1
|
Silvestrini AVP, Morais MF, Debiasi BW, Praça FG, Bentley MVLB. Nanotechnology strategies to address challenges in topical and cellular delivery of siRNAs in skin disease therapy. Adv Drug Deliv Rev 2024; 207:115198. [PMID: 38341146 DOI: 10.1016/j.addr.2024.115198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/14/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Gene therapy is one of the most advanced therapies in current medicine. In particular, interference RNA-based therapy by small interfering RNA (siRNA) has gained attention in recent years as it is a highly versatile, selective and specific therapy. In dermatological conditions, topical delivery of siRNA offers numerous therapeutic advantages, mainly by inhibiting the expression of target transcripts directly in the skin. However, crossing the stratum corneum and overcoming intracellular barriers is an inherent challenge. Substantial efforts by scientists have moved towards the use of multimodal and multifunctional nanoparticles to overcome these barriers and achieve greater bioavailability in their site of action, the cytoplasm. In this review the most innovative strategies based on nanoparticle and physical methods are presented, as well as the design principles and the main factors that contribute to the performance of these systems. This review also highlights the synergistic contributions of medicine, nanotechnology, and molecular biology to advancing translational research into siRNA-based therapeutics for skin diseases.
Collapse
Affiliation(s)
- Ana Vitoria Pupo Silvestrini
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Milena Finazzi Morais
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Bryan Wender Debiasi
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Fabíola Garcia Praça
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Maria Vitória Lopes Badra Bentley
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
2
|
Liu H, Lu C, Li P, Jia H, Wang Y, Cheng J, Cheng R, Zhang G. Long non-coding RNA DSCAS regulates cisplatin sensitivity in lung squamous cell carcinoma by competitively binding to miR-646-3p. Heliyon 2023; 9:e16865. [PMID: 37360104 PMCID: PMC10285167 DOI: 10.1016/j.heliyon.2023.e16865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
Background Platinum-based chemotherapy is the main treatment for advanced lung squamous cell carcinoma (LUSC). Eventually, patients with LUSC develop resistance to cisplatin, which affects the prognosis. Hence, the researchers sought to find a lncRNA in LUSC that affects resistance to cisplatin. Methods The lncRNA microarray assay was used to screen the differential expression of lncRNA. qPCR was used to detect lncRNA DSCAS (DSCAS) expression in tissues and cell lines. Lentiviral transfection was used to regulate the expression of DSCAS. CCK-8, colony formation, wound healing, transwell, and flow cytometry assays were used to assess the biological behaviors and sensitivity to cisplatin of LUSC cell. RNA-RNA interaction was tested using the dual luciferase reporting assay, RNA-IP, and RNA-RNA pull-down assay. The downstream pathway of DSCAS was verified by qPCR and Western blotting assays. Results DSCAS was highly expressed in LUSC tissues and cells, and its expression levels were higher in cisplatin-insensitive tissues than in cisplatin-sensitive tissues. Elevation of DSCAS promoted cell proliferation, migration and invasion as well as increased cisplatin resistance of lung cancer cells, while demotion of DSCAS inhibited cell proliferation, migration and invasion as well as decreased the cisplatin resistance of lung cancer cells. DSCAS bound to miR-646-3p to regulate the expression of Bcl-2 and Survivin, which affected the cell apoptosis and sensitivity to cisplatin in LUSC cells. Conclusions DSCAS regulates biological behavior and cisplatin sensitivity in LUSC cells by competitively binding to miR-646-3p to mediate the expression of Survivin and Bcl-2, known as apoptosis-related proteins.
Collapse
Affiliation(s)
- Hongping Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, Henan 450052, PR China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chunya Lu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, Henan 450052, PR China
| | - Ping Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, Henan 450052, PR China
| | - Hongxia Jia
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, Henan 450052, PR China
| | - Yan Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, Henan 450052, PR China
| | - Jiuling Cheng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, Henan 450052, PR China
| | - Ruirui Cheng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, Henan 450052, PR China
| | - Guojun Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, Henan 450052, PR China
| |
Collapse
|
3
|
Markovic M, Mitrovic S, Dagovic A, Jovanovic D, Nikolic T, Ivosevic A, Milosavljevic MZ, Vojinovic R, Petrovic M. Does the Expression of Vascular Endothelial Growth Factor (VEGF) and Bcl-2 Have a Prognostic Significance in Advanced Non-Small Cell Lung Cancer? Healthcare (Basel) 2023; 11:healthcare11030292. [PMID: 36766867 PMCID: PMC9914895 DOI: 10.3390/healthcare11030292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Lung cancer is the most common cause of mortality from malignant tumors worldwide. The five-year survival rate for people with advanced stages varies considerably, from 35.4% to 6.9%. The angiogenic potential of bcl2 is not well known, nor is the way in which tumor cells with excessive bcl2 expression affect VEGF production. Hypothetically, given that tumor growth, progression and metastasis are dependent on angiogenesis, the antiapoptotic effect is expected to form a link between these two molecules. The aim of this study was to evaluate the relationship between bcl-2 and VEGF expression, clinicopathological features and survival in 216 patients with advanced NSCLC. Archival tumor tissues were examined by immunohistochemistry for the expression of bcl-2 and VEGF. Immunoreactivity for bcl-2 was observed in 41.4% of NSCLCs, 51% of squamous and 34.8% of adenocarcinomas-expressed Bcl-2. There was an inverse correlation of mononuclear stromal reaction and bcl-2 expression in adenocarcinoma (p < 0.0005). A total of 71.8% NSCLCs were VEGF positive, 56% of squamous and 82.2% of adenocarcinomas. High level of VEGF expression was significantly associated with histology type (p = 0.043), low histology grade (p = 0.014), clinical stage IV (p = 0.018), smoking history (p = 0.008) and EGFR mutations (p = 0.026). There was an inverse correlation in the expression of Bcl-2 and VEGF in NSCLC patients (p = 0.039, r = -0.163). Two-year survival of patients with unresectable NSCLC was 39.3%, and 50% of patients were alive at 17 months. Our results demonstrated no difference in survival for patients in advanced NSCLC grouped by bcl-2 and VEGF status. Additionally, we observed an inverse correlation in the expression of Bcl-2 and VEGF in NSCLC and mononuclear reaction and bcl-2 expression in adenocarcinomas.
Collapse
Affiliation(s)
- Marina Markovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Medical Oncology, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
| | - Slobodanka Mitrovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pathology, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
- Correspondence: ; Tel.: +381-65-808-0877 or +381-34-505-356
| | - Aleksandar Dagovic
- Department of Medical Oncology, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
- Department of Oncology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Dalibor Jovanovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Tomislav Nikolic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Clinic for Nephrology and Dyalisis, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
| | - Anita Ivosevic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Clinic for Rheumatology and Allergology, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
| | - Milos Z. Milosavljevic
- Department of Pathology, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
| | - Radisa Vojinovic
- Department of Radiology, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
- Department of Radiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marina Petrovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Pulmonology Clinic, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
4
|
Cardile A, Zanrè V, Campagnari R, Asson F, Addo SS, Orlandi E, Menegazzi M. Hyperforin Elicits Cytostatic/Cytotoxic Activity in Human Melanoma Cell Lines, Inhibiting Pro-Survival NF-κB, STAT3, AP1 Transcription Factors and the Expression of Functional Proteins Involved in Mitochondrial and Cytosolic Metabolism. Int J Mol Sci 2023; 24:ijms24021263. [PMID: 36674794 PMCID: PMC9860844 DOI: 10.3390/ijms24021263] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
Hyperforin (HPF), the main component responsible for the antidepressant action of Hypericum perforatum, displays additional beneficial properties including anti-inflammatory, antimicrobic, and antitumor activities. Among its antitumor effects, HPF activity on melanoma is poorly documented. Melanoma, especially BRAF-mutated melanoma, is still a high-mortality tumor type and the currently available therapies do not provide solutions. We investigated HPF's antimelanoma effectiveness in A375, FO1 and SK-Mel-28 human BRAF-mutated cell lines. Cell viability assays documented that all melanoma cells were affected by low HPF concentrations (EC50% 2-4 µM) in a time-dependent manner. A Br-deoxy-uridine incorporation assay attested a significant reduction of cell proliferation accompanied by decreased expression of cyclin D1 and A2, CDK4 and of the Rb protein phosphorylation, as assessed by immunoblots. In addition, the expression of P21/waf1 and the activated form of P53 were increased in A375 and SK-Mel-28 cells. Furthermore, HPF exerts cytotoxic effects. Apoptosis is induced 24 h after HPF administration, documented by an increase of cleaved-PARP1 and a decrease of both Bcl2 and Bcl-xL expression levels. Autophagy is induced, attested by an augmented LC3B expression and augmentation of the activated form of AMPK. Moreover, HPF lowers GPX4 enzyme expression, suggesting ferroptosis induction. HPF has been reported to activate the TRPC6 Ca++ channel and/or Ca++ and Zn++ release from mitochondria stores, increasing cytosolic Ca++ and Zn++ concentrations. Our data highlighted that HPF affects many cell-signaling pathways, including signaling induced by Ca++, such as FRA1, pcJun and pCREB, the expression or activity of which are increased shortly after treatment. However, the blockage of the TRPC6 Ca++ channel or the use of Ca++ and Zn++ chelators do not hinder HPF cytostatic/cytotoxic activity, suggesting that damages induced in melanoma cells may pass through other pathways. Remarkably, 24 h after HPF treatment, the expression of activated forms of the transcription factors NF-κB P65 subunit and STAT3 are significantly lowered. Several cytosolic (PGM2, LDHA and pPKM2) and mitochondrial (UQCRC1, COX4 and ATP5B) enzymes are downregulated by HPF treatment, suggesting a generalized reduction of vital functions in melanoma cells. In line with these results is the recognized ability of HPF to affect mitochondrial membrane potential by acting as a protonophore. Finally, HPF can hinder both melanoma cell migration and colony formation in soft agar. In conclusion, we provide evidence of the pleiotropic antitumor effects induced by HPF in melanoma cells.
Collapse
Affiliation(s)
- Alessia Cardile
- Section of Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Valentina Zanrè
- Section of Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Rachele Campagnari
- Section of Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Francesca Asson
- Section of Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Solomon Saforo Addo
- Section of Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Elisa Orlandi
- Section of Biology and Genetics, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Marta Menegazzi
- Section of Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
- Correspondence:
| |
Collapse
|
5
|
Wagstaff W, Mwamba RN, Grullon K, Armstrong M, Zhao P, Hendren-Santiago B, Qin KH, Li AJ, Hu DA, Youssef A, Reid RR, Luu HH, Shen L, He TC, Haydon RC. Melanoma: Molecular genetics, metastasis, targeted therapies, immunotherapies, and therapeutic resistance. Genes Dis 2022; 9:1608-1623. [PMID: 36157497 PMCID: PMC9485270 DOI: 10.1016/j.gendis.2022.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/29/2022] [Accepted: 04/10/2022] [Indexed: 02/07/2023] Open
Abstract
Cutaneous melanoma is a common cancer and cases have steadily increased since the mid 70s. For some patients, early diagnosis and surgical removal of melanomas is lifesaving, while other patients typically turn to molecular targeted therapies and immunotherapies as treatment options. Easy sampling of melanomas allows the scientific community to identify the most prevalent mutations that initiate melanoma such as the BRAF, NRAS, and TERT genes, some of which can be therapeutically targeted. Though initially effective, many tumors acquire resistance to the targeted therapies demonstrating the need to investigate compensatory pathways. Immunotherapies represent an alternative to molecular targeted therapies. However, inter-tumoral immune cell populations dictate initial therapeutic response and even tumors that responded to treatment develop resistance in the long term. As the protocol for combination therapies develop, so will our scientific understanding of the many pathways at play in the progression of melanoma. The future direction of the field may be to find a molecule that connects all of the pathways. Meanwhile, noncoding RNAs have been shown to play important roles in melanoma development and progression. Studying noncoding RNAs may help us to understand how resistance - both primary and acquired - develops; ultimately allow us to harness the true potential of current therapies. This review will cover the basic structure of the skin, the mutations and pathways responsible for transforming melanocytes into melanomas, the process by which melanomas metastasize, targeted therapeutics, and the potential that noncoding RNAs have as a prognostic and treatment tool.
Collapse
Affiliation(s)
- William Wagstaff
- The Pritzker School of Medicine, and the Medical Scientist Training Program, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rimel N. Mwamba
- The Pritzker School of Medicine, and the Medical Scientist Training Program, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Karina Grullon
- The Pritzker School of Medicine, and the Medical Scientist Training Program, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Mikhayla Armstrong
- The Pritzker School of Medicine, and the Medical Scientist Training Program, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Bryce Hendren-Santiago
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kevin H. Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Alexander J. Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Daniel A. Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Andrew Youssef
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Le Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
6
|
In silico mutational analysis to identify the role and pathogenicity of BCL-w missense variants. J Genet Eng Biotechnol 2022; 20:120. [PMID: 35951173 PMCID: PMC9372248 DOI: 10.1186/s43141-022-00389-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022]
Abstract
Background Intrinsic pathway of apoptosis is generally mediated by BCL-2 (B cell lymphoma 2) family of proteins; they either induce or inhibit the apoptosis. Overexpression of BCL-2 in cancer cell may lead to delay in apoptosis. BCL-w is the pro-survival member of the BCL-2 family. BCL2L2 gene is present on chromosome number 14 in humans, and it encodes BCL-w protein; BCL-w protein is 193 amino acids residues in length. Interactions among the BCL-2 proteins are very specific. The fate of cell is determined by the ratio of pro-apoptotic proteins to pro-survival proteins. BCL-w promotes cell survival. Studies suggested that overexpression of BCL-w protein is associated with many cancers including DLBCL, BL, colorectal cancers, gastric cancers, and many more. The cause of overexpression is translocations or gene amplification which will subsequently result in cancerous activity. Process For in-silico analysis, BCL2L2 gene was retrieved from UniProt (UniProt ID: Q92843). 54 missense variants have been collected in BCL-w proteins from COSMIC database. Different tools were used to detect the deleteriousness of the variants. Result In silico mutational study reveals how the non-synonymous mutations directly affect the protein’s native structure and its function. Variant mutational analysis with PolyPhen-2 revealed that out of 55 variants, 28 of the missense mutations was probably damaging with a score ranging from 0.9 to 1, while 24 variants were benign with a score ranging from 0 to 0.4. Conclusions This in silico work aims to determine how missense mutations in BCL-w protein affect the activity of the protein, the stability of the protein, and to determine the pathogenicity of the variants. Prediction of pathogenicity of variants will reveal if the missense mutation has a damaging effect on the native structure of protein or not. Prediction of protein stability will reveal whether the mutation has a stabilizing or destabilizing effect on the protein.
Collapse
|
7
|
Golpour M, Alimohammadi M, Sohbatzadeh F, Fattahi S, Bekeschus S, Rafiei A. Cold atmospheric pressure plasma treatment combined with starvation increases autophagy and apoptosis in melanoma in vitro and in vivo. Exp Dermatol 2022; 31:1016-1028. [PMID: 35181947 DOI: 10.1111/exd.14544] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 12/01/2022]
Abstract
Despite advances in therapy, malignant melanoma remains a fatal disease. Among several emerging approaches to combat cancer, cold atmospheric pressure plasma (CAP) has shown promising results as a novel antitumor agent in preclinical models so far. The technology mainly relies on the emittance of various reactive oxygen and nitrogen species (ROS/RNS) that are tumor-toxic at high concentrations. Moreover, malignant melanoma has a metabolic dimension that can be targeted by mild starvation. To this end, we investigated the combined effect of starvation and CAP treatment on melanoma in vitro and in vivo. In vitro, starvation+CAP led to cell morphology changes, decreased metabolic activity and increased lipid peroxidation accompanied by apoptosis and DNA fragmentation in murine B16 melanoma cells but not murine non-malignant L929 fibroblasts. This was paralleled by increased apoptosis (Bax, Bcl-2 and Caspase-3) and autophagy (Lc3 and Atg5)-related gene expression. In vivo, starvation reduced tumor burden. Combination with CAP treatment augmented this effect significantly, albeit there was no difference of combination treatment to CAP exposure alone. Interestingly, there was an overall greater increase of Lc3 and Atg5 in the tumor tissue compared to CAP exposure alone, while starvation-induced autophagy-related gene expression was similar to in the combination group. These data collectively suggest that CAP-derived ROS/RNS treatment and autophagy-induction augment antitumor effects in malignant melanoma in vitro and in vivo.
Collapse
Affiliation(s)
- Monireh Golpour
- Molecular and Cell Biology Research Center, Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Science, Sari, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshad Sohbatzadeh
- Department of Atomic and Molecular Physics, Faculty of Science, University of Mazandaran, Babolsar, Iran
| | | | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Alireza Rafiei
- Department of Immunology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Science, Sari, Iran
| |
Collapse
|
8
|
Li H, Wang Y, Su R, Jia Y, Lai X, Su H, Fan Y, Wang Y, Xing W, Qin J. Dimethyl Fumarate Combined With Vemurafenib Enhances Anti-Melanoma Efficacy via Inhibiting the Hippo/YAP, NRF2-ARE, and AKT/mTOR/ERK Pathways in A375 Melanoma Cells. Front Oncol 2022; 12:794216. [PMID: 35141161 PMCID: PMC8820202 DOI: 10.3389/fonc.2022.794216] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/05/2022] [Indexed: 12/18/2022] Open
Abstract
Melanoma is a deadly form of skin cancer with high rates of resistance to traditional chemotherapy and radiotherapy. BRAF inhibitors (BRAFi) can achieve initial efficacy when used to treat melanoma patients, but drug resistance and relapse are common, emphasizing the need for new therapeutic strategies. Herein, we reported that combination of dimethyl fumarate (DMF) and vemurafenib (Vem) inhibited melanoma cell proliferation more significantly and induced more cell death than single agent did both in vitro and in vivo. DMF/Vem treatment induced cell death through inhibiting the expression and transcriptional activity of NRF2 thereby resulting in more reactive oxygen species (ROS) and via inhibiting the expression of YAP, a key downstream effector of Hippo pathway. DMF/Vem treatment also reduced phosphorylation of AKT, 4EBP1, P70S6K and ERK in AKT/mTOR/ERK signaling pathways. RNA-seq analysis revealed that DMF/Vem treatment specifically suppressed 4561 genes which belong to dozens of cell signaling pathways. These results indicated that DMF/Vem treatment manifested an enhanced antitumor efficacy through inhibiting multiple cell signaling pathways, and thus would be a novel promising therapeutic approach targeted for melanoma.
Collapse
Affiliation(s)
- Hongxia Li
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yaping Wang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Rina Su
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yuchen Jia
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xiong Lai
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Huimin Su
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yaochun Fan
- Inner Mongolia Autonomous Region Center for Disease Control and Prevention, Hohhot, China
| | - Yuewu Wang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Wanjin Xing
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, College of Life Sciences, Inner Mongolia University, Hohhot, China
- *Correspondence: Wanjin Xing, ; Jianzhong Qin,
| | - Jianzhong Qin
- College of Biological Sciences and Biotechnology, Dalian University, Dalian, China
- *Correspondence: Wanjin Xing, ; Jianzhong Qin,
| |
Collapse
|
9
|
Li N, Han S, Ma B, Huang X, Xu L, Cao J, Sun Y. Chemosensitivity enhanced by autophagy inhibition based on a polycationic nano-drug carrier. NANOSCALE ADVANCES 2021; 3:1656-1673. [PMID: 36132550 PMCID: PMC9417626 DOI: 10.1039/d0na00990c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/22/2021] [Indexed: 05/07/2023]
Abstract
In recent years, with the increasing understanding of the role of autophagy in tumorigenesis and development, a steady stream of studies have demonstrated that both excessive induction and inhibition of autophagy could effectively improve the therapeutic efficacy against tumors during cytotoxic or molecularly targeted drug therapy. Among them, autophagy inhibition mediated by nanomaterials has become an appealing notion in nanomedicine therapeutics, since it can be exploited as an effective adjuvant in chemotherapy or as a potential anti-tumor agent. Herein, we constructed a pH-sensitive nanoplatform loaded with epirubicin (EPI) (mPEG-b-P(DPA-b-DMAEMA)/EPI), enabling effective autophagy inhibition in the process of tumor-targeting therapy and further sensitized the tumors to EPI. It was found that polycationic nanomicelles (PEDD-Ms) displayed specific localization in lysosomes after entering tumor cells and caused the impairment of lysosomal degradation capacity through lysosomal alkalization in a dose-dependent manner. HepG2 cells treated with PEDD-Ms displayed a large-scale accumulation of autophagosomes and LC3 (an autophagosome marker protein), and the degradation of the autophagy substrate p62 was also blocked, which indicated that these functional nanomicelles could significantly inhibit autophagy. Meanwhile, the typical morphological characteristics of autophagosomes were directly visualized by TEM. In vivo results also showed that the tumor-targeted and autophagy inhibition-associated nanoplatform therapy could effectively improve the therapeutic efficiency of EPI, which may be partially attributed to the fact that autophagy inhibition could enhance the sensitivity of tumor cells to EPI. Overall, we revealed the effect of polycationic nanomicelles on autophagic processes in tumor cells and explored their possible molecular mechanism, also considering the synergistic outcome between autophagy mediated by nanomaterials and chemotherapeutic drugs to improve the therapeutic effect on tumors.
Collapse
Affiliation(s)
- Na Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University Qingdao China
| | - Shangcong Han
- Department of Pharmaceutics, School of Pharmacy, Qingdao University Qingdao China
| | - Baohua Ma
- Department of Pharmacy, Qingdao Central Hospital Qingdao China
| | - Xia Huang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University Qingdao China
| | - Lisa Xu
- School of Public Health, Qingdao University Qingdao China
| | - Jie Cao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University Qingdao China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University Qingdao China
| |
Collapse
|
10
|
Bcl-xL: A Focus on Melanoma Pathobiology. Int J Mol Sci 2021; 22:ijms22052777. [PMID: 33803452 PMCID: PMC7967179 DOI: 10.3390/ijms22052777] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 11/17/2022] Open
Abstract
Apoptosis is the main mechanism by which multicellular organisms eliminate damaged or unwanted cells. To regulate this process, a balance between pro-survival and pro-apoptotic proteins is necessary in order to avoid impaired apoptosis, which is the cause of several pathologies, including cancer. Among the anti-apoptotic proteins, Bcl-xL exhibits a high conformational flexibility, whose regulation is strictly controlled by alternative splicing and post-transcriptional regulation mediated by transcription factors or microRNAs. It shows relevant functions in different forms of cancer, including melanoma. In melanoma, Bcl-xL contributes to both canonical roles, such as pro-survival, protection from apoptosis and induction of drug resistance, and non-canonical functions, including promotion of cell migration and invasion, and angiogenesis. Growing evidence indicates that Bcl-xL inhibition can be helpful for cancer patients, but at present, effective and safe therapies targeting Bcl-xL are lacking due to toxicity to platelets. In this review, we summarized findings describing the mechanisms of Bcl-xL regulation, and the role that Bcl-xL plays in melanoma pathobiology and response to therapy. From these findings, it emerged that even if Bcl-xL plays a crucial role in melanoma pathobiology, we need further studies aimed at evaluating the involvement of Bcl-xL and other members of the Bcl-2 family in the progression of melanoma and at identifying new non-toxic Bcl-xL inhibitors.
Collapse
|
11
|
BCL2L10 Is Overexpressed in Melanoma Downstream of STAT3 and Promotes Cisplatin and ABT-737 Resistance. Cancers (Basel) 2020; 13:cancers13010078. [PMID: 33396645 PMCID: PMC7795116 DOI: 10.3390/cancers13010078] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary BCL2L10 is the sixth and less studied protein from the group of Bcl-2 anti-apoptotic proteins. These proteins are important therapeutic targets since they convey resistance to anticancer regimens. We describe here for the first time the role of BCL2L10 in melanoma. We found that BCL2L10 is abundantly and frequently expressed both in melanoma cell lines and tumor samples. This increased expression is due to the activity of the transcription factor STAT3 that positively regulate BCL2L10 transcription. We describe that Bcl2l10 is a pro-survival factor in melanoma, being able to protect cells from the cytotoxic effect of different drugs, including cisplatin, dacarbazine, and ABT-737. BCL2L10 also inhibited the cell death upon combination treatments of PLX-4032, a BRAF inhibitor, with ABT-737 or cisplatin. In summary, we determined that BCL2L10 is expressed in melanoma and contributes to cell survival. Hence, targeting BCL2L10 may enhance the clinical efficacy of other therapies for malignant melanoma. Abstract The anti-apoptotic proteins from the Bcl-2 family are important therapeutic targets since they convey resistance to anticancer regimens. Despite the suspected functional redundancy among the six proteins of this subfamily, both basic studies and therapeutic approaches have focused mainly on BCL2, Bcl-xL, and MCL1. The role of BCL2L10, another member of this group, has been poorly studied in cancer and never has been in melanoma. We describe here that BCL2L10 is abundantly and frequently expressed both in melanoma cell lines and tumor samples. We established that BCL2L10 expression is driven by STAT3-mediated transcription, and by using reporter assays, site-directed mutagenesis, and ChIP analysis, we identified the functional STAT3 responsive elements in the BCL2L10 promoter. BCL2L10 is a pro-survival factor in melanoma since its expression reduced the cytotoxic effects of cisplatin, dacarbazine, and ABT-737 (a BCL2, Bcl-xL, and Bcl-w inhibitor). Meanwhile, both genetic and pharmacological inhibition of BCL2L10 sensitized melanoma cells to cisplatin and ABT-737. Finally, BCL2L10 inhibited the cell death upon combination treatments of PLX-4032, a BRAF inhibitor, with ABT-737 or cisplatin. In summary, we determined that BCL2L10 is expressed in melanoma and contributes to cell survival. Hence, targeting BCL2L10 may enhance the clinical efficacy of other therapies for malignant melanoma.
Collapse
|
12
|
Hartman ML, Gajos-Michniewicz A, Talaj JA, Mielczarek-Lewandowska A, Czyz M. BH3 mimetics potentiate pro-apoptotic activity of encorafenib in BRAF V600E melanoma cells. Cancer Lett 2020; 499:122-136. [PMID: 33259900 DOI: 10.1016/j.canlet.2020.11.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 12/29/2022]
Abstract
BRAFV600- and MEK1/2-targeting therapies rarely produce durable response in melanoma patients. We investigated five BRAFV600E melanoma cell lines derived from drug-naïve tumor specimens to assess cell death response to encorafenib (Braftovi), a recently FDA-approved BRAFV600 inhibitor. Drug-naïve cell lines (i) did not harbor damaging alterations in genes encoding core apoptotic machinery, but they differed in (ii) mitochondrial priming as demonstrated by whole-cell BH3 profiling, and (iii) levels of selected anti-apoptotic proteins. Encorafenib modulated the balance between apoptosis-regulating proteins as it upregulated BIM and BMF, and attenuated NOXA, but did not affect the levels of pro-survival proteins except for MCL-1 and BCL-XL in selected cell lines. Induction of apoptosis could be predicted using Dynamic BH3 profiling. The extent of apoptosis was dependent on both (i) cell-intrinsic proximity to the apoptotic threshold (initial mitochondrial priming) and (ii) the abundance of encorafenib-induced BIM (iBIM; drug-induced change in priming). While co-inhibition of MCL-1 and BCL-XL/BCL-2 was indispensable for apoptosis in drug-naïve cells, encorafenib altered cell dependence to MCL-1, and reliance on BCL-XL/BCL-2 was additionally found in cell lines that were highly primed to apoptosis by encorafenib. This translated into robust apoptosis when encorafenib was combined with selective BH3 mimetics. Our study provides a mechanistic insight into the role of proteins from the BCL-2 family in melanoma cell response to targeted therapy, and presents preclinical evidence that (i) MCL-1 is a druggable target to potentiate encorafenib activity, whereas (ii) pharmacological inhibition of BCL-XL/BCL-2 might be relevant but only for a narrow group of encorafenib-treated patients.
Collapse
Affiliation(s)
- Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland.
| | - Anna Gajos-Michniewicz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| | - Julita A Talaj
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| | | | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| |
Collapse
|
13
|
Broggi G, Ieni A, Russo D, Varricchio S, Puzzo L, Russo A, Reibaldi M, Longo A, Tuccari G, Staibano S, Caltabiano R. The Macro-Autophagy-Related Protein Beclin-1 Immunohistochemical Expression Correlates With Tumor Cell Type and Clinical Behavior of Uveal Melanoma. Front Oncol 2020; 10:589849. [PMID: 33330070 PMCID: PMC7714947 DOI: 10.3389/fonc.2020.589849] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/20/2020] [Indexed: 01/01/2023] Open
Abstract
Uveal melanoma, in spite of its rarity, represents the most common primitive intraocular malignant neoplasm of the adults; it affects choroid, ciliary bodied and iris and remains clinically silent for a long time, being accidentally discovered by routine ophthalmic exams. Prognosis of uveal melanoma is poor and frequently characterized by liver metastases, within 10-15 years from diagnosis. Autophagy is a multi-step catabolic process by which cells remove damaged organelles and proteins and recycle nutrients. It has been hypothesized that in early stages of tumorigenesis autophagy has a tumor suppressor role while, in more advanced stages, it may represent a survival mechanism of neoplastic cells in response to stress. Several proteins related to autophagy cascade have been investigated in numerous subtypes of human cancer, with overall controversal results. In this paper we studied the immunohistochemical expression of 3 autophagy related proteins (Beclin-1, p62 and ATG7) in a cohort of 85 primary uveal melanoma treated by primary enucleation (39 with metastasis and 46 non metastatic) and correlated their expression with clinico-pathological parameters and blood vascular microvessel density, in order to investigate the potential prognostic role of autophagy in this rare neoplasm. We found that high immunohistochemical levels of Beclin-1 correlated with a lower risk of metastasis and higher disease-free survival times, indicating a positive prognostic role for Beclin-1 in uveal melanoma. No statistically significative differences regarding the expression of ATG7 and p62 between metastatic and non metastatic patients was detected.
Collapse
Affiliation(s)
- Giuseppe Broggi
- Section of Anatomic Pathology, Department Gian Filippo Ingrassia, University of Catania, Catania, Italy
| | - Antonio Ieni
- Section of Pathology, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Daniela Russo
- Pathology Unit, Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Silvia Varricchio
- Pathology Unit, Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Lidia Puzzo
- Section of Anatomic Pathology, Department Gian Filippo Ingrassia, University of Catania, Catania, Italy
| | - Andrea Russo
- Department of Ophthalmology, University of Catania, Catania, Italy
| | - Michele Reibaldi
- Department of Ophthalmology, University of Catania, Catania, Italy.,Department of Surgical Science, Eye Clinic, University of Torino, Torino, Italy
| | - Antonio Longo
- Department of Ophthalmology, University of Catania, Catania, Italy
| | - Giovanni Tuccari
- Section of Pathology, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Stefania Staibano
- Pathology Unit, Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Rosario Caltabiano
- Section of Anatomic Pathology, Department Gian Filippo Ingrassia, University of Catania, Catania, Italy
| |
Collapse
|
14
|
D’Aguanno S, Del Bufalo D. Inhibition of Anti-Apoptotic Bcl-2 Proteins in Preclinical and Clinical Studies: Current Overview in Cancer. Cells 2020; 9:cells9051287. [PMID: 32455818 PMCID: PMC7291206 DOI: 10.3390/cells9051287] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/30/2022] Open
Abstract
The dynamic interplay between pro-death and pro-survival Bcl-2 family proteins is responsible for a cell’s fate. Due to the recognized relevance of this family in cancer progression and response to therapy, different efforts have made in recent years in order to develop small molecules able to target anti-apoptotic proteins such as Bcl-2, Bcl-xL and Mcl-1. The limitations of the first Bcl-2 family targeted drugs, regarding on-target and off-target toxicities, have been overcome with the development of venetoclax (ABT-199), the first BH3 mimetic inhibitor approved by the FDA. The purpose of this review is to discuss the state-of-the-art in the development of drugs targeting Bcl-2 anti-apoptotic proteins and to highlight the potential of their application as single agents or in combination for improving anti-cancer therapy, focusing in particular on solid tumors.
Collapse
|
15
|
17-Aminogeldanamycin selectively diminishes IRE1α-XBP1s pathway activity and cooperatively induces apoptosis with MEK1/2 and BRAF V600E inhibitors in melanoma cells of different genetic subtypes. Apoptosis 2020; 24:596-611. [PMID: 30989459 PMCID: PMC6598962 DOI: 10.1007/s10495-019-01542-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Outcomes of melanoma patient treatment remain unsatisfactory despite accessibility of oncoprotein-targeting drugs and immunotherapy. Here, we reported that 17-aminogeldanamycin more potently activated caspase-3/7 in BRAFV600E melanoma cells than geldanamycin, another inhibitor of heat shock protein 90 (HSP90). 17-aminogeldanamycin alleviated self-triggered compensatory increase in HSP70 mRNA level and induced endoplasmic reticulum (ER) stress, which was followed by selective diminution of cytoprotective IRE1α-XBP1s pathway activity of unfolded protein response (UPR), inhibition of ERK1/2 activity and induction of apoptosis. Concomitantly, ATF6/p50 level and expression of PERK-dependent genes, CHOP and BIM, remained unaltered. This might result from an inframe deletion in EIF2AK3 leading to a PERKL21del variant revealed by whole-exome sequencing in melanoma cell lines. 17-aminogeldanamycin exhibited similar activity in NRASQ61R melanoma cells that harbored a heterozygous inactivating variant of NAD(P)H:quinone oxidoreductase 1 (NQO1P187S). In addition, 17-aminogeldanamycin acted cooperatively with trametinib (an inhibitor of MEK1/2) and vemurafenib (an inhibitor of BRAFV600E) in induction of apoptosis in melanoma cell lines as evidenced by in-cell caspase-3/7 activation and PARP cleavage that occurred earlier compared with either drug used alone. As trametinib and vemurafenib did not significantly affect HSP70 and GRP78 transcript levels, cooperation of MEK/BRAFV600E inhibitors and 17-aminogeldanamycin might result from a concurrent inhibition of the RAS/RAF/MEK/ERK cascade and IRE1α-dependent signaling, and cell-intrinsic ER homeostasis can determine the extent of the drug cooperation. Our study indicates that 17-aminogeldanamycin takes several advantages compared with other HSP90-targeting compounds, and can complement activity of BRAF/MEK inhibitors in melanoma cells of different genetic subtypes.
Collapse
|
16
|
Hartman ML. Non-Apoptotic Cell Death Signaling Pathways in Melanoma. Int J Mol Sci 2020; 21:E2980. [PMID: 32340261 PMCID: PMC7215321 DOI: 10.3390/ijms21082980] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
Resisting cell death is a hallmark of cancer. Disturbances in the execution of cell death programs promote carcinogenesis and survival of cancer cells under unfavorable conditions, including exposition to anti-cancer therapies. Specific modalities of regulated cell death (RCD) have been classified based on different criteria, including morphological features, biochemical alterations and immunological consequences. Although melanoma cells are broadly equipped with the anti-apoptotic machinery and recurrent genetic alterations in the components of the RAS/RAF/MEK/ERK signaling markedly contribute to the pro-survival phenotype of melanoma, the roles of autophagy-dependent cell death, necroptosis, ferroptosis, pyroptosis, and parthanatos have recently gained great interest. These signaling cascades are involved in melanoma cell response and resistance to the therapeutics used in the clinic, including inhibitors of BRAFmut and MEK1/2, and immunotherapy. In addition, the relationships between sensitivity to non-apoptotic cell death routes and specific cell phenotypes have been demonstrated, suggesting that plasticity of melanoma cells can be exploited to modulate response of these cells to different cell death stimuli. In this review, the current knowledge on the non-apoptotic cell death signaling pathways in melanoma cell biology and response to anti-cancer drugs has been discussed.
Collapse
Affiliation(s)
- Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| |
Collapse
|
17
|
Okimoto T, Kotani H, Iida Y, Koyanagi A, Tanino R, Tsubata Y, Isobe T, Harada M. Pemetrexed sensitizes human lung cancer cells to cytotoxic immune cells. Cancer Sci 2020; 111:1910-1920. [PMID: 32232903 PMCID: PMC7293070 DOI: 10.1111/cas.14401] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/25/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
Pemetrexed (PEM) is a useful drug that can be combined with immune checkpoint blockade therapy for treatment of patients with advanced non–small‐cell lung cancer (NSCLC). However, its effects on anti–cancer immunity, especially the sensitivity of NSCLC cells to cytotoxic immune cells, have not been fully investigated. In this study, we examined the effects of PEM on the sensitivity of human NSCLC cells to two different types of cytotoxic immune cells. Pre‐treatment with PEM increased the sensitivity of two NSCLC cell lines, PC9 and A549, to activated T cells and natural killer (NK) cells, and decreased the expression of anti–apoptotic proteins, including XIAP and Mcl‐1. In addition, PEM treatment increased the cell surface expression of programmed death‐ligand 1 (PD‐L1) on PC9 cells. PEM‐induced upregulation of PD‐L1 on PC9 cells was at least partially ascribed to activation of ERK and the NFκB pathway. In contrast, PEM treatment increased the expression of UL16‐binding proteins (ULBP), ligands for the NKG2D NK receptor, on PC9 and A549 cells, as well as the induction of senescence. Although the addition of anti–programmed cell death 1 antibody showed no effect on the sensitivity of PEM‐treated PC9 and A549 cells to activated T cells, that of anti–NKG2D antibody decreased the enhanced sensitivity of PEM‐treated A549 cells to NK cells. These results indicate that PEM can effectively sensitize human NSCLC cells to cytotoxic immune cells while modulating the expression of immune‐regulatory molecules.
Collapse
Affiliation(s)
- Tamio Okimoto
- Department of Internal Medicine, Shimane University, Shimane, Japan
| | - Hitoshi Kotani
- Department of Immunology, Shimane University, Shimane, Japan
| | - Yuichi Iida
- Department of Immunology, Shimane University, Shimane, Japan
| | - Akira Koyanagi
- Department of Immunology, Shimane University, Shimane, Japan
| | - Ryosuke Tanino
- Department of Internal Medicine, Shimane University, Shimane, Japan
| | - Yukari Tsubata
- Department of Internal Medicine, Shimane University, Shimane, Japan
| | - Takeshi Isobe
- Department of Internal Medicine, Shimane University, Shimane, Japan
| | - Mamoru Harada
- Department of Immunology, Shimane University, Shimane, Japan
| |
Collapse
|
18
|
BCL-w: apoptotic and non-apoptotic role in health and disease. Cell Death Dis 2020; 11:260. [PMID: 32317622 PMCID: PMC7174325 DOI: 10.1038/s41419-020-2417-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/17/2022]
Abstract
The BCL-2 family of proteins integrates signals that trigger either cell survival or apoptosis. The balance between pro-survival and pro-apoptotic proteins is important for tissue development and homeostasis, while impaired apoptosis contributes to several pathologies and can be a barrier against effective treatment. BCL-w is an anti-apoptotic protein that shares a sequence similarity with BCL-XL, and exhibits a high conformational flexibility. BCL-w level is controlled by a number of signaling pathways, and the repertoire of transcriptional regulators largely depends on the cellular and developmental context. As only a few disease-relevant genetic alterations of BCL2L2 have been identified, increased levels of BCL-w might be a consequence of abnormal activation of signaling cascades involved in the regulation of BCL-w expression. In addition, BCL-w transcript is a target of a plethora of miRNAs. Besides its originally recognized pro-survival function during spermatogenesis, BCL-w has been envisaged in different types of normal and diseased cells as an anti-apoptotic protein. BCL-w contributes to survival of senescent and drug-resistant cells. Its non-apoptotic role in the promotion of cell migration and invasion has also been elucidated. Growing evidence indicates that a high BCL-w level can be therapeutically relevant in neurodegenerative disorders, neuron dysfunctions and after small intestinal resection, whereas BCL-w inhibition can be beneficial for cancer patients. Although several drugs and natural compounds can bi-directionally affect BCL-w level, agents that selectively target BCL-w are not yet available. This review discusses current knowledge on the role of BCL-w in health, non-cancerous diseases and cancer.
Collapse
|
19
|
Resistance of melanoma cells to anticancer treatment: a role of vascular endothelial growth factor. Postepy Dermatol Alergol 2020; 37:11-18. [PMID: 32467677 PMCID: PMC7247075 DOI: 10.5114/ada.2020.93378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/21/2019] [Indexed: 12/18/2022] Open
Abstract
Melanoma is one of the most aggressive and resistant to treatment neoplasms. There are still many challenges despite many promising advances in anticancer treatment. Currently, the main problem for all types of treatment is associated with heterogeneity. Due to heterogeneity of cancer cells, "precise" targeting of a medicine against a single phenotype limits the efficacy of treatment and affects resistance to applied therapy. Therefore it is important to understand aetiology and reasons for heterogeneity in order to develop effective and long-lasting treatment. This review summarises roles of vascular endothelial growth factor (VEGF) that may stimulate growth of a melanoma tumour irrespective of its proangiogenic effects, contributing to cancer heterogeneity. VEGF triggers processes associated with extracellular matrix remodelling, cell migration, invasion, angiogenesis, inhibition of immune responses and favours phenotypic plasticity and epithelial-mesenchymal transition. Consequently, it participates in mechanisms of interactions between melanoma cancer cells and microenvironment and it can modify sensitivity to therapeutic factors.
Collapse
|
20
|
Ma F, Gu X, Liu JQ, Mo LH, Yang G, Geng XR, Liu ZQ, Liu ZG, Yang PC. Inhibition of livin overcomes radioresistance in nasopharyngeal carcinoma cells. PLoS One 2020; 15:e0229272. [PMID: 32119704 PMCID: PMC7051067 DOI: 10.1371/journal.pone.0229272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 02/03/2020] [Indexed: 12/29/2022] Open
Abstract
Background and aims Radiotherapy is one of the major remedies for the treatment of cancer, including nasopharyngeal carcinoma (NPC). Radioresistance occurs very often in target cells that is a large drawback in cancer treated with radiotherapy. Livin involves the over-growth of cancer cells. This study aims to investigate the role of livin in the radioresistance formation in NPC cells. Methods NPC cell lines were exposed to small doses of irradiation to establish a cell model of radioresistance, in which the role of livin in the development of radioresistance was evaluated. Results The expression of livin was observed in NPC cells, which was significantly increased after exposing to small doses of irradiation. A negative correlation was detected between livin and Fas expression in NPC cells. Livin formed a complex with heat shock factor-1 (HSF1, the transcription factor of Fas) in NPC cells after irradiation, which sped up ubiquitination of HSF1. Livin was involved in suppressing Fas expression in NPC cells with radioresistance. Exposure to livin inhibitors prevented radioresistance development and overcame the established radioresistance in NPC cells. Conclusions Livin expression in NPC cells plays a critical role in the development of radioresistance. Depletion of livin increases the sensitiveness of NPC cells to irradiation. Target therapy against livin may have the translational potential for the treatment of NPC.
Collapse
Affiliation(s)
- Fei Ma
- Department of Traditional Chinese Medicine, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Xia Gu
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
- Department of Respirology, Affiliated Hospital of Xinan Medical University, Luzhou, China
| | - Jiang-Qi Liu
- Department of Allergy, Longgang ENT Hospital & Shenzhen Key Laboratory of ENT, Institute of ENT, Shenzhen, China
| | - Li-Hua Mo
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Gui Yang
- Department of Otolaryngology, Longgang Central Hospital, Shenzhen, China
| | - Xiao-Rui Geng
- Department of Allergy, Longgang ENT Hospital & Shenzhen Key Laboratory of ENT, Institute of ENT, Shenzhen, China
| | - Zhi-Qiang Liu
- Department of Allergy, Longgang ENT Hospital & Shenzhen Key Laboratory of ENT, Institute of ENT, Shenzhen, China
| | - Zhi-Gang Liu
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
- * E-mail: (PCY); (ZGL)
| | - Ping-Chang Yang
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China
- * E-mail: (PCY); (ZGL)
| |
Collapse
|
21
|
Sheen Y, Tan K, Tse K, Liao Y, Lin M, Chen J, Liau J, Tseng Y, Lee C, Hong C, Liao J, Chang H, Chu C. Genetic alterations in primary melanoma in Taiwan. Br J Dermatol 2019; 182:1205-1213. [DOI: 10.1111/bjd.18425] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Y.‐S. Sheen
- Department of Dermatology National Taiwan University Hospital and National Taiwan University College of Medicine Taipei Taiwan
| | | | | | - Y.‐H. Liao
- Department of Dermatology National Taiwan University Hospital and National Taiwan University College of Medicine Taipei Taiwan
| | - M.‐H. Lin
- Graduate Institute of Clinical Medicine College of Medicine National Taiwan University Taipei Taiwan
- Department of Surgery National Taiwan University Hospital Hsin‐Chu Branch Hsin‐Chu Taiwan
| | - J.‐S. Chen
- Department of Dermatology National Taiwan University Hospital and National Taiwan University College of Medicine Taipei Taiwan
| | - J.‐Y. Liau
- Department of Pathology National Taiwan University Hospital and National Taiwan University College of Medicine Taipei Taiwan
| | - Y.‐J. Tseng
- Department of Dermatology Kaohsiung Chang Gung Memorial Hospital Kaohsiung Taiwan
| | - C.‐H. Lee
- Department of Dermatology Kaohsiung Chang Gung Memorial Hospital Kaohsiung Taiwan
- Department of Dermatology Chang Gung University College of Medicine Taoyuan Taiwan
| | - C.‐H. Hong
- Department of Dermatology Faculty of Medicine School of Medicine National Yang‐Ming University Taipei Taiwan
- Department of Dermatology Kaohsiung Veterans General Hospital Kaohsiung Taiwan
| | - J.‐B. Liao
- Department of Pathology and Laboratory Medicine Kaohsiung Veterans General Hospital Kaohsiung Taiwan
| | - H.‐T. Chang
- Department of Surgery Kaohsiung Municipal United Hospital Kaohsiung Taiwan
- College of Management National Sun Yet‐sen University Kaohsiung Taiwan
| | - C.‐Y. Chu
- Department of Dermatology National Taiwan University Hospital and National Taiwan University College of Medicine Taipei Taiwan
| |
Collapse
|
22
|
Pizzato Scomazzon S, Riccio A, Santopolo S, Lanzilli G, Coccia M, Rossi A, Santoro MG. The Zinc-Finger AN1-Type Domain 2a Gene Acts as a Regulator of Cell Survival in Human Melanoma: Role of E3-Ligase cIAP2. Mol Cancer Res 2019; 17:2444-2456. [DOI: 10.1158/1541-7786.mcr-19-0243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/13/2019] [Accepted: 09/17/2019] [Indexed: 11/16/2022]
|
23
|
Xiao M, Xue Y, Wu Z, Lei ZN, Wang J, Chen ZS, Li W. Design, synthesis and biological evaluation of selective survivin inhibitors. J Biomed Res 2019; 33:82-100. [PMID: 30174320 PMCID: PMC6477172 DOI: 10.7555/jbr.31.20160173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The differential distribution between cancer cells and normal adult tissues makes survivin a very attractive cancer drug target. We have previously reported a series of novel selective survivin inhibitors with the most potent compound MX106 reaching nanomolar activity in several cancer cell lines. Further optimization of the MX106 scaffold leads to the discovery of more potent and more selective survivin inhibitors. Various structural modifications were synthesized and their anticancer activities were evaluated to determine the structure activity relationships for this MX106 scaffold. In vitro anti-proliferative assays using two human melanoma cell lines showed that several new analogs have improved potency compared to MX106. Very interestingly, these new analogs generally showed significantly higher potency against P-glycoprotein overexpressed cells compared with the corresponding parental cells, suggesting that these compounds may strongly sensitize tumors that have high expressions of the P-glycoprotein drug efflux pumps. Western blotting analysis confirmed that the new MX106 analogs maintained their mechanism of actions by selectively suppressing survivin expression level among major inhibitors of apoptotic proteins and induced strong apoptosis in melanoma tumor cells.
Collapse
Affiliation(s)
- Min Xiao
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Yi Xue
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Zhongzhi Wu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Jin Wang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| |
Collapse
|
24
|
Garandeau D, Noujarède J, Leclerc J, Imbert C, Garcia V, Bats ML, Rambow F, Gilhodes J, Filleron T, Meyer N, Brayer S, Arcucci S, Tartare-Deckert S, Ségui B, Marine JC, Levade T, Bertolotto C, Andrieu-Abadie N. Targeting the Sphingosine 1-Phosphate Axis Exerts Potent Antitumor Activity in BRAFi-Resistant Melanomas. Mol Cancer Ther 2018; 18:289-300. [PMID: 30482853 DOI: 10.1158/1535-7163.mct-17-1141] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 06/04/2018] [Accepted: 11/20/2018] [Indexed: 11/16/2022]
Abstract
BRAF inhibitors (BRAFi) are used to treat patients with melanoma harboring the V600E mutation. However, resistance to BRAFi is inevitable. Here, we identified sphingosine 1-phosphate (S1P) receptors as regulators of BRAFV600E-mutant melanoma cell-autonomous resistance to BRAFi. Moreover, our results reveal a distinct sphingolipid profile, that is, a tendency for increased very long-chain ceramide species, in the plasma of patients with melanoma who achieve a response to BRAFi therapy as compared with patients with progressive disease. Treatment with BRAFi resulted in a strong decrease in S1PR1/3 expression in sensitive but not in resistant cells. Genetic and pharmacologic interventions, that increase ceramide/S1P ratio, downregulated S1PR expression and blocked BRAFi-resistant melanoma cell growth. This effect was associated with a decreased expression of MITF and Bcl-2. Moreover, the BH3 mimetic ABT-737 improved the antitumor activity of approaches targeting S1P-metabolizing enzymes in BRAFi-resistant melanoma cells. Collectively, our findings indicate that targeting the S1P/S1PR axis could provide effective therapeutic options for patients with melanoma who relapse after BRAFi therapy.
Collapse
Affiliation(s)
- David Garandeau
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Justine Noujarède
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Justine Leclerc
- Université Nice Sophia-Antipolis, Inserm, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Caroline Imbert
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Virginie Garcia
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Marie-Lise Bats
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | | | - Julia Gilhodes
- Bureau des essais cliniques, Institut Universitaire du Cancer de Toulouse-Oncopôle, Toulouse, France
| | - Thomas Filleron
- Bureau des essais cliniques, Institut Universitaire du Cancer de Toulouse-Oncopôle, Toulouse, France
| | - Nicolas Meyer
- Service de Dermatologie-Oncologie, Institut Universitaire du Cancer de Toulouse-Oncopôle, Toulouse, France
| | - Stéphanie Brayer
- Service de Dermatologie-Oncologie, Institut Universitaire du Cancer de Toulouse-Oncopôle, Toulouse, France
| | - Silvia Arcucci
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Sophie Tartare-Deckert
- Université Nice Sophia-Antipolis, Inserm, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Bruno Ségui
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | | | - Thierry Levade
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.,Laboratoire de Biochimie Métabolique, CHU Toulouse, France
| | - Corine Bertolotto
- Université Nice Sophia-Antipolis, Inserm, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Nathalie Andrieu-Abadie
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.
| |
Collapse
|
25
|
Zhang Y, Bush X, Yan B, Chen JA. Gemcitabine nanoparticles promote antitumor immunity against melanoma. Biomaterials 2018; 189:48-59. [PMID: 30388589 DOI: 10.1016/j.biomaterials.2018.10.022] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 01/06/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) promote tumor-mediated immunosuppression and cancer progression. Gemcitabine (Gem) is a MDSC-depleting chemotherapeutic agent; however, its clinical use is hampered by its drug resistance and inefficient in vivo delivery. Here we describe a strategy to formulate a Gem analogue gemcitabine monophosphate (GMP) into a lipid-coated calcium phosphate (LCP) nanoparticle, and investigate its antitumor immunity and therapeutic effects after systemic administrations. In the syngeneic mouse model of B16F10 melanoma, compared with free Gem, the LCP-formulated GMP (LCP-GMP) significantly induced apoptosis and reduced immunosuppression in the tumor microenvironment (TME). LCP-GMP effectively depleted MDSCs and regulatory T cells, and skewed macrophage polarization towards the antitumor M1 phenotype in the TME, leading to enhanced CD8+ T-cell immune response and profound tumor growth inhibition. Thus, engineering the in vivo delivery of MDSC-depleting agents using nanotechnology could substantially modulate immunosuppressive TME and boost T-cell immune response for enhanced antitumor efficacy.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| | - Xin Bush
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Bingfang Yan
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Justin A Chen
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
26
|
Combination therapy with BH3 mimetic and hyperthermia tends to be more effective on anti-melanoma treatment. Biochem Biophys Res Commun 2018; 503:249-256. [DOI: 10.1016/j.bbrc.2018.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 06/06/2018] [Indexed: 02/07/2023]
|
27
|
Xu X, Yokoyama S, Hayakawa Y, Saiki I. Coptidis Rhizoma induces intrinsic apoptosis through BAX and BAK activation in human melanoma. Oncol Rep 2017; 38:538-544. [PMID: 28560413 DOI: 10.3892/or.2017.5672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/15/2017] [Indexed: 11/06/2022] Open
Abstract
Malignant melanoma has exhibited a rising incidence in recent years worldwide. Although various molecular targeted drugs are being researched and developed for melanoma patients, their efficacy appears to be unsatisfactory. Over the past few years, several reports have demonstrated that Coptidis Rhizoma water extracts (CR) or its major active chemical component, berberine, has anticancer activities in various types of cancer, including melanoma. However, their underlying mechanisms have not been well understood. In the present study, we determined that CR suppressed melanoma cell viability, which was mainly mediated through apoptosis. In addition, the expression levels of anti-apoptotic proteins, BCL2A1, MCL1 and BCL-w, were strongly suppressed by CR treatment. Furthermore, multi-domain pro-apoptotic proteins BAX and BAK were activated by CR treatment and were also required for the CR-induced apoptosis. Collectively, CR or some formulations containing CR, may be effective safe treatment strategies for human melanoma.
Collapse
Affiliation(s)
- Xiaoou Xu
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Satoru Yokoyama
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Yoshihiro Hayakawa
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Ikuo Saiki
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
28
|
Valdés A, García-Cañas V, Pérez-Sánchez A, Barrajón-Catalán E, Ruiz-Torres V, Artemenko KA, Micol V, Bergquist J, Cifuentes A. Shotgun proteomic analysis to study the decrease of xenograft tumor growth after rosemary extract treatment. J Chromatogr A 2017; 1499:90-100. [PMID: 28389096 DOI: 10.1016/j.chroma.2017.03.072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/23/2017] [Accepted: 03/25/2017] [Indexed: 12/18/2022]
Abstract
The antiproliferative activity of Rosemary (Rosmarinus officinalis) has been widely studied in different in vitro and in vivo models, which demonstrate that rosemary extracts inhibit the cellular proliferation due to its ability to interact with a wide spectrum of molecular targets. However, a comprehensive proteomics study in vivo has not been carried out yet. In the present work, the effects of rosemary extract on xenograft tumor growth has been studied and, for the first time, a shotgun proteomic analysis based on nano-LC-MS/MS together with stable isotope dimethyl labeling (DML) has been applied to investigate the global protein changes in vivo. Our results show that the daily administration of a polyphenol-enriched rosemary extract reduces the progression of colorectal cancer in vivo with the subsequent deregulation of 74 proteins. The bioinformatic analysis of these proteins indicates that the rosemary extract mainly alters the RNA Post-Transcriptional Modification, the Protein Synthesis and the Amino Acid Metabolism functions and suggests the inactivation of the oncogene MYC. These results demonstrate the high utility of the proposed analytical methodology to determine, simultaneously, the expression levels of a large number of protein biomarkers and to generate new hypothesis about the molecular mechanisms of this extract in vivo.
Collapse
Affiliation(s)
- Alberto Valdés
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC), Nicolas Cabrera 9, 28049, Madrid, Spain
| | - Virginia García-Cañas
- Molecular Nutrition and Metabolism, Institute of Food Science Research (CIAL, CSIC), Nicolas Cabrera 9, 28049 Madrid, Spain
| | - Almudena Pérez-Sánchez
- Institute of Molecular and Cellular Biology, Miguel Hernández University, Avda. Universidad s/n, Elche 03202, Spain
| | - Enrique Barrajón-Catalán
- Institute of Molecular and Cellular Biology, Miguel Hernández University, Avda. Universidad s/n, Elche 03202, Spain
| | - Verónica Ruiz-Torres
- Institute of Molecular and Cellular Biology, Miguel Hernández University, Avda. Universidad s/n, Elche 03202, Spain
| | - Konstantin A Artemenko
- Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, Husargatan 3, 75124 Uppsala, Sweden
| | - Vicente Micol
- Institute of Molecular and Cellular Biology, Miguel Hernández University, Avda. Universidad s/n, Elche 03202, Spain; CIBER, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (CB12/03/30038), Spain
| | - Jonas Bergquist
- Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, Husargatan 3, 75124 Uppsala, Sweden
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC), Nicolas Cabrera 9, 28049, Madrid, Spain.
| |
Collapse
|
29
|
Resnier P, Galopin N, Sibiril Y, Clavreul A, Cayon J, Briganti A, Legras P, Vessières A, Montier T, Jaouen G, Benoit JP, Passirani C. Efficient ferrocifen anticancer drug and Bcl-2 gene therapy using lipid nanocapsules on human melanoma xenograft in mouse. Pharmacol Res 2017; 126:54-65. [PMID: 28159700 DOI: 10.1016/j.phrs.2017.01.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 01/26/2017] [Accepted: 01/27/2017] [Indexed: 12/22/2022]
Abstract
Metastatic melanoma has been described as a highly aggressive cancer with low sensibility to chemotherapeutic agents. New types of drug, such as metal-based drugs (ferrocifens) have emerged and could represent an alternative for melanoma treatment since they show interesting anticancer potential. Furthermore, molecular analysis has evidenced the role of apoptosis in the low sensibility of melanomas and especially of the key regulator, Bcl-2. The objective of this study was to combine two strategies in the same lipid nanocapsules (LNCs): i) gene therapy to modulate anti-apoptotic proteins by the use of Bcl-2 siRNA, and ii) ferrocifens as a new type of anticancer agent. The efficient gene silencing with LNCs was verified by the specific extinction of Bcl-2 in melanoma cells. The cellular toxicity of ferrocifens (ferrociphenol (FcDiOH) or Ansa-FcDiOH) was demonstrated, showing higher efficacy than dacarbazine. Interestingly, the association of siBcl-2 LNCs with Ansa-FcDiOH demonstrated a significant effect on melanoma cell viability. Moreover, the co-encapsulation of siRNA and ferrocifens was successfully performed into LNCs for animal experiments. A reduction of tumor volume and mass was proved after siBcl-2 LNC treatment and Ansa-FcDiOH LNC treatment, individually (around 25%). Finally, the association of both components into the same LNCs increased the reduction of tumor volume to about 50% compared to the control group. In conclusion, LNCs appeared to provide a promising tool for the co-encapsulation of a metal-based drug and siRNA.
Collapse
Affiliation(s)
- Pauline Resnier
- MINT, UNIV Angers, INSERM, CNRS, Université Bretagne Loire, IBS-CHU, 4 rue Larrey, F-49933 Angers, France.
| | - Natacha Galopin
- SCAHU - Faculté de Médecine, Pavillon Ollivier, rue Haute de Reculée, F-49933 Angers, France.
| | - Yann Sibiril
- INSERM U1078 - Equipe 'Transfert de gènes et thérapie génique', Faculté de Médecine, 22 avenue Camille Desmoulins, CS 93837, F-29238 Brest, Cedex 3, France; CHRU de Brest, Service de Génétique Moléculaire et d'histocompatibilité, 5 avenue Maréchal Foch, 29609 Brest, France.
| | - Anne Clavreul
- MINT, UNIV Angers, INSERM, CNRS, Université Bretagne Loire, IBS-CHU, 4 rue Larrey, F-49933 Angers, France.
| | - Jérôme Cayon
- MINT, UNIV Angers, INSERM, CNRS, Université Bretagne Loire, IBS-CHU, 4 rue Larrey, F-49933 Angers, France; PACeM (Plateforme d'Analyse Cellulaire et Moléculaire), SFR ICAT 4208, Université d'Angers, 4 rue Larrey, F-49933 Angers, France.
| | - Alessandro Briganti
- MINT, UNIV Angers, INSERM, CNRS, Université Bretagne Loire, IBS-CHU, 4 rue Larrey, F-49933 Angers, France.
| | - Pierre Legras
- SCAHU - Faculté de Médecine, Pavillon Ollivier, rue Haute de Reculée, F-49933 Angers, France.
| | - Anne Vessières
- CNRS, UMR 8232, ENSCP, 11 rue P. et M. Curie, F-75231 Paris Cedex05, France.
| | - Tristan Montier
- INSERM U1078 - Equipe 'Transfert de gènes et thérapie génique', Faculté de Médecine, 22 avenue Camille Desmoulins, CS 93837, F-29238 Brest, Cedex 3, France; CHRU de Brest, Service de Génétique Moléculaire et d'histocompatibilité, 5 avenue Maréchal Foch, 29609 Brest, France.
| | - Gérard Jaouen
- CNRS, UMR 8232, ENSCP, 11 rue P. et M. Curie, F-75231 Paris Cedex05, France.
| | - Jean-Pierre Benoit
- MINT, UNIV Angers, INSERM, CNRS, Université Bretagne Loire, IBS-CHU, 4 rue Larrey, F-49933 Angers, France.
| | - Catherine Passirani
- MINT, UNIV Angers, INSERM, CNRS, Université Bretagne Loire, IBS-CHU, 4 rue Larrey, F-49933 Angers, France.
| |
Collapse
|
30
|
Gu Y, Wang J, Peng L. (-)-Oleocanthal exerts anti-melanoma activities and inhibits STAT3 signaling pathway. Oncol Rep 2016; 37:483-491. [PMID: 27878290 DOI: 10.3892/or.2016.5270] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/01/2016] [Indexed: 11/06/2022] Open
Abstract
Tumor angiogenesis, growth and metastasis are three closely related processes. We therefore explored the effects of (-)-oleocanthal (OC) on the three processes in melanoma and investigated underlying mechanisms. In vitro, OC suppressed proliferation, migration, invasion and induced apoptosis in melanoma cells. In addition, OC inhibited proliferation, migration, invasion and tube formation in human umbilical vascular endothelial cells. In vivo, it exhibited potent activity in suppressing tumor growth in a subcutaneous xenograft model. Furthermore, OC suppressed proliferation and angiogenesis as measured by immunohistochemical staining of Ki-67 and CD31. In addition, OC was found to inhibit metastasis of melanoma in a lung metastasis model. Mechanistically, OC significantly suppressed signal transducer and activator of transcription 3 (STAT3) phosphorylation, decreased STAT3 nuclear localization and inhibited STAT3 transcriptional activity. OC also downregulated STAT3 target genes, including Mcl-1, Bcl-xL, MMP-2, MMP-9, VEGF, which are involved in apoptosis, invasion and angiogenesis of melanoma. These results support further investigation of OC as a potential anti-melanoma drug.
Collapse
Affiliation(s)
- Yanli Gu
- Department of Dermatology, Daqing Oilfield General Hospital, Saertu, Daqing, Heilongjiang 163001, P.R. China
| | - Jing Wang
- Department of Dermatology, Daqing Oilfield General Hospital, Saertu, Daqing, Heilongjiang 163001, P.R. China
| | - Lixin Peng
- Department of Dermatology, Daqing Oilfield General Hospital, Saertu, Daqing, Heilongjiang 163001, P.R. China
| |
Collapse
|
31
|
Wei BR, Michael HT, Halsey CHC, Peer CJ, Adhikari A, Dwyer JE, Hoover SB, El Meskini R, Kozlov S, Weaver Ohler Z, Figg WD, Merlino G, Simpson RM. Synergistic targeted inhibition of MEK and dual PI3K/mTOR diminishes viability and inhibits tumor growth of canine melanoma underscoring its utility as a preclinical model for human mucosal melanoma. Pigment Cell Melanoma Res 2016; 29:643-655. [PMID: 27463366 PMCID: PMC5132162 DOI: 10.1111/pcmr.12512] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/17/2016] [Indexed: 12/12/2022]
Abstract
Human mucosal melanoma (MM), an uncommon, aggressive and diverse subtype, shares characteristics with spontaneous MM in dogs. Although BRAF and N-RAS mutations are uncommon in MM in both species, the majority of human and canine MM evaluated exhibited RAS/ERK and/or PI3K/mTOR signaling pathway activation. Canine MM cell lines, with varying ERK and AKT/mTOR activation levels reflective of naturally occurring differences in dogs, were sensitive to the MEK inhibitor GSK1120212 and dual PI3K/mTOR inhibitor NVP-BEZ235. The two-drug combination synergistically decreased cell survival in association with caspase 3/7 activation, as well as altered expression of cell cycle regulatory proteins and Bcl-2 family proteins. In combination, the two drugs targeted their respective signaling pathways, potentiating reduction of pathway mediators p-ERK, p-AKT, p-S6, and 4E-BP1 in vitro, and in association with significantly inhibited solid tumor growth in MM xenografts in mice. These findings provide evidence of synergistic therapeutic efficacy when simultaneously targeting multiple mediators in melanoma with Ras/ERK and PI3K/mTOR pathway activation.
Collapse
Affiliation(s)
- Bih-Rong Wei
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.,Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Helen T Michael
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Charles H C Halsey
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Cody J Peer
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Amit Adhikari
- Leidos Biomedical Research, Inc., Frederick, MD, USA.,Frederick National Laboratory for Cancer Research, Center for Advanced Preclinical Research, Frederick, MD, USA
| | - Jennifer E Dwyer
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Shelley B Hoover
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Rajaa El Meskini
- Leidos Biomedical Research, Inc., Frederick, MD, USA.,Frederick National Laboratory for Cancer Research, Center for Advanced Preclinical Research, Frederick, MD, USA
| | - Serguei Kozlov
- Leidos Biomedical Research, Inc., Frederick, MD, USA.,Frederick National Laboratory for Cancer Research, Center for Advanced Preclinical Research, Frederick, MD, USA
| | - Zoe Weaver Ohler
- Leidos Biomedical Research, Inc., Frederick, MD, USA.,Frederick National Laboratory for Cancer Research, Center for Advanced Preclinical Research, Frederick, MD, USA
| | - William D Figg
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - R Mark Simpson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
32
|
Lei Y, Zhang B, Zhang Y, Zhao Y, Sun J, Zhang X, Yang S. Lentivirus-mediated downregulation of MAT2B inhibits cell proliferation and induces apoptosis in melanoma. Int J Oncol 2016; 49:981-90. [PMID: 27573889 DOI: 10.3892/ijo.2016.3603] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/31/2016] [Indexed: 11/06/2022] Open
Abstract
Malignant melanoma is the most lethal of skin cancers and its pathogenesis is complex and heterogeneous. The efficacy of conventional therapeutic regimens for melanoma remains limited. Thus, it is important to explore novel effective therapeutic targets in the treatment of melanoma. The MAT2B gene encodes for the regulatory subunit of methionine adenosyltransferase (MAT). Recent studies have suggested that MAT2B may have functional roles other than modulating catalytic activity of MAT. In order to identify the roles of MAT2B in the tumorigenesis of malignant melanoma, we compared MAT2B expression profile in melanoma tissues with that in benign nevus samples. We employed lentivirus-mediated RNAi to downregulate the expression of MAT2B in malignant melanoma cell lines (A375 and Mel-RM), and investigated the effects of MAT2B on cell growth, colony-formation ability and apoptosis in vitro, as well as tumor growth of a xenograft model in vivo. The expression levels of BCL2 and XAF1 proteins, which were closely related to tumor cell apoptosis, were analyzed by western blot analysis. Our data showed that MAT2B was elevated in both primary and metastatic melanoma tissues compared with benign nevus samples. Lentivirus-mediated downregulation of MAT2B suppressed cell growth, colony formation and induced apoptosis in A375 and Mel-RM cell lines in vitro, affected protein expression of BCL2 and XAF1, extended the transplanted tumor growth in vivo. These results indicated that MAT2B was critical in the proliferation of melanoma cells and tumorigenicity. It may be considered as a potential anti-melanoma therapeutic target.
Collapse
Affiliation(s)
- Yu Lei
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Bo Zhang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Yaohua Zhang
- Institute of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Yuan Zhao
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Jingying Sun
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xuejun Zhang
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Sen Yang
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
33
|
Qiu Y, Li X, Yi B, Zheng J, Peng Z, Zhang Z, Wu M, Shen F, Su C. Protein phosphatase PHLPP induces cell apoptosis and exerts anticancer activity by inhibiting Survivin phosphorylation and nuclear export in gallbladder cancer. Oncotarget 2016; 6:19148-62. [PMID: 25895131 PMCID: PMC4662481 DOI: 10.18632/oncotarget.3721] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/03/2015] [Indexed: 01/27/2023] Open
Abstract
Many factors regulate cancer cell apoptosis, among which Survivin has a strong anti-apoptotic effect and PHLPP is a tumor suppressor gene that can induce significant apoptosis. However, the relationship between PHLPP and Survivin in gallbladder carcinoma (GBC) has not been reported. This study found that PHLPP expression is decreased and Survivin expression is increased in GBC tissues and cell lines. Their expression levels showed an inverse relationship and were associated with poor prognosis of GBC patients. Loss of PHLPP can increase the level of phosphorylated Survivin and induce the nuclear export of Survivin, which thus inhibit cell apoptosis and promote cell proliferation in GBC cells. The process that PHLPP regulates Survivin phosphorylation and intracellular localization is involved in AKT activity. Re-overexpression of PHLPP in GBC cells can decrease AKT phosphorylation level. Reduced expression of PHLPP in GBC is associated with high expression of miR-495. Increasing PHLPP expression or inhibiting miR-495 expression can induce apoptosis and suppress tumor growth in GBC xenograft model in nude mice. The results revealed the role and mechanism of PHLPP and Survivin in GBC cells and proposed strategies for gene therapies targeting the miR-495 / PHLPP / AKT / Survivin regulatory pathway.
Collapse
Affiliation(s)
- Yinghe Qiu
- Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgery Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Xiaoya Li
- Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgery Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Bin Yi
- Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgery Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Zhangxiao Peng
- Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgery Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Zhihan Zhang
- Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgery Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Mengchao Wu
- Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgery Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Feng Shen
- Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgery Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Changqing Su
- Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgery Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China
| |
Collapse
|
34
|
Sha J, Gastman BR, Morris N, Mesinkovska NA, Baron ED, Cooper KD, McCormick T, Arbesman J, Harter ML. The Response of microRNAs to Solar UVR in Skin-Resident Melanocytes Differs between Melanoma Patients and Healthy Persons. PLoS One 2016; 11:e0154915. [PMID: 27149382 PMCID: PMC4858311 DOI: 10.1371/journal.pone.0154915] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/21/2016] [Indexed: 12/12/2022] Open
Abstract
The conversion of melanocytes into cutaneous melanoma is largely dictated by the effects of solar ultraviolet radiation (UVR). Yet to be described, however, is exactly how these cells are affected by intense solar UVR while residing in their natural microenvironment, and whether their response differs in persons with a history of melanoma when compared to that of healthy individuals. By using laser capture microdissection (LCM) to isolate a pure population of melanocytes from a small area of skin that had been intermittingly exposed or un-exposed to physiological doses of solar UVR, we can now report for the first time that the majority of UV-responsive microRNAs (miRNAs) in the melanocytes of a group of women with a history of melanoma are down-regulated when compared to those in the melanocytes of healthy controls. Among the miRNAs that were commonly and significantly down-regulated in each of these women were miR-193b (P<0.003), miR-342-3p (P<0.003), miR186 (P<0.007), miR-130a (P<0.007), and miR-146a (P<0.007). To identify genes potentially released from inhibition by these repressed UV-miRNAs, we analyzed databases (e.g., DIANA-TarBase) containing experimentally validated microRNA-gene interactions. In the end, this enabled us to construct UV-miRNA-gene regulatory networks consisting of individual genes with a probable gain-of-function being intersected not by one, but by several down-regulated UV-miRNAs. Most striking, however, was that these networks typified well-known regulatory modules involved in controlling the epithelial-to-mesenchymal transition and processes associated with the regulation of immune-evasion. We speculate that these pathways become activated by UVR resulting in miRNA down regulation only in melanocytes susceptible to melanoma, and that these changes could be partially responsible for empowering these cells toward tumor progression.
Collapse
Affiliation(s)
- Jingfeng Sha
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, United States of America
| | - Brian R. Gastman
- Department of Immunology, Cleveland Clinic, Cleveland, OH, 44195, United States of America
| | - Nathan Morris
- Statistical Science Core in the Center for Clinical Investigation, Case Western Reserve University, Cleveland, OH, 44106, United States of America
| | - Natasha A. Mesinkovska
- Department of Dermatology, Cleveland Clinic, Cleveland, OH, 44195, United States of America
| | - Elma D. Baron
- Department of Dermatology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, OH, 44106, United States of America
| | - Kevin D. Cooper
- Department of Dermatology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, OH, 44106, United States of America
| | - Thomas McCormick
- Department of Dermatology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, OH, 44106, United States of America
| | - Joshua Arbesman
- Department of Dermatology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, OH, 44106, United States of America
| | - Marian L. Harter
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, United States of America
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, United States of America
- * E-mail:
| |
Collapse
|
35
|
Vachtenheim J, Ondrušová L. Microphthalmia-associated transcription factor expression levels in melanoma cells contribute to cell invasion and proliferation. Exp Dermatol 2016; 24:481-4. [PMID: 25866058 DOI: 10.1111/exd.12724] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2015] [Indexed: 12/29/2022]
Abstract
Microphthalmia-associated transcription factor (MITF) is a nodal point in melanoma transcriptional network that regulates dozens of genes with critical functions in cell differentiation, proliferation and survival. Highly variable MITF expression levels exist in tumor cell subpopulations conferring marked heterogeneity and plasticity in the tumor tissue. A model has been postulated whereby lower MITF levels favour cell invasion and suppress proliferation, whereas high levels stimulate differentiation and proliferation. Additionally, MITF is considered to be a prosurvival gene and a lineage addiction oncogene in melanoma. Herein, we review how MITF expression may affect the melanoma phenotype with consequences on the survival, invasion and metastasis of melanoma cells, and we discuss the research challenges.
Collapse
Affiliation(s)
- Jiri Vachtenheim
- Laboratory of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Lubica Ondrušová
- Laboratory of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
36
|
Wang FY, Wang XM, Wang C, Wang XF, Zhang YQ, Wu JD, Wu F, Zhang WJ, Zhang L. Suppression of Mcl-1 induces apoptosis in mouse peritoneal macrophages infected withMycobacterium tuberculosis. Microbiol Immunol 2016; 60:215-27. [DOI: 10.1111/1348-0421.12368] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 02/03/2016] [Accepted: 02/08/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Fei-yu Wang
- Medical College of Shihezi University
- Department of Pathophysiology
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases in cooperation with the Education Ministry of Xinjiang Province; Xinjiang; Shihezi China
| | - Xin-min Wang
- Medical College of Shihezi University
- Department of Urinary Surgery; First Affiliated Hospital
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases in cooperation with the Education Ministry of Xinjiang Province; Xinjiang; Shihezi China
| | - Chan Wang
- Medical College of Shihezi University
- Department of Pathogen Biology and Immunology
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases in cooperation with the Education Ministry of Xinjiang Province; Xinjiang; Shihezi China
| | - Xiao-fang Wang
- Medical College of Shihezi University
- Department of Pathophysiology
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases in cooperation with the Education Ministry of Xinjiang Province; Xinjiang; Shihezi China
| | - Yu-qing Zhang
- Medical College of Shihezi University
- Department of Pathophysiology
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases in cooperation with the Education Ministry of Xinjiang Province; Xinjiang; Shihezi China
| | - Jiang-dong Wu
- Medical College of Shihezi University
- Department of Pathophysiology
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases in cooperation with the Education Ministry of Xinjiang Province; Xinjiang; Shihezi China
| | - Fang Wu
- Medical College of Shihezi University
- Department of Pathophysiology
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases in cooperation with the Education Ministry of Xinjiang Province; Xinjiang; Shihezi China
| | - Wan-jiang Zhang
- Medical College of Shihezi University
- Department of Pathophysiology
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases in cooperation with the Education Ministry of Xinjiang Province; Xinjiang; Shihezi China
| | - Le Zhang
- Medical College of Shihezi University
- Department of Pathophysiology
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases in cooperation with the Education Ministry of Xinjiang Province; Xinjiang; Shihezi China
| |
Collapse
|
37
|
Wang FY, Zhang YQ, Wang XM, Wang C, Wang XF, Wu JD, Wu F, Zhang WJ, Zhang L. A small hairpin RNA targeting myeloid cell leukemia-1 enhances apoptosis in host macrophages infected with Mycobacterium tuberculosis. J Microbiol 2016; 54:330-7. [DOI: 10.1007/s12275-016-5627-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 01/24/2023]
|
38
|
Savaraj N, Wu C, Li YY, Wangpaichitr M, You M, Bomalaski J, He W, Kuo MT, Feun LG. Targeting argininosuccinate synthetase negative melanomas using combination of arginine degrading enzyme and cisplatin. Oncotarget 2016; 6:6295-309. [PMID: 25749046 PMCID: PMC4467438 DOI: 10.18632/oncotarget.3370] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 01/13/2015] [Indexed: 11/25/2022] Open
Abstract
Loss of argininosuccinate synthetase (ASS) expression in melanoma makes these tumor cells vulnerable to arginine deprivation. Pegylated arginine deiminase (ADI-PEG20) which degrades arginine to citrulline and ammonia has been used clinically and partial responses and stable disease have been noted with minimal toxicity. In order to improve the therapeutic efficacy of ADI-PEG20, we have combined ADI-PEG20 with a DNA damaging agent, cisplatin. We have shown that the combination of the two drugs together significantly improved the therapeutic efficacy when compared to ADI-PEG20 alone or cisplatin alone in 4 melanoma cell lines, regardless of their BRAF mutation. In-vivo study also exhibited the same effect as in-vitro with no added toxicity to either agent alone. The underlying mechanism is complex, but increased DNA damage upon arginine deprivation due to decreased DNA repair proteins, FANCD2, ATM, and CHK1/2 most likely leads to increased apoptosis. This action is further intensified by increased proapoptotic protein, NOXA, and decreased antiapoptotic proteins, SURVIVIN, BCL2 and XIAP. The autophagic process which protects cells from apoptosis upon ADI-PEG20 treatment also dampens upon cisplatin administration. Thus, the combination of arginine deprivation and cisplatin function in concert to kill tumor cells which do not express ASS without added toxicity to normal cells.
Collapse
Affiliation(s)
- Niramol Savaraj
- Miami VA Healthcare System, Department of Veterans Affairs, Miami, FL, USA.,Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Chunjing Wu
- Miami VA Healthcare System, Department of Veterans Affairs, Miami, FL, USA
| | - Ying-Ying Li
- Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Medhi Wangpaichitr
- Miami VA Healthcare System, Department of Veterans Affairs, Miami, FL, USA.,Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Min You
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | | | - Wei He
- Polaris Group, San Diego, CA, USA
| | - Macus Tien Kuo
- Departments of Molecular Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Lynn G Feun
- Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
39
|
Pentoxifylline triggers autophagy via ER stress response that interferes with Pentoxifylline induced apoptosis in human melanoma cells. Biochem Pharmacol 2016; 103:17-28. [PMID: 26793997 DOI: 10.1016/j.bcp.2015.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 12/22/2015] [Indexed: 12/17/2022]
Abstract
Pentoxifylline (PTX), a non-specific phosphodiesterase inhibitor is known to inhibit the growth of various cancer cells including melanoma. Here in this study, we have found that PTX induces autophagy in human melanoma cell lines (A375 and MeWo). Induction of autophagy is associated with the increase in Atg5 expression as knockdown of Atg5 effectively inhibited PTX mediated autophagy. A decrease in mTOR activation was also observed after PTX treatment. We observed that autophagy was activated as a downstream effector mechanism of ER stress induced by PTX. ER stress response was confirmed by upregulation of IRE-1α, GRP78 and CHOP expression. PTX treatment also resulted in an increase in intracellular calcium (Ca(2+)) level. Ca(2+) is the central player as blocking Ca(2+) by intracellular calcium chelator (BAPTA-AM) effectively inhibited the PTX induced ER stress response as well as autophagy. Moreover, silencing of CHOP also resulted in autophagy inhibition with a decrease in Atg5 expression. Collectively, PTX triggers ER stress response followed by induction of autophagy via involvement of Ca(2+)→CHOP→Atg5 signalling cascade. Interestingly, inhibition of intracellular calcium level by BAPTA-AM significantly increased PTX mediated cell death by augmenting intrinsic apoptotic pathway. Inhibition of autophagy by the ATG5 siRNA and pharmacological inhibitor, chloroquine also enhances PTX induced cell death. Taken together, our results clearly indicate that activation of ER stress response and autophagy provides resistance to PTX mediated apoptosis, and thus, interferes with the anticancer activity of PTX in human melanoma cells.
Collapse
|
40
|
Gallagher SJ, Tiffen JC, Hersey P. Histone Modifications, Modifiers and Readers in Melanoma Resistance to Targeted and Immune Therapy. Cancers (Basel) 2015; 7:1959-82. [PMID: 26426052 PMCID: PMC4695870 DOI: 10.3390/cancers7040870] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 02/06/2023] Open
Abstract
The treatment of melanoma has been revolutionized by new therapies targeting MAPK signaling or the immune system. Unfortunately these therapies are hindered by either primary resistance or the development of acquired resistance. Resistance mechanisms involving somatic mutations in genes associated with resistance have been identified in some cases of melanoma, however, the cause of resistance remains largely unexplained in other cases. The importance of epigenetic factors targeting histones and histone modifiers in driving the behavior of melanoma is only starting to be unraveled and provides significant opportunity to combat the problems of therapy resistance. There is also an increasing ability to target these epigenetic changes with new drugs that inhibit these modifications to either prevent or overcome resistance to both MAPK inhibitors and immunotherapy. This review focuses on changes in histones, histone reader proteins and histone positioning, which can mediate resistance to new therapeutics and that can be targeted for future therapies.
Collapse
Affiliation(s)
- Stuart J Gallagher
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown 2050, Australia.
- Melanoma Institute Australia, Crow's Nest 2065, Sydney, Australia.
| | - Jessamy C Tiffen
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown 2050, Australia.
- Melanoma Institute Australia, Crow's Nest 2065, Sydney, Australia.
| | - Peter Hersey
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown 2050, Australia.
- Melanoma Institute Australia, Crow's Nest 2065, Sydney, Australia.
| |
Collapse
|
41
|
LIN XIAN, LI HONGRU, LIN XIAOFEN, YU MEIE, TU XUNWEI, HUA ZHIDAN, LIN MING, XU NENGLUAN, HAN LILI, CHEN YUSHENG. Silencing of Livin inhibits tumorigenesis and metastasis via VEGF and MMPs pathway in lung cancer. Int J Oncol 2015; 47:657-67. [PMID: 26094984 DOI: 10.3892/ijo.2015.3058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/08/2015] [Indexed: 11/06/2022] Open
|
42
|
Yang X, Du T, Wang X, Zhang Y, Hu W, Du X, Miao L, Han C. IDH1, a CHOP and C/EBPβ-responsive gene under ER stress, sensitizes human melanoma cells to hypoxia-induced apoptosis. Cancer Lett 2015; 365:201-10. [PMID: 26049021 DOI: 10.1016/j.canlet.2015.05.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/22/2015] [Accepted: 05/29/2015] [Indexed: 01/07/2023]
Abstract
Isocitrate dehydrogenase1 (IDH1) is of great importance in cell metabolism and energy conversion. However, alterations in IDH1 in response to stress and excise-regulated mechanisms are not well described. Here we investigated gene expression profiles under ER stress in melanoma cells and found that IDH1 was dramatically increased with ER stress induced by tunicamycin. Elevated IDH1 subsequently sensitized human melanoma cells to hypoxia-induced apoptosis and promoted HIF-1α degradation. In addition, we revealed that CHOP and C/EBPβ were involved in hypoxia-induced apoptosis via transcriptional regulation of IDH1 expression. Our data indicate that IDH1, regulated by CHOP and C/EBPβ in response to ER stress treatment, inhibits survival of melanoma cells under hypoxia and promotes HIF-1α degradation. Therefore, we propose that IDH1 may serve as a valuable target for melanoma therapy.
Collapse
Affiliation(s)
- Xuejun Yang
- Institute of Cancer Stem Cell, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Tongde Du
- Institute of Cancer Stem Cell, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Xiang Wang
- Institute of Cancer Stem Cell, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Yingqiu Zhang
- Institute of Cancer Stem Cell, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Wanglai Hu
- Department of Immunology, Anhui Medical University, Hefei, Anhui 230601, China
| | - Xiaofeng Du
- Institute of Cancer Stem Cell, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Lin Miao
- Oncology Department, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, China.
| | - Chuanchun Han
- Institute of Cancer Stem Cell, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
43
|
Hartman ML, Talar B, Gajos-Michniewicz A, Czyz M. MCL-1, BCL-XL and MITF Are Diversely Employed in Adaptive Response of Melanoma Cells to Changes in Microenvironment. PLoS One 2015; 10:e0128796. [PMID: 26035829 PMCID: PMC4452715 DOI: 10.1371/journal.pone.0128796] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/30/2015] [Indexed: 01/07/2023] Open
Abstract
Melanoma cells can switch their phenotypes in response to microenvironmental insults. Heterogeneous melanoma populations characterized by long-term growth and a high self-renewal capacity can be obtained in vitro in EGF(+)bFGF(+) medium whilst invasive potential of melanoma cells is increased in serum-containing cultures. In the present study, we have shown that originally these patient-derived melanoma populations exhibit variable expression of pro-survival genes from the BCL-2 family and inhibitors of apoptosis (IAPs), and differ in the baseline MCL-1 transcript stability as well. While being transferred to serum-containing medium, melanoma cells are well protected from death. Immediate adaptive response of melanoma cells selectively involves a temporary MCL-1 increase, both at mRNA and protein levels, and BCL-XL can complement MCL-1, especially in MITFlow populations. Thus, the extent of MCL-1 and BCL-XL contributions seems to be cell context-dependent. An increase in MCL-1 level results from a transiently enhanced stability of its transcript, but not from altered protein turnover. Inhibition of MCL-1 preceding transfer to serum-containing medium caused the induction of cell death in a subset of melanoma cells, which confirms the involvement of MCL-1 in melanoma cell survival during the rapid alteration of growth conditions. Additionally, immediate response to serum involves the transient increase in MITF expression and inhibition of ERK-1/2 activity. Uncovering the mechanisms of adaptive response to rapid changes in microenvironment may extend our knowledge on melanoma biology, especially at the stage of dissemination.
Collapse
Affiliation(s)
- Mariusz L. Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Beata Talar
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | | | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
- * E-mail:
| |
Collapse
|
44
|
Abstract
Melanoma is a common cancer in the Western world with an increasing incidence. Sun exposure is still considered to be the major risk factor for melanoma. The prognosis of patients with malignant (advanced-stage) melanoma differs widely between countries, but public campaigns advocating early detection have led to significant reductions in mortality rates. As well as sun exposure, distinct genetic alterations have been identified as associated with melanoma. For example, families with melanoma who have germline mutations in CDKN2A are well known, whereas the vast majority of sporadic melanomas have mutations in the mitogen-activated protein kinase cascade, which is the pathway with the highest oncogenic and therapeutic relevance for this disease. BRAF and NRAS mutations are typically found in cutaneous melanomas, whereas KIT mutations are predominantly observed in mucosal and acral melanomas. GNAQ and GNA11 mutations prevail in uveal melanomas. Additionally, the PI3K-AKT-PTEN pathway and the immune checkpoint pathways are important. The finding that programmed cell death protein 1 ligand 1 (PDL1) and PDL2 are expressed by melanoma cells, T cells, B cells and natural killer cells led to the recent development of programmed cell death protein 1 (PD1)-specific antibodies (for example, nivolumab and pembrolizumab). Alongside other new drugs - namely, BRAF inhibitors (vemurafenib and dabrafenib) and MEK inhibitors (trametinib and cobimetinib) - these agents are very promising and have been shown to significantly improve prognosis for patients with advanced-stage metastatic disease. Early signs are apparent that these new treatment modalities are also improving long-term clinical benefit and the quality of life of patients. This Primer summarizes the current understanding of melanoma, from mechanistic insights to clinical progress. For an illustrated summary of this Primer, visit: http://go.nature.com/vX2N9s.
Collapse
|
45
|
Zhuang L, Shen LD, Li K, Yang RX, Zhang QY, Chen Y, Gao CL, Dong C, Bi Q, Tao JN, Wang XN, Tian Q. Inhibition of livin expression suppresses cell proliferation and enhances chemosensitivity to cisplatin in human lung adenocarcinoma cells. Mol Med Rep 2015; 12:547-52. [PMID: 25695324 DOI: 10.3892/mmr.2015.3372] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 12/03/2014] [Indexed: 11/06/2022] Open
Abstract
Livin is a novel member of the inhibitor of apoptosis protein family that has been reported to be overexpressed in various types of human malignancy. Although several studies have demonstrated that livin may be used as an effective target for tumor therapy, few studies have investigated its role in human lung adenocarcinoma. In the present study, two different methods were used in order to investigate the tumor‑suppressing effect of livin in human lung adenocarcinoma cells. Firstly, small interfering (si)RNA technology was used to down regulate livin expression; siRNA-mediated knockdown of livin was confirmed using reverse transcription quantitative polymerase chain reaction and western blot analysis, and cell proliferations was assessed using an MTT assay in vitro. Secondly, inhibition of livin expression was induced through the synergistic inhibitory effect between flavopiridol and tumor necrosis factor‑related apoptosis-inducing ligand (TRAIL). Experimental results revealed that, following transfection of the livin gene-silencing vector, the gene expression of livin was markedly decreased, SPC-A1 cell proliferation was significantly reduced and the therapeutic effect of the chemotherapy drug cisplatin was markedly improved. This growth inhibitory effect was also observed in the flavopiridol and TRAIL combination treatment group. In the flavopiridol and TRAIL combination treatment group, the protein expression of livin was significantly reduced and the survival rate of SPC‑A1 cells was significantly lower than the flavopiridol and TRAIL single operation group. In conclusion, the RNA silencing and the synergistic inhibitory effect between flavopiridol with TRAIL was able to effectively inhibit the expression of livin, significantly decrease SPC-A1 tumor cell proliferation and significantly enhance sensitivity to the chemotherapy drug cisplatin. These findings suggest that livin may be used as a novel target for tumor gene therapy.
Collapse
Affiliation(s)
- Li Zhuang
- Department of Medical Oncology, Yunnan Cancer Hospital, Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Li-Da Shen
- Department of Medical Oncology, Yunnan Cancer Hospital, Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Kun Li
- Department of Medical Oncology, Yunnan Cancer Hospital, Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Run-Xiang Yang
- Department of Medical Oncology, Yunnan Cancer Hospital, Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Qin-Yong Zhang
- Department of Medical Oncology, Yunnan Cancer Hospital, Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Yun Chen
- Department of Medical Oncology, Yunnan Cancer Hospital, Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Chun-Lin Gao
- Department of Medical Oncology, Yunnan Cancer Hospital, Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Chao Dong
- Department of Medical Oncology, Yunnan Cancer Hospital, Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Qing Bi
- Department of Medical Oncology, Yunnan Cancer Hospital, Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Jing-Nan Tao
- Department of Medical Oncology, Yunnan Cancer Hospital, Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Xiao-Nan Wang
- Department of Medical Oncology, Yunnan Cancer Hospital, Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Qing Tian
- Department of Cardiology, The First People's Hospital of Kunming, Yunnan 650011, P.R. China
| |
Collapse
|
46
|
Lee WS, Park YL, Kim N, Oh HH, Son DJ, Kim MY, Oak CY, Chung CY, Park HC, Kim JS, Myung DS, Cho SB, Joo YE. Myeloid cell leukemia-1 regulates the cell growth and predicts prognosis in gastric cancer. Int J Oncol 2015; 46:2154-62. [PMID: 25672320 DOI: 10.3892/ijo.2015.2890] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/29/2015] [Indexed: 11/06/2022] Open
Abstract
The expression of myeloid cell leukemia-1 (Mcl‑1), a member of the anti-apoptotic Bcl-2 protein family, has been associated with tumor progression and adverse patient outcome. The aims of current study were to evaluate whether Mcl-1 affects the survival or death of gastric cancer cells, and to investigate the prognostic value of its expression in gastric cancer. PcDNA3.1-Mcl-1 expression and Mcl-1 siRNA vectors were used to overexpress and silence Mcl-1 expression in gastric cancer cell lines including SNU638 and TMK1, respectively. Immunohistochemistry was used to determine the expression of Mcl-1 in gastric cancer tissues. Apoptosis was determined by the TUNEL assay, and cell proliferation was determined by immunostaining with a Ki-67 antibody. Mcl-1 knockdown induced apoptosis through the upregulation of caspase-3, and -7, and PARP activity, and the release of Smac/DIABLO and Omi/HtrA2 into the cytoplasm. Additionally, cell cycle arrest occurred due to decrease of cyclin D1, cell division cycle gene 2 (cdc2), and cyclin-dependent kinase 4 and 6. In contrast, overexpression of Mcl-1 inhibited apoptosis and cell cycle arrest. Mcl-1 knockdown did not suppress tumor cell proliferation in gastric cancer cells, whereas overexpression of Mcl-1 enhanced tumor cell proliferation. The JAK2 and STAT3 signaling cascades were significantly blocked by Mcl-1 knockdown. The mean Ki-67 labeling index (KI) value of Mcl-1 positive tumors was significantly lower than that of Mcl-1 negative tumors. However, there was no significant difference between Mcl-1 expression and the apoptotic index (AI). Mcl-1 expression was significantly increased in gastric cancer tissues compared to normal gastric mucosa tissues, and was associated with age, tumor size, stage, depth of invasion, lymph node metastasis and poor survival. Our study showed that Mcl-1 regulates the cell growth and might be a potential prognostic marker for gastric cancer.
Collapse
Affiliation(s)
- Wan-Sik Lee
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Young-Lan Park
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Nuri Kim
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Hyung-Hoon Oh
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Dong-Jun Son
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Mi-Young Kim
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Chan-Young Oak
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Cho-Yun Chung
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Hyung-Chul Park
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Jong-Sun Kim
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Dae-Seong Myung
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Sung-Bum Cho
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Young-Eun Joo
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| |
Collapse
|
47
|
USP11-dependent selective cIAP2 deubiquitylation and stabilization determine sensitivity to Smac mimetics. Cell Death Differ 2015; 22:1463-76. [PMID: 25613375 DOI: 10.1038/cdd.2014.234] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/08/2014] [Accepted: 12/10/2014] [Indexed: 12/22/2022] Open
Abstract
Given their crucial role in apoptosis suppression, inhibitor of apoptosis proteins (IAPs) have recently become attractive targets for cancer therapy. Here, we report that cellular IAP2 (cIAP2) is specifically stabilized in several cancer cell lines, leading to resistance to Smac mimetics, such as BV6 and birinapant. In particular, our results showed that cIAP2 depletion, but not cIAP1 depletion, sensitized cancer cells to Smac mimetic-induced apoptosis. Ubiquitin-specific protease 11 (USP11) is a deubiquitylase that directly stabilizes cIAP2. USP11 overexpression is frequently found in colorectal cancer and melanoma and is correlated with poor survival. In our study, cancer cell lines expressing high levels of USP11 exhibited strong resistance to Smac mimetic-induced cIAP2 degradation. Furthermore, USP11 downregulation sensitized these cells to apoptosis induced by TRAIL and BV6 and suppressed tumor growth in a xenograft model. Finally, the TNFα/JNK pathway induced USP11 expression and maintained cIAP2 stability, suggesting an alternative TNFα-dependent cell survival pathway. Collectively, our data suggest that USP11-stabilized cIAP2 may serve as a barrier against IAP-targeted clinical approaches.
Collapse
|
48
|
Carpi S, Fogli S, Giannetti A, Adinolfi B, Tombelli S, Da Pozzo E, Vanni A, Martinotti E, Martini C, Breschi MC, Pellegrino M, Nieri P, Baldini F. Theranostic properties of a survivin-directed molecular beacon in human melanoma cells. PLoS One 2014; 9:e114588. [PMID: 25501971 PMCID: PMC4263748 DOI: 10.1371/journal.pone.0114588] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 11/11/2014] [Indexed: 12/24/2022] Open
Abstract
Survivin is an inhibitor of apoptosis overexpressed in different types of tumors and undetectable in most terminally differentiated normal tissues. In the current study, we sought to evaluate the in vitro theranostic properties of a molecular beacon-oligodeoxynucleotide (MB) that targets survivin mRNA. We used laser scanning confocal microscopy to study MB delivery in living cells and real-time PCR and western blot to assess selective survivin-targeting in human malignant melanoma cells. We further assess the pro-apoptotic effect of MB by measuring internucleosomal DNA fragmentation, dissipation of mitochondrial membrane potential (MMP) and changes in nuclear morphology. Transfection of MB into A375 and 501 Mel cells generated high signal intensity from the cytoplasm, while no signal was detected in the extracellular environment and in survivin-negative cells (i.e., human melanocytes and monocytes). MB time dependently decreased survivin mRNA and protein expression in melanoma cells with the maximum effect reached at 72 h. Treatment of melanoma cells with MB induced apoptosis by significant changes in MMP, accumulation of histone-complexed DNA fragments in the cytoplasm and nuclear condensation. MB also enhanced the pro-apoptotic effect of standard chemotherapeutic drugs tested at clinically relevant concentrations. The MB tested in the current study conjugates the ability of imaging with the pharmacological silencing activity against survivin mRNA in human melanoma cells and may represent an innovative approach for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Sara Carpi
- Department of Pharmacy, University of Pisa, Pisa, Italy
- * E-mail:
| | - Stefano Fogli
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Ambra Giannetti
- Institute of Applied Physics “Nello Carrara,” IFAC-CNR, Sesto Fiorentino, Florence, Italy
| | | | - Sara Tombelli
- Institute of Applied Physics “Nello Carrara,” IFAC-CNR, Sesto Fiorentino, Florence, Italy
| | | | - Alessia Vanni
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | | | | | - Mario Pellegrino
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Paola Nieri
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Francesco Baldini
- Institute of Applied Physics “Nello Carrara,” IFAC-CNR, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
49
|
Hartman ML, Czyz M. MITF in melanoma: mechanisms behind its expression and activity. Cell Mol Life Sci 2014; 72:1249-60. [PMID: 25433395 PMCID: PMC4363485 DOI: 10.1007/s00018-014-1791-0] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/10/2014] [Accepted: 11/20/2014] [Indexed: 02/06/2023]
Abstract
MITF (microphthalmia-associated transcription factor) represents a melanocytic lineage-specific transcription factor whose role is profoundly extended in malignant melanoma. Over the last few years, the function of MITF has been tightly connected to plasticity of melanoma cells. MITF participates in executing diverse melanoma phenotypes defined by distinct gene expression profiles. Mutation-dependent alterations in MITF expression and activity have been found in a relatively small subset of melanomas. MITF activity is rather modulated by its upstream activators and suppressors operating on transcriptional, post-transcriptional and post-translational levels. These regulatory mechanisms also include epigenetic and microenvironmental signals. Several transcription factors and signaling pathways involved in the regulation of MITF expression and/or activity such as the Wnt/β-catenin pathway are broadly utilized by various types of tumors, whereas others, e.g., BRAFV600E/ERK1/2 are more specific for melanoma. Furthermore, the MITF activity can be affected by the availability of transcriptional co-partners that are often redirected by MITF from their own canonical signaling pathways. In this review, we discuss the complexity of a multilevel regulation of MITF expression and activity that underlies distinct context-related phenotypes of melanoma and might explain diverse responses of melanoma patients to currently used therapeutics.
Collapse
Affiliation(s)
- Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| | | |
Collapse
|
50
|
Sun M, Zhao W, Xie Q, Zhan Y, Wu B. Lentinan reduces tumor progression by enhancing gemcitabine chemotherapy in urothelial bladder cancer. Surg Oncol 2014; 24:28-34. [PMID: 25434982 DOI: 10.1016/j.suronc.2014.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 10/30/2014] [Accepted: 11/12/2014] [Indexed: 11/15/2022]
Abstract
It has been shown that chemotherapy has limited antitumor activity against advanced urothelial bladder cancer (UBC). Consequently, there is an urgent need to develop effective therapeutic methods for patients with advanced UBC. In the present study, the inhibitory effects of lentinan alone, gemcitabine alone, or lentinan combined with gemcitabine on the proliferation of the UBC cell line, T24, were investigated. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, annexin V fluorescein isothiocyanate/propidium iodide staining, and flow cytometry were used to determine the proliferation and apoptosis of T24 cells in each treatment group. Survival-related protein expression was analyzed by western blotting. Increased concentrations of lentinan, or lentinan combined with gemcitabine, positively correlated with decreased T24 cell proliferation. Lentinan combined with gemcitabine chemotherapy significantly inhibited UBC cell proliferation. Gemcitabine has the ability to induce T24 cell apoptosis, and this effect is enhanced when it is combined with lentinan.
Collapse
Affiliation(s)
- Ming Sun
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, PR China
| | - Wenyan Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, PR China
| | - Qingpeng Xie
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, PR China
| | - Yunhong Zhan
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, PR China
| | - Bin Wu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, PR China.
| |
Collapse
|