1
|
Mou LL, Wu XM, Bibi A, Wang JX, Zhou CH. A comprehensive insight into naphthalimides as novel structural skeleton of multitargeting promising antibiotics. Future Med Chem 2025:1-16. [PMID: 39957205 DOI: 10.1080/17568919.2025.2463872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/27/2025] [Indexed: 02/18/2025] Open
Abstract
The globally growing antimicrobial resistance seriously threatens human health, increasing efforts have been devoting to the development of novel antibiotics. Naphthalimides contain a special skeleton of cyclic double imides and the naphthalene framework, this unique structure can exert multitargeting abilities which are helpful to overcome the escalating issue of resistance. Therefore, research in connection with the development of naphthalimides as novel antimicrobial agents is becoming progressively active. It has been revealed that naphthalimides as novel structural skeleton of multitargeting promising antibiotics could not only target DNAs and enzymes, disturb membrane, produce reactive oxygen species, etc. suggesting the multitargeting actions which do not induce resistance, but also show a broad antimicrobial spectrum with safety profile and pharmacokinetic characteristics, implying large potential as a new type of antibiotics via continuous efforts toward antimicrobial naphthalimides. This review presents naphthalimides as a new type of potential antimicrobial agents and discusses rational design strategies, structure-activity relationships, and mechanisms of action, with a comprehensive view to providing a new insight for in the rational design of efficient, broad-spectrum, and low-toxic naphthalimide antibiotics.
Collapse
Affiliation(s)
- Lin-Li Mou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| | - Xin-Miao Wu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| | - Aisha Bibi
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| | - Jin-Xin Wang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
- Chongqing Research Institute, Chongqing Werlchem New Materials Technology Co., Ltd., Chongqing, China
| | - Cheng-He Zhou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Chakravarthy H, Georgyev V, Wagen C, Hosseini A, Matsubara J. Blue light-induced phototoxicity in retinal cells: implications in age-related macular degeneration. Front Aging Neurosci 2024; 16:1509434. [PMID: 39741521 PMCID: PMC11685196 DOI: 10.3389/fnagi.2024.1509434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/04/2024] [Indexed: 01/03/2025] Open
Abstract
Sunlight exposure is recognized as a risk factor for the development of age-related macular degeneration (AMD), a common neurodegenerative retinal disease in the elderly. Specifically, the blue light wavelengths within sunlight can negatively impact the physiology of light-sensitive retinal cells, including retinal pigmented epithelium (RPE) and photoreceptors. This review explores blue light-induced retinal degeneration, emphasizing the structural and functional impairments in RPE. The initial section provides a brief overview of blue light's effects on photoreceptors, followed by a comprehensive analysis of its detrimental impact on RPE. In vitro studies reveal that blue light exposure induces morphological alterations and functional impairments in RPE, including reduced phagocytic activity, disrupted secretion of neurotrophic factors, and compromised barrier function. Mechanisms of retinal damage, including oxidative stress, inflammation, lipofuscin accumulation, mitochondrial dysfunction and ER stress in RPE, are also explored. The strengths and limitations of in vitro, animal and ex vivo models for studying blue light exposure are discussed, with recommendations for improving reproducibility in future studies.
Collapse
Affiliation(s)
| | | | | | | | - Joanne Matsubara
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Rykowski S, Gurda-Woźna D, Fedoruk-Wyszomirska A, Orlicka-Płocka M, Kowalczyk A, Stączek P, Denel-Bobrowska M, Biniek-Antosiak K, Rypniewski W, Wyszko E, Olejniczak AB. Carboranyl-1,8-naphthalimide intercalators induce lysosomal membrane permeabilization and ferroptosis in cancer cell lines. J Enzyme Inhib Med Chem 2023; 38:2171028. [PMID: 36715272 PMCID: PMC9888480 DOI: 10.1080/14756366.2023.2171028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
The synthesis of carborane-1,8-naphthalimide conjugates and evaluation of their DNA-binding ability and anticancer activity were performed. A series of 4-carboranyl-3-nitro-1,8-naphthalimide derivatives, mitonafide and pinafide analogs, were synthesised via amidation and reductive amination reactions, and their calf thymus DNA (ct-DNA)-binding properties were investigated using circular dichroism, UV-vis spectroscopy, and thermal denaturation. Results showed that conjugates 34-37 interacted very strongly with ct-DNA (ΔTm = 10.00-13.00 °C), indicating their ability to intercalate with DNA, but did not inhibit the activity of topoisomerase II. The conjugates inhibited the cell growth of the HepG2 cancer cell line in vitro. The same compounds caused the G2M phase arrest. Cell lines treated with these conjugates showed an increase in reactive oxygen species, glutathione, and Fe2+ levels, lipid peroxidation, and mitochondrial membrane potential relative to controls, indicating the involvement of ferroptosis. Furthermore, these conjugates caused lysosomal membrane permeabilization in HepG2 cells but not in MRC-5 cells.
Collapse
Affiliation(s)
| | - Dorota Gurda-Woźna
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | | | - Aleksandra Kowalczyk
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Paweł Stączek
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | | | | | - Wojciech Rypniewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Eliza Wyszko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | |
Collapse
|
4
|
Chen XM, Zhou JY, Liu SQ, Song LH, Wang HL, Wang Q, Liang SM, Lu L, Wei JH, Huang R, Zhang Y. Design, synthesis, and antitumor evaluation of morpholine substituted bisnaphthalimides as DNA targeting agents. Bioorg Med Chem Lett 2023; 85:129218. [PMID: 36894107 DOI: 10.1016/j.bmcl.2023.129218] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
A series of mono- and bisnaphthalimides derivatives containing 3-nitro and 4-morpholine moieties were designed, synthesized, and evaluated for their in vitro anticancer activities against four cancer cell lines. Some compounds exhibited relatively good antiproliferative activity on the cell lines tested, in comparison with mitonafide and amonafide. It is noteworthy that bisnaphthalimide A6 was identified as the most potent compound in anti-proliferation against MGC-803 cells, with an IC50 lowered to 0.09 μM, a far greater potency than that of mono-naphthalimide A7, mitonafide, and amonafide. A gel electrophoresis assay revealed that DNA and Topo I were the potential targets of compounds A6 and A7. The treatment of CNE-2 cells with compounds A6 and A7 resulted in an S phase cell cycle arrest, accompanied by the upregulation of the expression levels of the antioncogene p27 and the down-regulation of the expression levels of CDK2 and cyclin E. In addition, compounds A6 and A7-induced apoptosis was further confirmed by flow cytometry, ROS generation assay, and Hoechst 33,258 staining. In particular, in vivo antitumor assay results revealed that bisnaphthalimide A6 exhibited potent anticancer efficiency in an MGC-803 xenograft tumor model, in comparison with mitonafide, and had lower toxicity than mono-naphthalimide A7. In brief, the results suggested that bisnaphthalimide derivatives containing 3-nitro and 4-morpholine moieties might serve as DNA binding agents for the development of new antitumor agents.
Collapse
Affiliation(s)
- Xiao-Man Chen
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China
| | - Jian-Yu Zhou
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China
| | - Shuang-Qiang Liu
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China
| | - Long-Hao Song
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China
| | - Hui-Ling Wang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China
| | - Qi Wang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China
| | - Si-Min Liang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China
| | - Lin Lu
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China
| | - Jian-Hua Wei
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China.
| | - Rizhen Huang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China.
| | - Ye Zhang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China.
| |
Collapse
|
5
|
Xu Y, Li D, Su G, Cai S. The effect of A2E on lysosome membrane permeability during blue light-induced human RPEs apoptosis. BMC Ophthalmol 2022; 22:241. [PMID: 35641967 PMCID: PMC9158258 DOI: 10.1186/s12886-022-02464-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 05/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To investigate the effect of N-retinyl-N-retinylidene ethanolamine (A2E) on lysosome membrane permeability (LMP) during blue light-induced human retinal pigment epithelium cells (RPEs) apoptosis. METHODS By building an A2E and blue light irradiation inducing RPEs damage model, the CCK-8 assay was used to detect RPEs viability loaded with different concentrations of A2E after different culturing time to determine the optimum A2E loading concentration. And the RPEs fluorescence intensity changes were observed by fluorescence microscopy loaded with different concentration of A2E. The RPEs were divided into four groups randomly: control group, A2E-loaded group, blue light irradiation group, and A2E-loaded + blue light irradiation group. Annexin V-FITC/PI and TUNEL/DAPI methods were used to detect RPEs apoptotic rate. Laser scanning confocal microscopy (LSCM) was used to observe RPEs LMP changes stained by acridine orange (AO) method. RESULTS The CCK-8 result showed a downward trend in cells viability of RPEs loaded with increasing concentration of A2E and extending culturing time. The optimum A2E loading concentration was determined at 25 μmol/L. With increasing A2E loading concentrations, the intensity of fluorescence in RPEs decreased gradually. The RPEs apoptotic rate in blue light irradiation + A2E-loaded group was significantly higher than those in other three groups detected by Annexin V-FITC/PI method, which was similar to TUNEL/DAPI's result. After AO staining, cytoplasmic and nucleolar RNAs emits green fluorescence; lysosomes emit red fluorescence. Through the interference of A2E and blue light on RPEs, red fluorescent leakage from the lysosomes (means LMP increasing) can be observed. The mean red fluorescence intensity was chosen as the statistics indicator to estimate LMP change in RPEs cultured in vitro. Compared with the control group, the red fluorescence intensity decreased in A2E-loaded group, blue light irradiation group, and blue light irradiation + A2E-loaded group. Meanwhile, the mean red fluorescence intensity in blue light irradiation + A2E-loaded group was the lowest. CONCLUSIONS Both A2E-loaded and blue light irradiation could induce human RPEs apoptosis, and the two factors had a synergistic effect. In addition, both A2E and blue light can lead to LMP increasing, which indicated LMP change might be the upstream part in inducing mitochondrion-dependent apoptotic pathway. These data provided evidence that A2E as the most important auto-fluorescence substance in lipofuscin is an initiator of blue light-mediated damage of RPEs and participate in pathogenesis of retinal degenerative diseases in humans.
Collapse
Affiliation(s)
- Yan Xu
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi, 563000, Guizhou, China
- Department of Ophthalmology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Dan Li
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi, 563000, Guizhou, China
- Department of Ophthalmology, The People's Hospital of Longchang, Neijiang, Sichuan, China
| | - Gang Su
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi, 563000, Guizhou, China
- Guizhou Eye Hospital, Zunyi, Guizhou, China
- Guizhou Provincial Branch of National Eye Disease Clinical Medicine Research Center, Zunyi, Guizhou, China
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shanjun Cai
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi, 563000, Guizhou, China.
- Guizhou Eye Hospital, Zunyi, Guizhou, China.
- Guizhou Provincial Branch of National Eye Disease Clinical Medicine Research Center, Zunyi, Guizhou, China.
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
6
|
Design, synthesis and anti-tumor activity of novel benzothiophenonaphthalimide derivatives targeting mitochondrial DNA (mtDNA) G-quadruplex. Biochem Pharmacol 2022; 201:115062. [DOI: 10.1016/j.bcp.2022.115062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/19/2022]
|
7
|
Recent Developments on 1,8-Naphthalimide Moiety as Potential Target for Anticancer Agents. Bioorg Chem 2022; 121:105677. [DOI: 10.1016/j.bioorg.2022.105677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 01/07/2023]
|
8
|
Design, Synthesis, and Evaluation of Novel 3-Carboranyl-1,8-Naphthalimide Derivatives as Potential Anticancer Agents. Int J Mol Sci 2021; 22:ijms22052772. [PMID: 33803403 PMCID: PMC7967199 DOI: 10.3390/ijms22052772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 12/11/2022] Open
Abstract
We synthesized a series of novel 3-carboranyl-1,8-naphthalimide derivatives, mitonafide and pinafide analogs, using click chemistry, reductive amination and amidation reactions and investigated their in vitro effects on cytotoxicity, cell death, cell cycle, and the production of reactive oxygen species in a HepG2 cancer cell line. The analyses showed that modified naphthalic anhydrides and naphthalimides bearing ortho- or meta-carboranes exhibited diversified activity. Naphthalimides were more cytotoxic than naphthalic anhydrides, with the highest IC50 value determined for compound 9 (3.10 µM). These compounds were capable of inducing cell cycle arrest at G0/G1 or G2M phase and promoting apoptosis, autophagy or ferroptosis. The most promising conjugate 35 caused strong apoptosis and induced ROS production, which was proven by the increased level of 2′-deoxy-8-oxoguanosine in DNA. The tested conjugates were found to be weak topoisomerase II inhibitors and classical DNA intercalators. Compounds 33, 34, and 36 fluorescently stained lysosomes in HepG2 cells. Additionally, we performed a similarity-based assessment of the property profile of the conjugates using the principal component analysis. The creation of an inhibitory profile and descriptor-based plane allowed forming a structure–activity landscape. Finally, a ligand-based comparative molecular field analysis was carried out to specify the (un)favorable structural modifications (pharmacophoric pattern) that are potentially important for the quantitative structure–activity relationship modeling of the carborane–naphthalimide conjugates.
Collapse
|
9
|
Gao L, Ge C, Wang S, Xu X, Feng Y, Li X, Wang C, Wang Y, Dai F, Xie S. The Role of p53-Mediated Signaling in the Therapeutic Response of Colorectal Cancer to 9F, a Spermine-Modified Naphthalene Diimide Derivative. Cancers (Basel) 2020; 12:cancers12030528. [PMID: 32106543 PMCID: PMC7139676 DOI: 10.3390/cancers12030528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/14/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers due to its frequency and high rate of mortality. Polyamine-vectorized anticancer drugs possess multiple biological properties. Of these drugs, 9F has been shown to inhibit tumor growth and the metastasis of hepatocellular carcinoma. This current study aims to investigate the effects of 9F on CRC and determine its molecular mechanisms of action. Our findings demonstrate that 9F inhibits CRC cell growth by inducing apoptosis and cell cycle arrest, and suppresses migration, invasion and angiogenesis in vitro, resulting in the inhibition of tumor growth and metastasis in vivo. Based on RNA-seq data, further bioinformatic analyses suggest that 9F exerts its anticancer activities through p53 signaling, which is responsible for the altered expression of key regulators of the cell cycle, apoptosis, the epithelial-to-mesenchymal transition (EMT), and angiogenesis. In addition, 9F is more effective than amonafide against CRC. These results show that 9F can be considered as a potential strategy for CRC treatment.
Collapse
Affiliation(s)
- Lei Gao
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, China; (L.G.); (C.G.); (S.W.); (Y.F.); (X.L.); (C.W.)
| | - Chaochao Ge
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, China; (L.G.); (C.G.); (S.W.); (Y.F.); (X.L.); (C.W.)
| | - Senzhen Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, China; (L.G.); (C.G.); (S.W.); (Y.F.); (X.L.); (C.W.)
| | - Xiaojuan Xu
- Pharmaceutical College, Henan University, Kaifeng 475004, Henan, China;
| | - Yongli Feng
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, China; (L.G.); (C.G.); (S.W.); (Y.F.); (X.L.); (C.W.)
| | - Xinna Li
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, China; (L.G.); (C.G.); (S.W.); (Y.F.); (X.L.); (C.W.)
| | - Chaojie Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, China; (L.G.); (C.G.); (S.W.); (Y.F.); (X.L.); (C.W.)
| | - Yuxia Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China;
| | - Fujun Dai
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, China; (L.G.); (C.G.); (S.W.); (Y.F.); (X.L.); (C.W.)
- Correspondence: (F.D.); (S.X.); Tel.: +86-159-3857-3755 (F.D.); +86-139-3863-7212 (S.X.)
| | - Songqiang Xie
- Pharmaceutical College, Henan University, Kaifeng 475004, Henan, China;
- Correspondence: (F.D.); (S.X.); Tel.: +86-159-3857-3755 (F.D.); +86-139-3863-7212 (S.X.)
| |
Collapse
|
10
|
Gao Z, Gao H, Zheng D, Xu T, Chen Y, Liang C, Wang L, Ding D, Yang Z. β-galactosidase responsive AIE fluorogene for identification and removal of senescent cancer cells. Sci China Chem 2020. [DOI: 10.1007/s11426-019-9659-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Nekvinda J, Różycka D, Rykowski S, Wyszko E, Fedoruk-Wyszomirska A, Gurda D, Orlicka-Płocka M, Giel-Pietraszuk M, Kiliszek A, Rypniewski W, Bachorz R, Wojcieszak J, Grüner B, Olejniczak AB. Synthesis of naphthalimide-carborane and metallacarborane conjugates: Anticancer activity, DNA binding ability. Bioorg Chem 2019; 94:103432. [PMID: 31776032 DOI: 10.1016/j.bioorg.2019.103432] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/11/2019] [Accepted: 11/10/2019] [Indexed: 12/27/2022]
Abstract
The development of 1,8-naphthalimide derivatives as DNA-targeting anticancer agents is a rapidly growing area and has resulted in several derivatives entering into clinical trials. One of original recent developments is the use of boron clusters: carboranes and metallacarboranes in the design of pharmacologically active molecules. In this direction several naphthalimide-carborane and metallacarborane conjugates were synthesized in the present study. Their effect on a cancer cell line - cytotoxicity, type of cell death, cell cycle, and ROS production were investigated. The tested conjugates revealed different activities than the leading members of the naphthalimides family, namely mitonafide and pinafide. These derivatives could induce G0/G1 arrest and promote mainly apoptosis in HepG2 cell line. Our investigations demonstrated that the most promising molecule is N-{[2-(3,3'-commo-bis(1,2-dicarba-3-cobalta(III)-closo-dodecaborate-1-yl)ethyl]-1'-aminoethyl)}-1,8-naphthalimide] (17). It was shown that 17 exhibited cytotoxicity against HepG2 cells, activated cell apoptosis, and caused cell cycle arrest in HepG2 cells. Further investigations in HepG2 cells revealed that compound 17 can also induce ROS generation, particularly mitochondrial ROS (mtROS), which was also proved by increased 8-oxo-dG level in DNA. Additionally to biological assays the interaction of the new compounds with ct-DNA was studied by CD spectra and melting temperature, thus demonstrating that these compounds were rather weak classical DNA intercalators.
Collapse
Affiliation(s)
- Jan Nekvinda
- Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Hlavní 1001, CZ-250 68 Řež, Czech Republic; Department of Organic Chemistry, Faculty of Sciences, Charles University, Hlavova 2030, 128 42 Prague 2, Czech Republic
| | - Daria Różycka
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., Lodz 93-232, Poland
| | - Sebastian Rykowski
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., Lodz 93-232, Poland
| | - Eliza Wyszko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14 Z. Noskowskiego St., 61-704 Poznan, Poland.
| | | | - Dorota Gurda
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14 Z. Noskowskiego St., 61-704 Poznan, Poland
| | - Marta Orlicka-Płocka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14 Z. Noskowskiego St., 61-704 Poznan, Poland
| | - Małgorzata Giel-Pietraszuk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14 Z. Noskowskiego St., 61-704 Poznan, Poland
| | - Agnieszka Kiliszek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14 Z. Noskowskiego St., 61-704 Poznan, Poland
| | - Wojciech Rypniewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14 Z. Noskowskiego St., 61-704 Poznan, Poland
| | - Rafał Bachorz
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., Lodz 93-232, Poland
| | - Jakub Wojcieszak
- Department of Pharmacodynamics, Medical University of Lodz, 1 Muszynskiego St., 90-151 Lodz, Poland
| | - Bohumir Grüner
- Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Hlavní 1001, CZ-250 68 Řež, Czech Republic
| | - Agnieszka B Olejniczak
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., Lodz 93-232, Poland.
| |
Collapse
|
12
|
Xia X, Xiang X, Huang F, Zheng M, Zhang Z, Han L. Dietary canolol induces apoptosis in human cervical carcinoma HeLa cells through ROS-MAPK mediated mitochondrial signaling pathway: In vitro and in vivo. Chem Biol Interact 2019; 300:138-150. [DOI: 10.1016/j.cbi.2019.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/22/2018] [Accepted: 01/14/2019] [Indexed: 01/13/2023]
|
13
|
Chen Z, Xu Y, Qian X. Naphthalimides and analogues as antitumor agents: A review on molecular design, bioactivity and mechanism of action. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.09.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Pi H, Li M, Xie J, Yang Z, Xi Y, Yu Z, Zhou Z. Transcription factor E3 protects against cadmium-induced apoptosis by maintaining the lysosomal-mitochondrial axis but not autophagic flux in Neuro-2a cells. Toxicol Lett 2018; 295:335-350. [PMID: 30030080 DOI: 10.1016/j.toxlet.2018.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/19/2018] [Accepted: 07/16/2018] [Indexed: 01/09/2023]
Abstract
Cadmium (Cd), is a well-known environmental and occupational hazard with a potent neurotoxic action. However, the mechanism underlying cadmium-induced neurotoxicity remains unclear. Herein, we exposed Neuro-2a cells to different concentrations of cadmium chloride (CdCl2) (12.5, 25 and 50 μM) for 24 h and found that Cd significantly induced lysosomal membrane permeabilization (LMP) with the release of cathepsin B (CTSB) to the cytosol, which in turn caused the release of mitochondrial cytochrome c (Cyt c) and eventually triggered caspase-dependent apoptosis. Interestingly, Cd decreased TFE3 expression but induced the nuclear translocation of TFE3 and TFE3 target-gene expression, which might be associated with lysosomal stress mediated by Cd. Notably, Tfe3 overexpression protected against Cd-induced neurotoxicity by maintaining the lysosomal-mitochondrial axis, and the protective effect of TFE3 is not dependent on the restoration of autophagic flux. In conclusion, our study demonstrated for the first time that lysosomal-mitochondrial axis dependent apoptosis, a neglected mechanism, may be the most important reason for Cd-induced neurotoxicity and that manipulation of TFE3 signaling may be a potential therapeutic approach for treatment of Cd-induced neurotoxicity.
Collapse
Affiliation(s)
- Huifeng Pi
- Department of Occupational Health, Third Military Medical University, Chongqing, China; School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Min Li
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Jia Xie
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Zhiqi Yang
- Brain Research Center, Third Military Medical University, Chongqing, China; Department of Neurology, Army General Hospital in Lanzhou, Lanzhou, China
| | - Yu Xi
- Department of Occupational and Environmental Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhengping Yu
- Department of Occupational Health, Third Military Medical University, Chongqing, China; State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| | - Zhou Zhou
- Department of Environmental Medicine, and Department of Critical Care Medicine of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
15
|
Bestwick CS, Milne L, Dance AM, Cochennec G, Cruickshank G, Allain E, Constable L, Duthie SJ, Thoo Lin PK. Caspase-independence and characterization of bisnaphthalimidopropyl spermidine induced cytotoxicity in HL60 cells. Toxicol In Vitro 2018; 52:342-350. [PMID: 29966682 DOI: 10.1016/j.tiv.2018.06.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 06/19/2018] [Accepted: 06/29/2018] [Indexed: 10/28/2022]
Abstract
Bisnaphthalimides are DNA intercalators of potential use as chemotherapeutics but for which the range of mechanism of action is only gradually being elucidated. Using human promyelocytic HL-60 cells, we extend characterization of the cytotoxicity of bisnaphthalimidopropylspermidine (BNIPSpd) and examine the relationship with caspase-activity. Within 4 h exposure, BNIPSpd (1-10 μM) induced significant DNA strand breakage. Evidence of apoptosis was progressive through the experimental period. Within 6 h, BNIPSpd increased the proportion of cells exhibiting plasma membrane phosphatidylserine exposure. Within 12 h, active caspase expression increased and was sustained with 5 and 10 μM BNIPSpd. Flow cytometric analysis revealed caspase activity in cells with and without damaged membranes. By 24 h, 5 and 10 μM BNIPSpd increased hypodiploid DNA content and internucleosomal DNA fragmentation (DNA ladders) typical of the later stages of apoptosis. 1 μM BNIPSpd exposure also increased hypodiploid DNA content by 48 h. Polyamine levels decreased by 24 h BNIPSpd exposure. The pan-caspase inhibitor, z-VAD-fmk, significantly decreased DNA degradation (hypodiploid DNA and DNA ladders) and cytotoxicity. Despite this, cell growth and viability remained significantly impaired. We propose that BNIPSpd cytotoxicity arises through DNA damage and not polyamine depletion and that cytotoxicity is dominated by but not dependent upon caspase driven apoptosis.
Collapse
Affiliation(s)
- Charles S Bestwick
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | - Lesley Milne
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Anne-Marie Dance
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Gaela Cochennec
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Gillian Cruickshank
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Eflamm Allain
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Lynda Constable
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; The Robert Gordon University, School of Pharmacy and Life Sciences, Sir Ian Wood Building, Garthdee Road Aberdeen, AB10 1GJ, UK
| | - Susan J Duthie
- The Robert Gordon University, School of Pharmacy and Life Sciences, Sir Ian Wood Building, Garthdee Road Aberdeen, AB10 1GJ, UK
| | - Paul Kong Thoo Lin
- The Robert Gordon University, School of Pharmacy and Life Sciences, Sir Ian Wood Building, Garthdee Road Aberdeen, AB10 1GJ, UK
| |
Collapse
|
16
|
Dai F, He H, Xu X, Chen S, Wang C, Feng C, Tian Z, Dong H, Xie S. Synthesis and biological evaluation of naphthalimide-polyamine conjugates modified by alkylation as anticancer agents through p53 pathway. Bioorg Chem 2018; 77:16-24. [DOI: 10.1016/j.bioorg.2017.12.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/25/2017] [Accepted: 12/30/2017] [Indexed: 12/13/2022]
|
17
|
Ji L, Yang S, Li S, Liu S, Tang S, Liu Z, Meng X, Yu S. A novel triazolonaphthalimide induces apoptosis and inhibits tumor growth by targeting DNA and DNA-associated processes. Oncotarget 2018; 8:37394-37408. [PMID: 28445124 PMCID: PMC5514917 DOI: 10.18632/oncotarget.16962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 03/27/2017] [Indexed: 12/28/2022] Open
Abstract
DNA and DNA-associated processes have been classes of the most important targets of chemotherapeutic drugs. As classic DNA intercalators and topoisomerase inhibitors, naphthalimides have been extensively investigated as potential anti-cancer drugs. We recently synthesized a novel series of triazolonaphthalimides with excellent anti-cancer activities. In the present study, one of the most potent triazolonaphthalimides, LSS-11, was investigated. LSS-11 bound to DNA in vitro and in cell mainly by minor groove binding and significantly increased the stability of DNA, which could be fundamental for the biological activities of LSS-11. In addition to inhibiting DNA topoisomerase II-catalyzed decatenation of knotted circulated DNA, LSS-11 dramatically inhibited DNA replication mediated by polymerase chain reaction and isothermal helicase-dependent amplification, as well as the expression of luciferase driven by a minimal TA promoter in cell. Furthermore, LSS-11 exhibited strong cytotoxicity in selected human colon cancer cell lines by inducing cell cycle arrest and apoptosis, which was accompanied by DNA damage response. Finally, LSS-11 potently inhibited the growth of S180 murine sarcoma and SW480 human colorectal cancer xenografts in vivo without significant major toxicities. These results suggest that LSS-11 deserves further research and development as a novel anti-cancer agent, and provided new understandings of mechanisms by which LSS-11 inhibited multiple DNA-associated processes and tumor growth.
Collapse
Affiliation(s)
- Liyan Ji
- Department of Chemical Biology, Peking University School of Pharmaceutical Sciences, Beijing 100191, China.,International Institute for Translational Chinese Medicine, Guangzhou Traditional Chinese Medicine University, Guangzhou 510006, China
| | - Simin Yang
- Department of Chemical Biology, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | - Shasha Li
- Department of Chemical Biology, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | - Shan Liu
- Department of Chemical Biology, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | - Shunan Tang
- Department of Chemical Biology, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou Traditional Chinese Medicine University, Guangzhou 510006, China
| | - Xiangbao Meng
- Department of Chemical Biology, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | - Siwang Yu
- Department of Chemical Biology, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| |
Collapse
|
18
|
Li M, Wang Y, Ge C, Chang L, Wang C, Tian Z, Wang S, Dai F, Zhao L, Xie S. Synthesis and biological evaluation of novel alkylated polyamine analogues as potential anticancer agents. Eur J Med Chem 2018; 143:1732-1743. [DOI: 10.1016/j.ejmech.2017.10.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 01/17/2023]
|
19
|
Liang X, Shi H, Yang L, Qiu C, Lin S, Qi Y, Li J, Zhao A, Liu J. Inhibition of polypyrimidine tract-binding protein 3 induces apoptosis and cell cycle arrest, and enhances the cytotoxicity of 5- fluorouracil in gastric cancer cells. Br J Cancer 2017; 116:903-911. [PMID: 28222070 PMCID: PMC5379144 DOI: 10.1038/bjc.2017.32] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 02/06/2023] Open
Abstract
Background: Human polypyrimidine tract binding protein 3 (PTBP3) was first discovered in 1999 and has been well characterised as a differentiation regulator. However, its role in human cancer has rarely been reported. Our previous study revealed increased PTBP3 protein level in gastric cancer tissues. Downregulation of PTBP3 suppressed the proliferation and differentiation of gastric cancer cells in vivo. Methods: PTBP3 mRNA levels in human gastric cancer and adjuvant non-tumour tissues were detected. Apoptosis and 5-FU effect were determined in PTBP3-silenced gastric cancer cells. Underlying molecular mechanisms were investigated. Results: MRNA expression of PTBP3 was upregulated in gastric cancer tissues, especially in those at an advanced stage. PTBP3 silencing led to apoptosis, under which modulation of PTB and thereby switch of Bcl-x pre-mRNA splicing pattern might be an important mechanism. Further research found that inhibition of PTBP3 expression enhanced the chemosensitivity of gastric cancer cells towards 5-FU treatment. This was mediated by reduced expression of histone deacetylase 6 (HDAC6), which further inhibited the phosphorylation of Akt and the expression of thymidylate synthase (TYMS), the critical determinant of 5-FU cytotoxicity. Conclusions: PTBP3 might serve as a biomarker of gastric cancer or potential target for anti-cancer therapy.
Collapse
Affiliation(s)
- Xin Liang
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, PO Box 268, 130 Meilong Road, Shanghai 200237, China
| | - Haiyang Shi
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, PO Box 268, 130 Meilong Road, Shanghai 200237, China
| | - Liyan Yang
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, PO Box 268, 130 Meilong Road, Shanghai 200237, China
| | - Cen Qiu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, PO Box 268, 130 Meilong Road, Shanghai 200237, China
| | - Shengchao Lin
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, PO Box 268, 130 Meilong Road, Shanghai 200237, China
| | - Yingxue Qi
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, PO Box 268, 130 Meilong Road, Shanghai 200237, China
| | - Jiyu Li
- Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai 200072, China
| | - Aiguang Zhao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, PO Box 268, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
20
|
Chen F, Deng Z, Xiong Z, Zhang B, Yang J, Hu J. A ROS-mediated lysosomal-mitochondrial pathway is induced by ginsenoside Rh2 in hepatoma HepG2 cells. Food Funct 2016; 6:3828-37. [PMID: 26449932 DOI: 10.1039/c5fo00518c] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ginsenoside Rh2 (GRh2), isolated from Panax ginseng C. A. Meyer, has been proven as an anticancer compound both in vitro and in vivo. In the present study, we investigated the role of the lysosomes during the apoptosis of HepG2 cells induced by GRh2. The results showed that GRh2 significantly induced intracellular reactive oxygen species (ROS) generation in the HepG2 cells, which consequently resulted in early lysosomal membrane permeabilization with the release of cathepsin B (Cat B) to the cytosol. Western blot analysis showed that the released Cat B in the cytosol contributed to Bid cleavage. Subsequently mitochondrial damage was observed in the HepG2 cells. Interestingly, when the HepG2 cells were pre-treated with N-Acetyl-L-Cysteine (NAC) for 1 h, which inhibited ROS generation before being exposed to GRh2, the permeabilization of lysosomal membranes and the levels of Cat B in the cytosol were down-regulated. Moreover, mitochondrial damage was alleviated when the HepG2 cells were pre-treated with leupeptin (Leu). From the above results, it could be concluded that GRh2 induced apoptosis of the HepG2 cells through accumulation of ROS and activation of the lysosomal-mitochondrial apoptotic pathway involving the release of Cat B.
Collapse
Affiliation(s)
- Fang Chen
- State Key Laboratory of Food Science and Technology, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330047, China. and College of Life Science & Food Engineering, Nanchang University, Nanchang, Jiangxi 330047, China
| | - ZeYuan Deng
- State Key Laboratory of Food Science and Technology, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330047, China. and College of Life Science & Food Engineering, Nanchang University, Nanchang, Jiangxi 330047, China
| | - ZengXing Xiong
- State Key Laboratory of Food Science and Technology, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330047, China. and College of Life Science & Food Engineering, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Technology, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - JianYuan Yang
- State Key Laboratory of Food Science and Technology, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330047, China. and College of Pharmaceutical and Life Sciences, Jiujiang University, Jiujiang 332000, China
| | - JiangNing Hu
- State Key Laboratory of Food Science and Technology, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330047, China. and College of Life Science & Food Engineering, Nanchang University, Nanchang, Jiangxi 330047, China
| |
Collapse
|
21
|
Hui L, Sang C, Wang D, Wang X, Wang M, Jia Q, Ma M, Chen S. Newly synthesized podophyllotoxin derivative, LJ12, induces apoptosis and mitotic catastrophe in non-small cell lung cancer cells in vitro. Mol Med Rep 2015; 13:339-46. [PMID: 26573436 DOI: 10.3892/mmr.2015.4561] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 10/14/2015] [Indexed: 11/05/2022] Open
Abstract
Deoxypodophyllotoxin (DPT), an active compound isolated from a number of herbs and used in traditional medicine, has been reported to exhibit promising anti‑tumor activity. A newly synthesized derivative, N-(1-oxyl‑4'-demethyl-4-deoxyp odophyllic)-L‑methine-4'-piperazine carbamate (LJ12) may have improved antitumor activity and fewer side effects. The present study assessed the effect of LJ12 on cell viability, apoptosis, cell cycle distribution and mitotic catastrophe in A549 human lung cancer cells in vitro. The molecular mechanisms underlying the antitumor activity of LJ12 were also examined. The results demonstrated that LJ12 reduced A549 cell viability in a time‑ and dose‑dependent manner, with a lower half maximal inhibitory concentration of ~0.1 µM, compared with another known DPT derivative, etoposide (10 µM). Flow cytometric analysis showed that LJ12 induced tumor cell arrest at the G2/M phase of the cell cycle. The present study also observed an expected concomitant decrease in the numbers of cells cells in the G0/G1 and S phases. LJ12 was found to upregulate the protein expression levels of Cdc2 and Cyclin B1. Furthermore, LJ12 induced tumor cell apoptosis and the protein expression of B cell lymphoma‑2‑associated X protein, caspase‑3 and p53. The present study also observed the formation of giant, multinucleated cells, indicating that LJ12 induced mitotic catastrophe in the tumor cells. These results indicated that LJ12 has anti‑non‑small cell lung cancer activity in vitro. Further investigations aim to develop LJ12 as a therapeutic agent for the treatment of lung cancer.
Collapse
Affiliation(s)
- Ling Hui
- Experimental Center of Medicine, General Hospital of Lanzhou Military Area Command, Lanzhou, Gansu 730050, P.R. China
| | - Chunyan Sang
- Experimental Center of Medicine, General Hospital of Lanzhou Military Area Command, Lanzhou, Gansu 730050, P.R. China
| | - Donghong Wang
- Experimental Center of Medicine, General Hospital of Lanzhou Military Area Command, Lanzhou, Gansu 730050, P.R. China
| | - Xiaohui Wang
- Experimental Center of Medicine, General Hospital of Lanzhou Military Area Command, Lanzhou, Gansu 730050, P.R. China
| | - Meiliang Wang
- Experimental Center of Medicine, General Hospital of Lanzhou Military Area Command, Lanzhou, Gansu 730050, P.R. China
| | - Qinghua Jia
- Experimental Center of Medicine, General Hospital of Lanzhou Military Area Command, Lanzhou, Gansu 730050, P.R. China
| | - Mingren Ma
- Experimental Center of Medicine, General Hospital of Lanzhou Military Area Command, Lanzhou, Gansu 730050, P.R. China
| | - Shiwu Chen
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
22
|
Effects of Astragaloside IV on the SDF-1/CXCR4 Expression in Atherosclerosis of apoE(-/-) Mice Induced by Hyperlipaemia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:385154. [PMID: 26074989 PMCID: PMC4449906 DOI: 10.1155/2015/385154] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/19/2014] [Accepted: 10/10/2014] [Indexed: 11/18/2022]
Abstract
Astragaloside IV (AsIV) is the major effective component extracted from the Chinese herb Astragalus membranaceus, which has been widely used to treat cardiovascular disease. Recent studies have shown that AsIV can potentially protect the arteries from atherosclerosis; however the mechanisms underneath are unknown. The aim of this study was to investigate the effects of AsIV on blood lipids, CD40-CD40L signal system, and SDF-1/CXCR4 biological axis in high-fat diet apoE−/− mice and reveal the molecular mechanisms of AsIV against atherosclerosis. Here, we showed that AsIV alleviated the extent of atherosclerosis in aorta of apoE−/− mice. And AsIV can significantly downregulate PAC-1, CD40L, and CXCR4 expression on platelet surface in blood of high-fat diet apoE−/− mice. AsIV also can significantly downregulate mRNA and protein level of SDF-1 and CXCR4 in thoracic aorta. Consistent with aorta CXCR4 expression, CXCR4 in bone marrow-derived endothelial progenitor cell (EPC) was also reduced. Meanwhile biochemical analysis showed that AsIV could downregulate TG, TC, and LDL-C levels and upregulate HDL-C level in blood of high-fat diet apoE−/− mice. We concluded that the protective effects of AsIV in atherosclerosis injury may be related to regulating blood lipids, CD40-CD40L system, and SDF-1/CXCR4 biological axis. SDF-1/CXCR4 biological axis is probably one of the main targets of intervening atherosclerosis.
Collapse
|
23
|
A novel class I histone deacetylase inhibitor, I-7ab, induces apoptosis and arrests cell cycle progression in human colorectal cancer cells. Biomed Pharmacother 2015; 71:70-8. [DOI: 10.1016/j.biopha.2015.02.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 02/15/2015] [Indexed: 12/18/2022] Open
|
24
|
Lin S, Zhang L, Lei K, Zhang A, Liu P, Liu J. Development of a multifunctional luciferase reporters system for assessing endoplasmic reticulum-targeting photosensitive compounds. Cell Stress Chaperones 2014; 19:927-37. [PMID: 24984699 PMCID: PMC4389854 DOI: 10.1007/s12192-014-0517-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 04/24/2014] [Accepted: 04/27/2014] [Indexed: 12/13/2022] Open
Abstract
Photodynamic therapy (PDT) is a recently developed antitumor modality utilizing the generation of reactive oxygen species (ROS), through light irradiation of photosensitizers (PSs) localized in tumor. Interference with proper functioning of endoplasmic reticulum (ER) by ER-targeting PDT is a newly proposed strategy to achieve tumor cell death. The aim of this study is to establish a multifunctional model to screen and assess ER-targeting PSs based on luciferase reporters system. Upregulation of GRP78 is a biomarker for the onset of ER stress. CHOP is a key initiating player in ER stress-induced cell death. Here, the most sensitive fragments of GRP78 and CHOP promoters responding to ER-targeting PDT were mapped and cloned into pGL3-basic vector, forming -702/GRP78-Luc and -443/CHOP-Luc construct, respectively. We demonstrated that -702/GRP78-Luc expression can be used to indicate the ER-targeting of PSs, meanwhile estimate the ROS level induced by low-dose ER-targeting PDT. Moreover, the luciferase signaling of -443/CHOP-Luc showed highly consistence with apoptosis rate caused by ER-targeting PDT, suggesting that -443/CHOP-Luc can evaluate the antitumor properties of PSs. Hypericin, Foscan® and methylene blue were applied to verify the sensitivity and reliability of our model. These results proved that GRP78-CHOP model may be suitable to screen ER-targeting photosensitive compounds with lower cost and higher sensitivity than traditional ways.
Collapse
Affiliation(s)
- Shengchao Lin
- />Department of Molecular & Cellular Pharmacology, Biomedical Nanotechnology Center, State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai, 200237 People’s Republic of China
| | - Lingling Zhang
- />Department of Molecular & Cellular Pharmacology, Biomedical Nanotechnology Center, State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai, 200237 People’s Republic of China
| | - Kecheng Lei
- />Department of Molecular & Cellular Pharmacology, Biomedical Nanotechnology Center, State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai, 200237 People’s Republic of China
| | - Anle Zhang
- />Department of Molecular & Cellular Pharmacology, Biomedical Nanotechnology Center, State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai, 200237 People’s Republic of China
| | - Ping Liu
- />Longhua Hospital Affiliated to Shanghai University of traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032 People’s Republic of China
| | - Jianwen Liu
- />Department of Molecular & Cellular Pharmacology, Biomedical Nanotechnology Center, State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai, 200237 People’s Republic of China
| |
Collapse
|