Clinic , Rochester, MN , USA
| |
Collapse
|
17
|
Denduluri SK, Idowu O, Wang Z, Liao Z, Yan Z, Mohammed MK, Ye J, Wei Q, Wang J, Zhao L, Luu HH. Insulin-like growth factor (IGF) signaling in tumorigenesis and the development of cancer drug resistance. Genes Dis 2015; 2:13-25. [PMID: 25984556 PMCID: PMC4431759 DOI: 10.1016/j.gendis.2014.10.004] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 10/15/2014] [Indexed: 12/18/2022] Open
Abstract
One of the greatest obstacles to current cancer treatment efforts is the development of drug resistance by tumors. Despite recent advances in diagnostic practices and surgical interventions, many neoplasms demonstrate poor response to adjuvant or neoadjuvant radiation and chemotherapy. As a result, the prognosis for many patients afflicted with these aggressive cancers remains bleak. The insulin-like growth factor (IGF) signaling axis has been shown to play critical role in the development and progression of various tumors. Many basic science and translational studies have shown that IGF pathway modulators can have promising effects when used to treat various malignancies. There also exists a substantial body of recent evidence implicating IGF signaling dysregulation in the dwindling response of tumors to current standard-of-care therapy. By better understanding both the IGF-dependent and -independent mechanisms by which pathway members can influence drug sensitivity, we can eventually aim to use modulators of IGF signaling to augment the effects of current therapy. This review summarizes and synthesizes numerous recent investigations looking at the role of the IGF pathway in drug resistance. We offer a brief overview of IGF signaling and its general role in neoplasia, and then delve into detail about the many types of human cancer that have been shown to have IGF pathway involvement in resistance and/or sensitization to therapy. Ultimately, our hope is that such a compilation of evidence will compel investigators to carry out much needed studies looking at combination treatment with IGF signaling modulators to overcome current therapy resistance.
Collapse
Affiliation(s)
- Sahitya K. Denduluri
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, 5841 South Maryland Avenue, MC 3079, Chicago, IL 60637, USA
| | - Olumuyiwa Idowu
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, 5841 South Maryland Avenue, MC 3079, Chicago, IL 60637, USA
| | - Zhongliang Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, 5841 South Maryland Avenue, MC 3079, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Zhan Liao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, 5841 South Maryland Avenue, MC 3079, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Xiang-Ya Hospital of Central South University, Changsha 410008, China
| | - Zhengjian Yan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, 5841 South Maryland Avenue, MC 3079, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Maryam K. Mohammed
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, 5841 South Maryland Avenue, MC 3079, Chicago, IL 60637, USA
| | - Jixing Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, 5841 South Maryland Avenue, MC 3079, Chicago, IL 60637, USA
- School of Bioengineering, Chongqing University, Chongqing, China
| | - Qiang Wei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, 5841 South Maryland Avenue, MC 3079, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Jing Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, 5841 South Maryland Avenue, MC 3079, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Lianggong Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, 5841 South Maryland Avenue, MC 3079, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, the Second Affiliated Hospital of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, 5841 South Maryland Avenue, MC 3079, Chicago, IL 60637, USA
| |
Collapse
|
18
|
Johnson MA, Firth SM. IGFBP-3: a cell fate pivot in cancer and disease. Growth Horm IGF Res 2014; 24:164-173. [PMID: 24953254 DOI: 10.1016/j.ghir.2014.04.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 04/21/2014] [Indexed: 12/19/2022]
Abstract
One of the hallmarks in the advancement of cancer cells is an ability to overcome and acquire resistance to adverse conditions. There has been a large amount of cancer research on IGFBP-3 as a pro-apoptotic molecule in vitro. These pro-apoptotic properties, however, do not correlate with several studies linking high IGFBP-3 levels in breast cancer tissue to rapid growth and poor prognosis. Evidence is emerging that IGFBP-3 also exhibits pro-survival and growth-promoting properties in vitro. How IGFBP-3 pivots cell fate to either death or survival, it seems, comes down to a complex interplay between cells' microenvironments and the presence of cellular IGFBP-3 binding partners and growth factor receptors. The cytoprotective actions of IGFBP-3 are not restricted to cancer but are also observed in other disease states, such as retinopathy and brain ischaemia. Here we review the literature on this paradoxical nature of IGFBP-3, its pro-apoptotic and growth-inhibitory actions versus its cytoprotective and growth-potentiating properties, and discuss the implications of targeting IGFBP-3 for treatment of disease.
Collapse
Affiliation(s)
- Michael A Johnson
- Hormones and Cancer, Kolling Institute of Medical Research, The University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Sue M Firth
- Hormones and Cancer, Kolling Institute of Medical Research, The University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| |
Collapse
|
19
|
Jafaar ZMT, Litchfield LM, Ivanova MM, Radde BN, Al-Rayyan N, Klinge CM. β-D-glucan inhibits endocrine-resistant breast cancer cell proliferation and alters gene expression. Int J Oncol 2014; 44:1365-75. [PMID: 24534923 PMCID: PMC3977804 DOI: 10.3892/ijo.2014.2294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 12/30/2013] [Indexed: 12/28/2022] Open
Abstract
Endocrine therapies have been successfully used for breast cancer patients with estrogen receptor α (ERα) positive tumors, but ∼40% of patients relapse due to endocrine resistance. β-glucans are components of plant cell walls that have immunomodulatory and anticancer activity. The objective of this study was to examine the activity of β-D-glucan, purified from barley, in endocrine-sensitive MCF-7 versus endocrine-resistant LCC9 and LY2 breast cancer cells. β-D-glucan dissolved in DMSO but not water inhibited MCF-7 cell proliferation in a concentration-dependent manner as measured by BrdU incorporation with an IC50 of ∼164±12 μg/ml. β-D-glucan dissolved in DMSO inhibited tamoxifen/endocrine-resistant LCC9 and LY2 cell proliferation with IC50 values of 4.6±0.3 and 24.2±1.4 μg/ml, respectively. MCF-10A normal breast epithelial cells showed a higher IC50 ∼464 μg/ml and the proliferation of MDA-MB-231 triple negative breast cancer cells was not inhibited by β-D-glucan. Concentration-dependent increases in the BAX/BCL2 ratio and cell death with β-D-glucan were observed in MCF-7 and LCC9 cells. PCR array analysis revealed changes in gene expression in response to 24-h treatment with 10 or 50 μg/ml β-D-glucan that were different between MCF-7 and LCC9 cells as well as differences in basal gene expression between the two cell lines. Select results were confirmed by quantitative real-time PCR demonstrating that β-D-glucan increased RASSF1 expression in MCF-7 cells and IGFBP3, CTNNB1 and ERβ transcript expression in LCC9 cells. Our data indicate that β-D-glucan regulates breast cancer-relevant gene expression and may be useful for inhibiting endocrine-resistant breast cancer cell proliferation.
Collapse
Affiliation(s)
- Zainab M T Jafaar
- Center of Biotechnology, Agricultural Research Directorate, Ministry of Science and Technology, Baghdad, Iraq
| | - Lacey M Litchfield
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Margarita M Ivanova
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Brandie N Radde
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Numan Al-Rayyan
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| |
Collapse
|
20
|
Parmar JH, Cook KL, Shajahan-Haq AN, Clarke PAG, Tavassoly I, Clarke R, Tyson JJ, Baumann WT. Modelling the effect of GRP78 on anti-oestrogen sensitivity and resistance in breast cancer. Interface Focus 2014; 3:20130012. [PMID: 24511377 DOI: 10.1098/rsfs.2013.0012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Understanding the origins of resistance to anti-oestrogen drugs is of critical importance to many breast cancer patients. Recent experiments show that knockdown of GRP78, a key gene in the unfolded protein response (UPR), can re-sensitize resistant cells to anti-oestrogens, and overexpression of GRP78 in sensitive cells can cause them to become resistant. These results appear to arise from the operation and interaction of three cellular systems: the UPR, autophagy and apoptosis. To determine whether our current mechanistic understanding of these systems is sufficient to explain the experimental results, we built a mathematical model of the three systems and their interactions. We show that the model is capable of reproducing previously published experimental results and some new data gathered specifically for this paper. The model provides us with a tool to better understand the interactions that bring about anti-oestrogen resistance and the effects of GRP78 on both sensitive and resistant breast cancer cells.
Collapse
Affiliation(s)
- Jignesh H Parmar
- Department of Biological Sciences , Virginia Polytechnic Institute and State University , Blacksburg, VA 24061 , USA
| | - Katherine L Cook
- Department of Oncology, Lombardi Comprehensive Cancer Center , Georgetown University Medical Center , Washington, DC 20057 , USA
| | - Ayesha N Shajahan-Haq
- Department of Oncology, Lombardi Comprehensive Cancer Center , Georgetown University Medical Center , Washington, DC 20057 , USA
| | - Pamela A G Clarke
- Department of Oncology, Lombardi Comprehensive Cancer Center , Georgetown University Medical Center , Washington, DC 20057 , USA
| | - Iman Tavassoly
- Department of Biological Sciences , Virginia Polytechnic Institute and State University , Blacksburg, VA 24061 , USA
| | - Robert Clarke
- Department of Oncology, Lombardi Comprehensive Cancer Center , Georgetown University Medical Center , Washington, DC 20057 , USA
| | - John J Tyson
- Department of Biological Sciences , Virginia Polytechnic Institute and State University , Blacksburg, VA 24061 , USA
| | - William T Baumann
- Bradley Department of Electrical and Computer Engineering , Virginia Polytechnic Institute and State University , Blacksburg, VA 24061 , USA
| |
Collapse
|
21
|
Abstract
Breast cancer is the most prevalent cancer in women, with over 200,000 new cases diagnosed each year. Over 70% of breast cancers express the estrogen receptor-α, and drugs targeting these receptors such as tamoxifen or Faslodex(®) often fail to cure these patients. Many estrogen receptor-positive tumors lose drug sensitivity, making endocrine resistance a major clinical problem. Recently, investigation into the molecular mechanisms of endocrine resistance has highlighted a causative role of the unfolded protein response in antiestrogen resistance. In particular, the master regulator of the unfolded protein response, GRP78, was observed to be elevated in endocrine-resistant breast cancer and directly affected antiestrogen therapy responsiveness. GRP78 was found to impact many different cellular processes that may affect breast cancer survival. Recently, various compounds have been reported to affect GRP78 activity and it may be advantageous to combine these drugs with antiestrogens to overcome endocrine therapy resistance.
Collapse
|
22
|
GRP78 expression and regulation in the mouse uterus during embryo implantation. J Mol Histol 2013; 45:259-68. [DOI: 10.1007/s10735-013-9552-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/31/2013] [Indexed: 10/26/2022]
|
23
|
Zhou J, Cai J, Huang Z, Ding H, Wang J, Jia J, Zhao Y, Huang D, Wang Z. Proteomic identification of target proteins following Drosha knockdown in cervical cancer. Oncol Rep 2013; 30:2229-37. [PMID: 23969986 DOI: 10.3892/or.2013.2672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 06/26/2013] [Indexed: 11/06/2022] Open
Abstract
The nuclear microRNA (miRNA) processing enzyme Drosha is upregulated in cervical cancer, and its overexpression is related to an invasive tumour phenotype. However, the mechanisms that underlie this effect remain poorly understood. The aim of this study was to identify the potential targets of Drosha in cervical cancer. Here, we demonstrated that Drosha knockdown (Drosha-KD) inhibited proliferation, colony formation and the migration of cervical cancer cells in vitro. A global upregulation of proteins in Drosha-KD cells was revealed by two-dimensional gel electrophoresis (2-DE). Eighteen proteins were identified by liquid chromatography and tandem mass spectrometry technology (LC-MS/MS) from 21 selected protein spots that exhibited significant alterations in Drosha-KD cells. The majority of the identified proteins have been previously associated with tumour formation. The downregulation of tubulin 5β in Drosha-KD cervical cancer cells was further confirmed by western blotting. Our results suggest that Drosha affects the biological activity of cervical cancer cells by regulating the expression of numerous tumour-associated proteins.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Obstetrics and Gynecology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Baxter RC. Insulin-like growth factor binding protein-3 (IGFBP-3): Novel ligands mediate unexpected functions. J Cell Commun Signal 2013; 7:179-89. [PMID: 23700234 DOI: 10.1007/s12079-013-0203-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In addition to its important role in the regulation of somatic growth by acting as the major circulating transport protein for the insulin-like growth factors (IGFs), IGF binding protein-3 (IGFBP-3) has a variety of intracellular ligands that point to its function within major signaling pathways. The discovery of its interaction with the retinoid X receptor has led to the elucidation of roles in regulating the function of several nuclear hormone receptors including retinoic acid receptor-α, Nur77 and vitamin D receptor. Its interaction with the nuclear hormone receptor peroxisome proliferator-activated receptor-γ is believed to be involved in regulating adipocyte differentiation, which is also modulated by IGFBP-3 through an interaction with TGFβ/Smad signaling. IGFBP-3 can induce apoptosis alone or in conjunction with other agents, and in different systems can activate caspases -8 and -9. At least two unrelated proteins (LRP1 and TMEM219) have been designated as receptors for IGFBP-3, the latter with a demonstrated role in inducing caspase-8-dependent apoptosis. In contrast, IGFBP-3 also has demonstrated roles in survival-related functions, including the repair of DNA double-strand breaks through interaction with the epidermal growth factor receptor and DNA-dependent protein kinase, and the induction of autophagy through interaction with GRP78. The ability of IGFBP-3 to modulate the balance between pro-apoptotic and pro-survival sphingolipids by regulating sphingosine kinase 1 and sphingomyelinases may be integral to its role at the crossroads between cell death and survival in response to a variety of stimuli. The pleiotropic nature of IGFBP-3 activity supports the idea that IGFBP-3 itself, or pathways with which it interacts, should be investigated as targets of therapy for a variety of diseases.
Collapse
Affiliation(s)
- Robert C Baxter
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, Level 8, Kolling Building, St Leonards, NSW, 2065, Australia,
| |
Collapse
|
25
|
A peptide derived from phage display library exhibits anti-tumor activity by targeting GRP78 in gastric cancer multidrug resistance cells. Cancer Lett 2013; 339:247-59. [PMID: 23792224 DOI: 10.1016/j.canlet.2013.06.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 06/09/2013] [Accepted: 06/13/2013] [Indexed: 11/23/2022]
Abstract
Multidrug resistance (MDR) remains a significant challenge to the clinical treatment of gastric cancer (GC). In the present study, using a phage display approach combined with MTT assays, we screened a specific peptide GMBP1 (Gastric cancer MDR cell-specific binding peptide), ETAPLSTMLSPY, which could bind to the surface of GC MDR cells specifically and reverse their MDR phenotypes. Immunocytochemical staining showed that the potential receptor of GMBP1 was located at the membrane and cytoplasm of MDR cells. In vitro and in vivo drug sensitivity assays, FACS analysis and Western blotting confirmed that GMBP1 was able to re-sensitize MDR cells to chemical drugs. Western blotting and proteomic approaches were used to screen the receptor of GMBP1, and GRP78, a MDR-related protein, was identified as a receptor of GMBP1. This result was further supported by immunofluoresence microscopy and Western blot. Additionally, Western blotting demonstrated that pre-incubation of GMBP1 in MDR cells greatly diminished MDR1, Bcl-2 and GRP78 expression but increased the expression of Bax, whereas downregulation of GRP78, function as a receptor and directly target for GMBP1, only inhibited MDR1 expression. Our findings suggest that GMBP1 could re-sensitize GC MDR cells to a variety of chemotherapeutic agents and this role might be mediated partly through down-regulating GRP78 expression and then inhibiting MDR1 expression. These findings indicate that peptide GMBP1 likely recognizes a novel GRP78 receptor and mediates cellular activities associated with the MDR phenotype, which provides new insight into research on the management of MDR in gastric cancer cells.
Collapse
|
26
|
Déry MA, Jodoin J, Ursini-Siegel J, Aleynikova O, Ferrario C, Hassan S, Basik M, LeBlanc AC. Endoplasmic reticulum stress induces PRNP prion protein gene expression in breast cancer. Breast Cancer Res 2013; 15:R22. [PMID: 23497519 PMCID: PMC3672785 DOI: 10.1186/bcr3398] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Accepted: 03/01/2013] [Indexed: 01/11/2023] Open
Abstract
Introduction High prion protein (PrP) levels are associated with breast, colon and gastric cancer resistance to treatment and with a poor prognosis for the patients. However, little is known about the underlying molecular mechanism(s) regulating human PrP gene (PRNP) expression in cancers. Because endoplasmic reticulum (ER) stress is associated with solid tumors, we investigated a possible regulation of PRNP gene expression by ER stress. Methods Published microarray databases of breast cancer tissues and breast carcinoma cell lines were analyzed for PrP mRNA and ER stress marker immunoglobulin heavy chain binding protein (BiP) levels. Breast cancer tissue microarrays (TMA) were immunostained for BiP and PrP. Breast carcinoma MCF-7, MDA-MB-231, HS578T and HCC1500 cells were treated with three different ER stressors - Brefeldin A, Tunicamycin, Thapsigargin - and levels of PrP mRNA or protein assessed by RT-PCR and Western blot analyses. A human PRNP promoter-luciferase reporter was used to assess transcriptional activation by ER stressors. Site-directed mutagenesis identified the ER stress response elements (ERSE). Chromatin immunoprecipitation (ChIP) analyses were done to identify the ER stress-mediated transcriptional regulators. The role of cleaved activating transcription factor 6α (ΔATF6α) and spliced X-box protein-1 (sXBP1) in PRNP gene expression was assessed with over-expression or silencing techniques. The role of PrP protection against ER stress was assessed with PrP siRNA and by using Prnp null cell lines. Results We find that mRNA levels of BiP correlated with PrP transcript levels in breast cancer tissues and breast carcinoma cell lines. PrP mRNA levels were enriched in the basal subtype and were associated with poor prognosis in breast cancer patients. Higher PrP and BiP levels correlated with increasing tumor grade in TMA. ER stress was a positive regulator of PRNP gene transcription in MCF-7 cells and luciferase reporter assays identified one ER stress response element (ERSE) conserved among primates and rodents and three primate-specific ERSEs that regulated PRNP gene expression. Among the various transactivators of the ER stress-regulated unfolded protein response (UPR), ATF6α and XBP1 transactivated PRNP gene expression, but the ability of these varied in different cell types. Functionally, PrP delayed ER stress-induced cell death. Conclusions These results establish PRNP as a novel ER stress-regulated gene that could increase survival in breast cancers.
Collapse
|