1
|
Ralli S, Vira T, Robles-Espinoza CD, Adams DJ, Brooks-Wilson AR. Variant ranking pipeline for complex familial disorders. Sci Rep 2024; 14:13599. [PMID: 38866901 PMCID: PMC11169219 DOI: 10.1038/s41598-024-64169-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
Identifying genetic susceptibility factors for complex disorders remains a challenging task. To analyze collections of small and large pedigrees where genetic heterogeneity is likely, but biological commonalities are plausible, we have developed a weights-based pipeline to prioritize variants and genes. The Weights-based vAriant Ranking in Pedigrees (WARP) pipeline prioritizes variants using 5 weights: disease incidence rate, number of cases in a family, genome fraction shared amongst cases in a family, allele frequency and variant deleteriousness. Weights, except for the population allele frequency weight, are normalized between 0 and 1. Weights are combined multiplicatively to produce family-specific-variant weights that are then averaged across all families in which the variant is observed to generate a multifamily weight. Sorting multifamily weights in descending order creates a ranked list of variants and genes for further investigation. WARP was validated using familial melanoma sequence data from the European Genome-phenome Archive. The pipeline identified variation in known germline melanoma genes POT1, MITF and BAP1 in 4 out of 13 families (31%). Analysis of the other 9 families identified several interesting genes, some of which might have a role in melanoma. WARP provides an approach to identify disease predisposing genes in studies with small and large pedigrees.
Collapse
Affiliation(s)
- Sneha Ralli
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Tariq Vira
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | | | - David J Adams
- Experimental Cancer Genetics, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Angela R Brooks-Wilson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, V5Z 1L3, Canada.
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
2
|
Perez-Moreno E, Oyanadel C, de la Peña A, Hernández R, Pérez-Molina F, Metz C, González A, Soza A. Galectins in epithelial-mesenchymal transition: roles and mechanisms contributing to tissue repair, fibrosis and cancer metastasis. Biol Res 2024; 57:14. [PMID: 38570874 PMCID: PMC10993482 DOI: 10.1186/s40659-024-00490-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Abstract
Galectins are soluble glycan-binding proteins that interact with a wide range of glycoproteins and glycolipids and modulate a broad spectrum of physiological and pathological processes. The expression and subcellular localization of different galectins vary among tissues and cell types and change during processes of tissue repair, fibrosis and cancer where epithelial cells loss differentiation while acquiring migratory mesenchymal phenotypes. The epithelial-mesenchymal transition (EMT) that occurs in the context of these processes can include modifications of glycosylation patterns of glycolipids and glycoproteins affecting their interactions with galectins. Moreover, overexpression of certain galectins has been involved in the development and different outcomes of EMT. This review focuses on the roles and mechanisms of Galectin-1 (Gal-1), Gal-3, Gal-4, Gal-7 and Gal-8, which have been involved in physiologic and pathogenic EMT contexts.
Collapse
Affiliation(s)
- Elisa Perez-Moreno
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia (CCTE) Ciencia y Vida, Santiago, Chile
| | - Claudia Oyanadel
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Adely de la Peña
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia (CCTE) Ciencia y Vida, Santiago, Chile
| | - Ronny Hernández
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Francisca Pérez-Molina
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Claudia Metz
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Alfonso González
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
- Centro Científico y Tecnológico de Excelencia (CCTE) Ciencia y Vida, Santiago, Chile.
| | - Andrea Soza
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
- Centro Científico y Tecnológico de Excelencia (CCTE) Ciencia y Vida, Santiago, Chile.
| |
Collapse
|
3
|
Krajnović M, Kožik B, Božović A, Jovanović-Ćupić S. Multiple Roles of the RUNX Gene Family in Hepatocellular Carcinoma and Their Potential Clinical Implications. Cells 2023; 12:2303. [PMID: 37759525 PMCID: PMC10527445 DOI: 10.3390/cells12182303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent cancers in humans, characterised by a high resistance to conventional chemotherapy, late diagnosis, and a high mortality rate. It is necessary to elucidate the molecular mechanisms involved in hepatocarcinogenesis to improve diagnosis and treatment outcomes. The Runt-related (RUNX) family of transcription factors (RUNX1, RUNX2, and RUNX3) participates in cardinal biological processes and plays paramount roles in the pathogenesis of numerous human malignancies. Their role is often controversial as they can act as oncogenes or tumour suppressors and depends on cellular context. Evidence shows that deregulated RUNX genes may be involved in hepatocarcinogenesis from the earliest to the latest stages. In this review, we summarise the topical evidence on the roles of RUNX gene family members in HCC. We discuss their possible application as non-invasive molecular markers for early diagnosis, prognosis, and development of novel treatment strategies in HCC patients.
Collapse
Affiliation(s)
| | - Bojana Kožik
- Laboratory for Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, Vinča, 11351 Belgrade, Serbia; (M.K.); (A.B.); (S.J.-Ć.)
| | | | | |
Collapse
|
4
|
Roy A, Prasad S, Chen Y, Chao Y, Liu Y, Zhao J, Wang QJ. Protein Kinase D2 and D3 Promote Prostate Cancer Cell Bone Metastasis by Positively Regulating Runx2 in a MEK/ERK1/2-Dependent Manner. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:624-637. [PMID: 36740185 PMCID: PMC10155267 DOI: 10.1016/j.ajpath.2023.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
Advanced-stage prostate tumors metastasize to the bone, often causing death. The protein kinase D (PKD) family has been implicated in prostate cancer development; however, its role in prostate cancer metastasis remains elusive. This study examined the contribution of PKD, particularly PKD2 and PKD3 (PKD2/3), to the metastatic potential of prostate cancer cells and the effect of PKD inhibition on prostate cancer bone metastasis in vivo. Depletion of PKD2/3 by siRNAs or inhibition by the PKD inhibitor CRT0066101 in AR-positive and AR-negative castration-resistant prostate cancer cells potently inhibited colony formation and cell migration. Depletion or inhibition of PKD2/3 significantly blocked tumor cell invasion and suppressed the expression of genes related to bone metastasis in the highly invasive PC3-ML cells. The reduced invasive activity resulting from PKD2/3 depletion was in part mediated by the transcription factor Runx2, as its silencing decreased PKD2/3-mediated metastatic gene expression through the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase 1/2 signaling axis. Furthermore, inhibition of PKD by CRT0066101 potently decreased the frequency of bone micrometastases in a mouse model of bone metastasis based on intracardiac injection of PC3-ML cells. These results indicate that PKD2/3 plays an important role in the bone metastasis of prostate cancer cells, and its inhibition may be beneficial for the treatment of advanced prostate cancer.
Collapse
Affiliation(s)
- Adhiraj Roy
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, India
| | - Sahdeo Prasad
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yuzhou Chen
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yapeng Chao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yu Liu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jinjun Zhao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiming Jane Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
5
|
Zhang X, Zhang X, Liu T, Zhang Z, Piao C, Ning H. METTL14 promotes migration and invasion of choroidal melanoma by targeting RUNX2 mRNA via m6A modification. J Cell Mol Med 2022; 26:5602-5613. [PMID: 36264762 DOI: 10.1111/jcmm.17577] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022] Open
Abstract
The modification of N6-methyladenosine is involved in the progression of various cancers. This study aimed to clarify its regulatory mechanism in the pathogenesis of choroidal melanoma. Expression of methyltransferase-like 14 in choroidal melanoma or normal choroidal tissues was determined by Western blot and immunohistochemistry. The impacts of methyltransferase-like 14 on invasion and migration of choroidal melanoma cells were determined using functional and animal experiments. The interaction between methyltransferase-like 14 and its downstream target was identified by methylated RNA immunoprecipitation and a dual-luciferase reporter assay. Additionally, Wnt/β-catenin signalling pathway was evaluated by Western blot. Methyltransferase-like 14 was upregulated in choroidal melanoma compared to the normal choroidal tissues. Overexpression or knockdown of methyltransferase-like 14 enhanced or inhibited the invasion and migration of choroidal melanoma cells, respectively, both in vivo and in vitro. Methyltransferase-like 14 directly targeted downstream runt-related transcription factor 2 mRNA, depending on N6-methyladenosine. Additionally, the Wnt/β-catenin signalling pathway was activated by methyltransferase-like 14 in choroidal melanoma cells. Our study identified a novel RNA regulatory mechanism in which runt-related transcription factor 2 was upregulated by enhanced expression of methyltransferase-like 14 via N6-methyladenosine modification, thus facilitating migration and invasion of choroidal melanoma cells.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaonan Zhang
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tengyue Liu
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhe Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chiyuan Piao
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hong Ning
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Li Y, Song J, Zhou P, Zhou J, Xie S. Targeting Undruggable Transcription Factors with PROTACs: Advances and Perspectives. J Med Chem 2022; 65:10183-10194. [PMID: 35881047 DOI: 10.1021/acs.jmedchem.2c00691] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dysregulation of transcription factors has been implicated in a variety of human diseases. However, these proteins have traditionally been regarded as undruggable and only a handful of them have been successfully targeted by conventional small molecules. Moreover, the development of intrinsic and acquired resistance has hampered the clinical use of these agents. Over the past years, proteolysis-targeting chimeras (PROTACs) have shown great promise because of their potential for overcoming drug resistance and their ability to target previously undruggable proteins. Indeed, several small molecule-based PROTACs have demonstrated superior efficacy in therapy-resistant metastatic cancers. Nevertheless, it remains challenging to identify ligands for the majority of transcription factors. Given that transcription factors recognize short DNA motifs in a sequence-specific manner, multiple novel approaches exploit DNA motifs as warheads in PROTAC design for the degradation of aberrant transcription factors. These PROTACs pave the way for targeting undruggable transcription factors with potential therapeutic benefits.
Collapse
Affiliation(s)
- Yan Li
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Jian Song
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Ping Zhou
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Jun Zhou
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China.,State Key Laboratory of Medicinal Chemical Biology, Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Songbo Xie
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China.,School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| |
Collapse
|
7
|
Jin G, Ruan Q, Shangguan F, Lan L. RUNX2 and LAMC2: promising pancreatic cancer biomarkers identified by an integrative data mining of pancreatic adenocarcinoma tissues. Aging (Albany NY) 2021; 13:22963-22984. [PMID: 34606473 PMCID: PMC8544338 DOI: 10.18632/aging.203589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/18/2021] [Indexed: 01/25/2023]
Abstract
Pancreatic carcinoma (PC) is a severe disease associated with high mortality. Although strategies for cancer therapy have made great progress, outcomes of pancreatic carcinoma patients remain extremely poor. Therefore, it is urgent to find novel biomarkers and therapeutic targets. To identify biomarkers for early diagnosis and therapy, three mRNA microarray datasets and two miRNA datasets were selected, and combinative analysis was performed by GEO2R. Functional and pathway enrichment analysis were performed using DAVID database. MiRTarBase, miRWalk and Diana Tools were used to get key genes. TCGA, HPA and western blotting were used to verify diagnostic and prognostic value of key genes. By integrating mRNA and miRNA expression profiles, we identified 114 differentially expressed genes and 114 differentially expressed miRNAs, respectively. Then, three overlapping key genes, RUNX2, LAMC2 and FBXO32, were found. Their protein levels in pancreatic tissue from PC patients and normal people were analyzed by immunohistochemical staining and western blotting. RUNX2 showed a potential property to identify PC. Aberrant over-expression of LAMC2 was associated with poor prognosis of PC patients, tumor status and subtypes. In summary, our current study identified that RUNX2 and LAMC2 may be promising targets for early diagnosis and therapy of PC patients.
Collapse
Affiliation(s)
- Guihua Jin
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Qingqing Ruan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Fugen Shangguan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Linhua Lan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
8
|
Chen X, Gao J, Liang N. DUXAP8 knockdown inhibits the development of melanoma by regulating the miR-3182/NUPR1 pathway. Oncol Lett 2021; 22:495. [PMID: 33981357 PMCID: PMC8108271 DOI: 10.3892/ol.2021.12756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/22/2021] [Indexed: 02/03/2023] Open
Abstract
Double homeobox A pseudogene 8 (DUXAP8) has been reported to regulate the growth of several types of cancers, such as breast cancer and ovarian cancer. However, its role in melanoma remains unclear. In the present study, the mechanism through which DUXAP8 regulates melanoma progression was explored. The expression levels of DUXAP8 were determined in 43 samples from patients with melanoma in different stages, as well as human epidermal melanocytes cells and malignant melanoma cell lines using reverse transcription-quantitative PCR (RT-qPCR). The prognosis of patients was analyzed using the Kaplan-Meier method. The relationship between lncRNA DUXAP8 expression and microRNA (miR)-3182 or nuclear protein 1 transcriptional regulator (NUPR1) levels was analyzed using Pearson's correlation. Luciferase reporter and RNA pull-down were used to examine the interactions between these molecules. Proliferation was assessed using Cell Counting-Kit-8. Transwell assays were used to examine cell migration and invasion. lncRNA DUXAP8 was upregulated in melanoma tissue and cells compared with normal tissues and cells. The levels of DUXAP8 inversely correlated with survival time of patients with melanoma. Knockdown of lncRNA DUXAP8 inhibited proliferation, migration and invasion of melanoma cells. lncRNA DUXAP8 targeted miR-3182, while miR-3182 targeted NUPR1. The overexpression of NUPR1 reversed the effects of DUXAP8 knockdown or miR-3182 mimic on melanoma progression. In conclusion, lncRNA DUXAP8 downregulation inhibits the development of melanoma by regulating the miR-3182/NUPR1 axis.
Collapse
Affiliation(s)
- Xige Chen
- Department of Dermatology, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| | - Juan Gao
- Department of Dermatology, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| | - Ning Liang
- Department of Dermatology, The Affiliated Changzhou No. 2 People's Hospital with Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
9
|
Li Y, Sun R, Zhao X, Sun B. RUNX2 promotes malignant progression in gastric cancer by regulating COL1A1. Cancer Biomark 2021; 31:227-238. [PMID: 33896817 DOI: 10.3233/cbm-200472] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Runt-related transcription factor 2 (RUNX2) is an important gene that has been implicated in the progression of human cancer. Aberrant expression of RUNX2 predicts gastric cancer (GC) metastasis. However, the molecular mechanism of RUNX2 remains unknown. OBJECTIVE We hypothesize that RUNX2 promotes GC metastasis by regulating the extracellular matrix component collagen type I alpha 1 (COL1A1). METHODS The GEPIA database and immunohistochemical staining of 60 GC tissues were used to analyse the correlations between RUNX2 or COL1A1 expression and clinicopathological features, and the Kaplan-Meier method was used to evaluate survival. RT-PCR, western blotting and immunofluorescence were used to detect RUNX2 and COL1A1 expression in GC cells. Migration and invasion assays were performed to assess the influence of RUNX2 and COL1A1 on metastasis. RESULTS RUNX2 and COL1A1 were highly expressed at both the gene and protein levels in GC, and patients who were positive for RUNX2 and COL1A1 had shorter survival. RUNX2 and COL1A1 expression linearly correlated with each other (r= 0.15, p< 0.01) and with clinical stage and lymph node metastasis (p< 0.05). Overexpressing RUNX2in vitro enhanced COL1A1 expression and promoted GC cell invasion and migration, whereas COL1A1 knockdown inhibited the increase in cell metastatic capacity promoted by RUNX2. In vivo, GC cells overexpressing RUNX2 promoted lung metastasis, and the downregulation of COL1A1 reduced the metastasis promoted by RUNX2. CONCLUSIONS RUNX2 may promote GC metastasis by regulating COL1A1. RUNX2/COL1A1 can be employed as a novel target for therapy in GC.
Collapse
Affiliation(s)
- Yanlei Li
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Ran Sun
- Department of Gastrointestinal Surgery, Tianjin Nankai Hospital, Tianjin, China
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Baocun Sun
- Department of Pathology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
10
|
Han C, Jin L, Ma X, Hao Q, Lin H, Zhang Z. Identification of the hub genes RUNX2 and FN1 in gastric cancer. Open Med (Wars) 2020; 15:403-412. [PMID: 33313404 PMCID: PMC7706133 DOI: 10.1515/med-2020-0405] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/10/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
Background This study identified key genes in gastric cancer (GC) based on the mRNA microarray GSE19826 from the Gene Expression Omnibus (GEO) database and preliminarily explored the relationships among the key genes. Methods Differentially expressed genes (DEGs) were obtained using the GEO2R tool. The functions and pathway enrichment of the DEGs were analyzed using the Enrichr database. Protein–protein interactions (PPIs) were established by STRING. A lentiviral vector was constructed to silence RUNX2 expression in MGC-803 cells. The expression levels of RUNX2 and FN1 were measured. The influences of RUNX2 and FN1 on overall survival (OS) were determined using the Kaplan–Meier plotter online tool. Results In total, 69 upregulated and 65 downregulated genes were identified. Based on the PPI network of the DEGs, 20 genes were considered hub genes. RUNX2 silencing significantly downregulated the FN1 expression in MGC-803 cells. High expression of RUNX2 and low expression of FN1 were associated with long survival time in diffuse, poorly differentiated, and lymph node-positive GC. Conclusion High RUNX2 and FN1 expression were associated with poor OS in patients with GC. RUNX2 can negatively regulate the secretion of FN1, and both genes may serve as promising targets for GC treatment.
Collapse
Affiliation(s)
- Chao Han
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Lei Jin
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Xuemei Ma
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Qin Hao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Huajun Lin
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| |
Collapse
|
11
|
LncRNA E2F-Mediated Cell Proliferation Enhancing lncRNA Regulates Cancer Cell Behaviors and Affects Prognosis of Gastric Cancer. Dig Dis Sci 2020; 65:1348-1354. [PMID: 31584135 DOI: 10.1007/s10620-019-05855-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND A recent study reported a novel long non-coding RNA (lncRNA) E2F-mediated cell proliferation enhancing lncRNA (EPEL, human chromosome 4, intergenic region) plays an oncogenic role in lung cancer. AIMS We aimed to investigate the role of lncRNA EPEL in gastric cancer. METHODS Gene expression was analyzed by RT-qPCR and western blot. Survival analysis was performed by comparing survival curves. Cell proliferation, migration, and invasion were analyzed by CCK-8 and Transwell assays. RESULTS We found that lncRNA EPEL and Runt-related transcription factor 2 (RUNX2) were both upregulated in gastric cancer. EPEL and RUNX2 were positively correlated in tumor. Patients with high expression level of lncRNA EPEL showed poor survival. LncRNA EPEL and RUNX2 overexpression promoted, while lncRNA EPEL siRNA silencing inhibited the migration, proliferation, and invasion of gastric cancers. In addition, RUNX2 overexpression completely rescued the inhibited cancer cell migration, proliferation, and invasion caused by lncRNA EPEL siRNA silencing. Consistently, EPEL overexpression resulted in upregulated RUNX2 expression, while RUNX2 overexpression did not affect lncRNA EPEL expression. CONCLUSIONS Therefore, lncRNA EPEL may regulate cancer cell behaviors and affect prognosis of gastric cancer by interacting with RUNX2.
Collapse
|
12
|
A Potential Role of RUNX2- RUNT Domain in Modulating the Expression of Genes Involved in Bone Metastases: An In Vitro Study with Melanoma Cells. Cells 2020; 9:cells9030751. [PMID: 32204402 PMCID: PMC7140624 DOI: 10.3390/cells9030751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 01/07/2023] Open
Abstract
Ectopic expression of RUNX2 has been reported in several tumors. In melanoma cells, the RUNT domain of RUNX2 increases cell proliferation and migration. Due to the strong link between RUNX2 and skeletal development, we hypothesized that the RUNT domain may be involved in the modulation of mechanisms associated with melanoma bone metastasis. Therefore, we evaluated the expression of metastatic targets in wild type (WT) and RUNT KO melanoma cells by array and real-time PCR analyses. Western blot, ELISA, immunofluorescence, migration and invasion ability assays were also performed. Our findings showed that the expression levels of bone sialoprotein (BSP) and osteopontin (SPP1) genes, which are involved in malignancy-induced hypercalcemia, were reduced in RUNT KO cells. In addition, released PTHrP levels were lower in RUNT KO cells than in WT cells. The RUNT domain also contributes to increased osteotropism and bone invasion in melanoma cells. Importantly, we found that the ERK/p-ERK and AKT/p-AKT pathways are involved in RUNT-promoted bone metastases. On the basis of our findings, we concluded that the RUNX2 RUNT domain is involved in the mechanisms promoting bone metastasis of melanoma cells via complex interactions between multiple players involved in bone remodeling.
Collapse
|
13
|
Zhang PP, Wang YC, Cheng C, Zhang F, Ding DZ, Chen DK. Runt-related transcription factor 2 influences cell adhesion-mediated drug resistance and cell proliferation in B-cell non-Hodgkin's lymphoma and multiple myeloma. Leuk Res 2020; 92:106340. [PMID: 32182487 DOI: 10.1016/j.leukres.2020.106340] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/20/2020] [Accepted: 03/06/2020] [Indexed: 11/27/2022]
Abstract
Several lines of evidence show that RUNX2 as a transcription factor is closely involved in carcinogenesis in a variety of human cancers. Cell adhesion-mediated drug resistance (CAM-DR) is an important part of the mechanism underlying drug resistance in hematological tumors. In this study, we investigated the biological function of RUNX2 in B-cell Non-Hodgkin's lymphoma (B-NHL) and multiple myeloma (MM). We assessed the expression of RUNX2 in suspension and adhesion model by western blot in B-NHL and MM. Adhesion assay, flow cytometry and CCK-8 were utilized to examine the role and mechanism of RUNX2 in CAM-DR and proliferation in B-NHL and MM. RUNX2 was highly expressed in adherent B-NHL and MM cells compared to suspension cells, and knockdown the expression of RUNX2 could reverse CAM-DR. Besides, RUNX2 could promote the proliferation of B-NHL and MM cells. Furthermore, RUNX2 participated the process of CAM-DR and proliferation by regulating the AKT/GSK-3β pathway. Developing RUNX2 inhibitor may be a possible strategy for drug resistance.
Collapse
Affiliation(s)
- Pei-Pei Zhang
- Department of Oncology, Tongzhou District People's Hospital, Nantong, Jiangsu, 226000, People's Republic of China
| | - Yu-Chan Wang
- Department of Pathogenic Biology, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Chun Cheng
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, Jiangsu, 226001, People's Republic of China; Department of Immunity, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Fei Zhang
- Department of Orthopaedics, Hongze District People's Hospital, Huaian, Jiangsu, 226000, People's Republic of China
| | - Da-Zhi Ding
- Department of Orthopaedics, Tongzhou District People's Hospital, Nantong, Jiangsu, 226000, People's Republic of China
| | - Da-Ke Chen
- Department of Oncology, Tongzhou District People's Hospital, Nantong, Jiangsu, 226000, People's Republic of China.
| |
Collapse
|
14
|
Bolf EL, Gillis NE, Barnum MS, Beaudet CM, Yu GY, Tomczak JA, Stein JL, Lian JB, Stein GS, Carr FE. The Thyroid Hormone Receptor-RUNX2 Axis: A Novel Tumor Suppressive Pathway in Breast Cancer. Discov Oncol 2019; 11:34-41. [PMID: 31865591 DOI: 10.1007/s12672-019-00373-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 11/25/2019] [Indexed: 01/07/2023] Open
Abstract
Metastatic breast cancer is refractory to conventional therapies and is an end-stage disease. RUNX2 is a transcription factor that becomes oncogenic when aberrantly expressed in multiple tumor types, including breast cancer, supporting tumor progression and metastases. Our previous work demonstrated that the thyroid hormone receptor beta (TRβ) inhibits RUNX2 expression and tumorigenic characteristics in thyroid cells. As TRβ is a tumor suppressor, we investigated the compelling question whether TRβ also regulates RUNX2 in breast cancer. The Cancer Genome Atlas indicates that TRβ expression is decreased in the most aggressive basal-like subtype of breast cancer. We established that modulated levels of TRβ results in corresponding changes in the high levels of RUNX2 expression in metastatic, basal-like breast cells. The MDA-MB-231 triple-negative breast cancer cell line exhibits low expression of TRβ and high levels of RUNX2. Increased expression of TRβ decreased RUNX2 levels. The thyroid hormone-mediated suppression of RUNX2 is TRβ specific as TRα overexpression failed to alter RUNX2 expression. Consistent with these findings, knockdown of TRβ in non-tumor MCF10A mammary epithelial-like cells results in an increase in RUNX2 and RUNX2 target genes. Mechanistically, TRβ directly interacts with the proximal promoter of RUNX2 through a thyroid hormone response element to reduce promoter activity. The TRβ suppression of the oncogene RUNX2 is a signaling pathway shared by thyroid and breast cancers. Our findings provide a novel mechanism for TRβ-mediated tumor suppression in breast cancers. This pathway may be common to many solid tumors and impact treatment for metastatic cancers.
Collapse
Affiliation(s)
- Eric L Bolf
- Department of Pharmacology, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA.,University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Noelle E Gillis
- Department of Pharmacology, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA.,University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Michael S Barnum
- Department of Pharmacology, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Caitlin M Beaudet
- Department of Pharmacology, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Grace Y Yu
- Department of Pharmacology, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Jennifer A Tomczak
- Department of Pharmacology, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Janet L Stein
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA.,Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Jane B Lian
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA.,Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Gary S Stein
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA.,Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Frances E Carr
- Department of Pharmacology, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA. .,University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA.
| |
Collapse
|
15
|
Kubota S, Tokunaga K, Umezu T, Yokomizo-Nakano T, Sun Y, Oshima M, Tan KT, Yang H, Kanai A, Iwanaga E, Asou N, Maeda T, Nakagata N, Iwama A, Ohyashiki K, Osato M, Sashida G. Lineage-specific RUNX2 super-enhancer activates MYC and promotes the development of blastic plasmacytoid dendritic cell neoplasm. Nat Commun 2019; 10:1653. [PMID: 30971697 PMCID: PMC6458132 DOI: 10.1038/s41467-019-09710-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 03/26/2019] [Indexed: 12/12/2022] Open
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is an aggressive subtype of acute leukemia, the cell of origin of which is considered to be precursors of plasmacytoid dendritic cells (pDCs). Since translocation (6;8)(p21;q24) is a recurrent anomaly for BPDCN, we demonstrate that a pDC-specific super-enhancer of RUNX2 is associated with the MYC promoter due to t(6;8). RUNX2 ensures the expression of pDC-signature genes in leukemic cells, but also confers survival and proliferative properties in BPDCN cells. Furthermore, the pDC-specific RUNX2 super-enhancer is hijacked to activate MYC in addition to RUNX2 expression, thereby promoting the proliferation of BPDCN. We also demonstrate that the transduction of MYC and RUNX2 is sufficient to initiate the transformation of BPDCN in mice lacking Tet2 and Tp53, providing a model that accurately recapitulates the aggressive human disease and gives an insight into the molecular mechanisms underlying the pathogenesis of BPDCN.
Collapse
Affiliation(s)
- Sho Kubota
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo Ward, Kumamoto, 860-0811, Japan
| | - Kenji Tokunaga
- Department of Hematology, Kumamoto University, 1-1-1 Honjo, Chuo Ward, Kumamoto, 860-8556, Japan
| | - Tomohiro Umezu
- Department of Hematology, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku, Tokyo, 160-0023, Japan
| | - Takako Yokomizo-Nakano
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo Ward, Kumamoto, 860-0811, Japan
| | - Yuqi Sun
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo Ward, Kumamoto, 860-0811, Japan
| | - Motohiko Oshima
- Department of Cellular and Molecular Medicine, Chiba University, 1-8-1 Inohana, Chuo Ward, Chiba, 260-8670, Japan.,Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato, Tokyo, 108-8639, Japan
| | - Kar Tong Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 119077, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 119077, Singapore
| | - Akinori Kanai
- Department of Molecular Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 739-0046, Japan
| | - Eisaku Iwanaga
- Department of Hematology, Kumamoto University, 1-1-1 Honjo, Chuo Ward, Kumamoto, 860-8556, Japan
| | - Norio Asou
- Department of Hematology, International Medical Center, Saitama Medical University, Saitama, 350-1298, Japan
| | - Takahiro Maeda
- Department of General Medicine, Nagasaki University, Graduate School of Biomedical Science, Nagasaki, 852-8523, Japan
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, 2-2-1 Honjo, Chuo Ward, Kumamoto, 860-0811, Japan
| | - Atsushi Iwama
- Department of Cellular and Molecular Medicine, Chiba University, 1-8-1 Inohana, Chuo Ward, Chiba, 260-8670, Japan.,Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato, Tokyo, 108-8639, Japan
| | - Kazuma Ohyashiki
- Department of Hematology, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku, Tokyo, 160-0023, Japan
| | - Motomi Osato
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 119077, Singapore. .,Laboratory of Runx Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo Ward, Kumamoto, 860-0811, Japan. .,Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Chuo Ward, Kumamoto, 860-0811, Japan.
| | - Goro Sashida
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo Ward, Kumamoto, 860-0811, Japan.
| |
Collapse
|
16
|
New Insights into the Runt Domain of RUNX2 in Melanoma Cell Proliferation and Migration. Cells 2018; 7:cells7110220. [PMID: 30463392 PMCID: PMC6262450 DOI: 10.3390/cells7110220] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/13/2022] Open
Abstract
The mortality rate for malignant melanoma (MM) is very high, since it is highly invasive and resistant to chemotherapeutic treatments. The modulation of some transcription factors affects cellular processes in MM. In particular, a higher expression of the osteogenic master gene RUNX2 has been reported in melanoma cells, compared to normal melanocytes. By analyzing public databases for recurrent RUNX2 genetic and epigenetic modifications in melanoma, we found that the most common RUNX2 genetic alteration that exists in transcription upregulation is, followed by genomic amplification, nucleotide substitution and multiple changes. Additionally, altered RUNX2 is involved in unchecked pathways promoting tumor progression, Epithelial Mesenchymal Transition (EMT), and metastasis. In order to investigate further the role of RUNX2 in melanoma development and to identify a therapeutic target, we applied the CRISPR/Cas9 technique to explore the role of the RUNT domain of RUNX2 in a melanoma cell line. RUNT-deleted cells showed reduced proliferation, increased apoptosis, and reduced EMT features, suggesting the involvement of the RUNT domain in different pathways. In addition, del-RUNT cells showed a downregulation of genes involved in migration ability. In an in vivo zebrafish model, we observed that wild-type melanoma cells migrated in 81% of transplanted fishes, while del-RUNT cells migrated in 58%. All these findings strongly suggest the involvement of the RUNT domain in melanoma metastasis and cell migration and indicate RUNX2 as a prospective target in MM therapy.
Collapse
|
17
|
Valenti MT, Dalle Carbonare L, Mottes M. Ectopic expression of the osteogenic master gene RUNX2 in melanoma Maria Teresa Valenti, Luca Dalle Carbonare, Monica Mottes. World J Stem Cells 2018; 10:78-81. [PMID: 30079129 PMCID: PMC6068731 DOI: 10.4252/wjsc.v10.i7.78] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/11/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023] Open
Abstract
The transcription factor RUNX2 is the osteogenic master gene expressed in mesenchymal stem cells during osteogenic commitment as well as in pre-osteoblasts and early osteoblasts. However, RUNX2 is also ectopically expressed in melanoma and other cancers. Malignant melanoma (MM) is a highly metastatic skin cancer. The incidence of MM has increased considerably in the past half-century. The expression levels and mutation rates of genes such as BRAF, KIT, NRAS, PTEN, P53, TERT and MITF are higher in melanoma than in other solid malignancies. Additionally, transcription factors can affect cellular processes and induce cellular transformation since they control gene expression. Recently, several studies have identified alterations in RUNX2 expression. In particular, the regulation of KIT by RUNX2 and the increased expression of RUNX2 in melanoma specimens have been shown. Melanocytes, whose transformation results in melanoma, arise from the neural crest and therefore show “stemness” features. RUNX2 plays an important role in the re-activation of the MAPK and PI3K/AKT pathways, thus endowing melanoma cells with a high metastatic potential. In melanoma, the most frequent metastatic sites are the lung, liver, brain and lymph nodes. In addition, bone metastatic melanoma has been described. Notably, studies focusing on RUNX2 may contribute to the identification of an appropriate oncotarget in melanoma.
Collapse
Affiliation(s)
| | | | - Monica Mottes
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona 37100, Italy
| |
Collapse
|
18
|
Tan J, Qian X, Song B, An X, Cai T, Zuo Z, Ding D, Lu Y, Li H. Integrated bioinformatics analysis reveals that the expression of cathepsin S is associated with lymph node metastasis and poor prognosis in papillary thyroid cancer. Oncol Rep 2018; 40:111-122. [PMID: 29749483 PMCID: PMC6059735 DOI: 10.3892/or.2018.6428] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/26/2018] [Indexed: 12/20/2022] Open
Abstract
The prognosis of the majority of patients with papillary thyroid cancer (PTC) is excellent, although there are patients who experience disease recurrence and progression. The aim of the present study was to identify potential prognostic risk markers in PTC. Differentially expressed genes (DEGs), identified from four Genome Expression Omnibus cohorts were subjected to functional enrichment analyses with Gene Ontology terms and the Kyoto Encyclopedia of Genes and Genome pathways. Hub genes, filtered from cytoHubba, were validated using the The Cancer Genome Atlas (TCGA) cohort, and their associations with clinicopathological features and prognosis were analyzed. A total of 277 DEGs were identified following data preprocessing. DEGs were primarily enriched in 'small cell lung cancer', 'ECM-receptor interaction', 'pathways in cancer'and 'tyrosine metabolism'. Hub genes [APOE, cathepsin S (CTSS), insulin receptor substrate 1 (IRS1), KIT, LGALS3, RUNX2 and TGFBR1] were extracted from cytoHubba. Their expression in the TCGA cohort was consistent with that in the GEO cohorts. CTSS (P=0.006) and IRS1 (P=0.005) were associated with disease‑free survival, as determined using the Kaplan-Meier analysis. CTSS was an independent risk factor for poor disease‑free survival (HR, 2.649; 95% CI, 1.095-6.409; P=0.031). Patients with high expression of CTSS exhibited different histological types (increased tall-cell subtype and reduced follicular subtype; P<0.001), more frequent lymph node metastasis (P<0.001) and advanced tumor-node-metastasis stages (P=0.049) compared with the low-expression group. High expression of CTSS was independently associated with lymph node metastasis (OR, 2.015; 95% CI, 1.225-3.315; P=0.006). Therefore, CTSS may serve as a predictive risk marker for the progression and prognosis of PTC.
Collapse
Affiliation(s)
- Juan Tan
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Department of Gerontology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Xiaoxiao Qian
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Bin Song
- Department of Endocrinology, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Xiumin An
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Tingting Cai
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Zhihua Zuo
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Dafa Ding
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Yibing Lu
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Hong Li
- Medical Examination Center, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
19
|
The transcription factor RUNX2 regulates receptor tyrosine kinase expression in melanoma. Oncotarget 2018; 7:29689-707. [PMID: 27102439 PMCID: PMC5045426 DOI: 10.18632/oncotarget.8822] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/28/2016] [Indexed: 12/12/2022] Open
Abstract
Receptor tyrosine kinases-based autocrine loops largely contribute to activate the MAPK and PI3K/AKT pathways in melanoma. However, the molecular mechanisms involved in generating these autocrine loops are still largely unknown. In the present study, we examine the role of the transcription factor RUNX2 in the regulation of receptor tyrosine kinase (RTK) expression in melanoma. We have demonstrated that RUNX2-deficient melanoma cells display a significant decrease in three receptor tyrosine kinases, EGFR, IGF-1R and PDGFRβ. In addition, we found co-expression of RUNX2 and another RTK, AXL, in both melanoma cells and melanoma patient samples. We observed a decrease in phosphoAKT2 (S474) and phosphoAKT (T308) levels when RUNX2 knock down resulted in significant RTK down regulation. Finally, we showed a dramatic up regulation of RUNX2 expression with concomitant up-regulation of EGFR, IGF-1R and AXL in melanoma cells resistant to the BRAF V600E inhibitor PLX4720. Taken together, our results strongly suggest that RUNX2 might be a key player in RTK-based autocrine loops and a mediator of resistance to BRAF V600E inhibitors involving RTK up regulation in melanoma.
Collapse
|
20
|
Ogata T, Nakamura M, Sang M, Yoda H, Hiraoka K, Yin D, Sang M, Shimozato O, Ozaki T. Depletion of runt-related transcription factor 2 (RUNX2) enhances SAHA sensitivity of p53-mutated pancreatic cancer cells through the regulation of mutant p53 and TAp63. PLoS One 2017; 12:e0179884. [PMID: 28671946 PMCID: PMC5495219 DOI: 10.1371/journal.pone.0179884] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/06/2017] [Indexed: 01/19/2023] Open
Abstract
Suberoylanilide hydroxamic acid (SAHA) represents one of the new class of anti-cancer drugs. However, multiple lines of clinical evidence indicate that SAHA might be sometimes ineffective on certain solid tumors including pancreatic cancer. In this study, we have found for the first time that RUNX2/mutant p53/TAp63-regulatory axis has a pivotal role in the determination of SAHA sensitivity of p53-mutated pancreatic cancer MiaPaCa-2 cells. According to our present results, MiaPaCa-2 cells responded poorly to SAHA. Forced depletion of mutant p53 stimulated SAHA-mediated cell death of MiaPaCa-2 cells, which was accomapanied by a further accumulation of γH2AX and cleaved PARP. Under these experimental conditions, pro-oncogenic RUNX2 was strongly down-regulated in mutant p53-depleted MiaPaCa-2 cells. Surprisingly, RUNX2 silencing augmented SAHA-dependent cell death of MiaPaCa-2 cells and caused a significant reduction of mutant p53. Consistent with these observations, overexpression of RUNX2 in MiaPaCa-2 cells restored SAHA-mediated decrease in cell viability and increased the amount of mutant p53. Thus, it is suggestive that there exists a positive auto-regulatory loop between RUNX2 and mutant p53, which might amplify their pro-oncogenic signals. Intriguingly, knockdown of mutant p53 or RUNX2 potentiated SAHA-induced up-regulation of TAp63. Indeed, SAHA-stimulated cell death of MiaPaCa-2 cells was partially attenuated by p63 depletion. Collectively, our present observations strongly suggest that RUNX2/mutant p53/TAp63-regulatory axis is one of the key determinants of SAHA sensitivity of p53-mutated pancreatic cancer cells.
Collapse
Affiliation(s)
- Takehiro Ogata
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Mizuyo Nakamura
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Meijie Sang
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
- Department of Regenerative Medicine, Graduate School of Medicine, University of Toyama, Toyama, Japan
| | - Hiroyuki Yoda
- Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Kiriko Hiraoka
- Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Danjing Yin
- Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Mexiang Sang
- Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Osamu Shimozato
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Toshinori Ozaki
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
- * E-mail:
| |
Collapse
|
21
|
Guo W, Wang H, Yang Y, Guo S, Zhang W, Liu Y, Yi X, Ma J, Zhao T, Liu L, Jian Z, Liu L, Wang G, Gao T, Shi Q, Li C. Down-regulated miR-23a Contributes to the Metastasis of Cutaneous Melanoma by Promoting Autophagy. Am J Cancer Res 2017; 7:2231-2249. [PMID: 28740547 PMCID: PMC5505056 DOI: 10.7150/thno.18835] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/31/2017] [Indexed: 12/18/2022] Open
Abstract
Melanoma is among the most aggressive tumors, and the occurrence of metastasis leads to a precipitous drop in the patients' survival. Therefore, identification of metastasis-associated biomarkers and therapeutic targets will contribute a lot to improving melanoma theranostics. Recently, microRNAs (miRNAs) have been implicated in modulating cancer invasion and metastasis, and are proved as potential non-invasive biomarkers in sera for various tumors. Here, we reported miR-23a as a novel metastasis-associated miRNA that played a remarkable role in modulating melanoma invasive and metastatic capacity and was of great value in predicting melanoma metastasis and prognosis. We found that serum miR-23a level was significantly down-regulated in metastatic melanoma patients and highly correlated with poor clinical outcomes. In addition, miR-23a level was also remarkably decreased in metastatic melanoma tissues and cell lines. Furthermore, overexpressed miR-23a suppressed the invasive and migratory property of melanoma cells by abrogating autophagy through directly targeting ATG12. Specially, miR-23a-ATG12 axis attenuated melanoma invasion and migration through autophagy-mediated AMPK-RhoA pathway. Finally, the overexpression of miR-23a prevented melanoma metastasis in vivo. Taken together, our findings demonstrate that the metastasis-associated miR-23a is not only a potential biomarker, but also a valuable therapeutic target for melanoma.
Collapse
|
22
|
Tandon M, Othman AH, Ashok V, Stein GS, Pratap J. The role of Runx2 in facilitating autophagy in metastatic breast cancer cells. J Cell Physiol 2017; 233:559-571. [PMID: 28345763 DOI: 10.1002/jcp.25916] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 02/06/2023]
Abstract
Breast cancer metastases cause significant patient mortality. During metastases, cancer cells use autophagy, a catabolic process to recycle nutrients via lysosomal degradation, to overcome nutritional stress for their survival. The Runt-related transcription factor, Runx2, promotes cell survival under metabolic stress, and regulates breast cancer progression and bone metastases. Here, we identify that Runx2 enhances autophagy in metastatic breast cancer cells. We defined Runx2 function in cellular autophagy by monitoring microtubule-associated protein light chain (LC3B-II) levels, an autophagy-specific marker. The electron and confocal microscopic analyses were utilized to identify alterations in autophagic vesicles. The Runx2 knockdown cells accumulate LC3B-II protein and autophagic vesicles due to reduced turnover. Interestingly, Runx2 promotes autophagy by enhancing trafficking of LC3B vesicles. Our mechanistic studies revealed that Runx2 promotes autophagy by increasing acetylation of α-tubulin sub-units of microtubules. Inhibiting autophagy decreased cell adhesion and survival of Runx2 knockdown cells. Furthermore, analysis of LC3B protein in clinical breast cancer specimens and tumor xenografts revealed significant association between high Runx2 and low LC3B protein levels. Our studies reveal a novel regulatory mechanism of autophagy via Runx2 and provide molecular insights into the role of autophagy in metastatic cancer cells.
Collapse
Affiliation(s)
- Manish Tandon
- Department of Cell and Molecular Medicine, Rush University Medical Center, Chicago, Illinois
| | - Ahmad H Othman
- Department of Cell and Molecular Medicine, Rush University Medical Center, Chicago, Illinois
| | - Vivek Ashok
- Department of Cell and Molecular Medicine, Rush University Medical Center, Chicago, Illinois
| | - Gary S Stein
- University of Vermont Cancer Center and Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Jitesh Pratap
- Department of Cell and Molecular Medicine, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
23
|
Perduca M, Carbonare LD, Bovi M, Innamorati G, Cheri S, Cavallini C, Scupoli MT, Mori A, Valenti MT. Runx2 downregulation, migration and proliferation inhibition in melanoma cells treated with BEL β-trefoil. Oncol Rep 2017; 37:2209-2214. [DOI: 10.3892/or.2017.5493] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 02/09/2017] [Indexed: 11/06/2022] Open
|
24
|
The Expression and Functional Significance of Runx2 in Hepatocellular Carcinoma: Its Role in Vasculogenic Mimicry and Epithelial-Mesenchymal Transition. Int J Mol Sci 2017; 18:ijms18030500. [PMID: 28264434 PMCID: PMC5372516 DOI: 10.3390/ijms18030500] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 12/27/2022] Open
Abstract
The transcription factor Runx2 has been reported to promote epithelial-mesenchymal transition (EMT) in many tumors. Vasculogenic mimicry (VM) is described as the mimicry of endothelial cells by tumor cells to form microvascular tubes in aggressive tumors. Galectin-3 has been reported to regulate cell invasion, migration, and VM formation; it could be regulated by Runx2. However, the relationship between Runx2, Galectin-3, EMT, and VM has not been studied in hepatocellular carcinoma (HCC). We examined Runx2 expression in 89 human HCC samples and found Runx2 expression was associated with VM. Clinical-pathological data analysis revealed that Runx2 expression was associated with a shorter survival period. Overexpression of Runx2 promoted EMT and enhanced cell migration, invasion, and VM formation in HepG2 cells. Conversely, the downregulation of Runx2 inhibited EMT and reduced cell invasion, migration, and VM formation in SMMC7721. Galectin-3 expression declined following the downregulation of Runx2 in HepG2 cells, and increased in SMMC7721 cells after Runx2 knockdown. We consistently demonstrated that the downregulation of LGALS3 in HepG2-Runx2 cells reduced cell migration; invasion and VM formation; while upregulation of LGALS3 in SMMC7721-shRunx2 cells enhanced cell migration, invasion, and VM formation. The results indicate that Runx2 could promote EMT and VM formation in HCC and Galectin-3 might have some function in this process.
Collapse
|
25
|
Yang CJ, Liu YP, Dai HY, Shiue YL, Tsai CJ, Huang MS, Yeh YT. Nuclear HDAC6 inhibits invasion by suppressing NF-κB/MMP2 and is inversely correlated with metastasis of non-small cell lung cancer. Oncotarget 2016; 6:30263-76. [PMID: 26388610 PMCID: PMC4745796 DOI: 10.18632/oncotarget.4749] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 09/04/2015] [Indexed: 11/25/2022] Open
Abstract
Histone deacetylase 6 (HDAC6) is a unique member of the histone deacetylase family. Although HDAC6 is mainly localized in the cytoplasm, it can regulate the activities of the transcription factors in the nucleus. However, a correlation of intracellular distribution of HDAC6 with tumor progression is lacking. In this study, we found that a low frequency of nuclear HDAC6-positive cells in tumors was associated with distant metastasis and a worse overall survival in 134 patients with non-small cell lung cancer (NSCLC). Ectopic expression of wild-type HDAC6 promoted migration and invasion of A549 and H661 cells. However, the enforced expression of nuclear export signal-deleted HDAC6 inhibited the invasion but not the migration of both cell lines. The inhibitory effect of nuclear HDAC6 on invasion was mediated by the deacetylation of the p65 subunit of nuclear factor-κB, which decreased its DNA-binding activity to the MMP2 promoter, leading to the downregulation of MMP2 expression. Our findings indicated that the loss of nuclear HDAC6 may be a potential biomarker for predicting metastasis in patients with NSCLC.
Collapse
Affiliation(s)
- Chih-Jen Yang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Peng Liu
- Department of Genome Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hong-Ying Dai
- Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan
| | - Yow-Ling Shiue
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chia-Jung Tsai
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ming-Shyan Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yao-Tsung Yeh
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan
| |
Collapse
|
26
|
Transcriptional master regulator analysis in breast cancer genetic networks. Comput Biol Chem 2015; 59 Pt B:67-77. [PMID: 26362298 DOI: 10.1016/j.compbiolchem.2015.08.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 08/17/2015] [Accepted: 08/17/2015] [Indexed: 01/05/2023]
Abstract
Gene regulatory networks account for the delicate mechanisms that control gene expression. Under certain circumstances, gene regulatory programs may give rise to amplification cascades. Such transcriptional cascades are events in which activation of key-responsive transcription factors called master regulators trigger a series of gene expression events. The action of transcriptional master regulators is then important for the establishment of certain programs like cell development and differentiation. However, such cascades have also been related with the onset and maintenance of cancer phenotypes. Here we present a systematic implementation of a series of algorithms aimed at the inference of a gene regulatory network and analysis of transcriptional master regulators in the context of primary breast cancer cells. Such studies were performed in a highly curated database of 880 microarray gene expression experiments on biopsy-captured tissue corresponding to primary breast cancer and healthy controls. Biological function and biochemical pathway enrichment analyses were also performed to study the role that the processes controlled - at the transcriptional level - by such master regulators may have in relation to primary breast cancer. We found that transcription factors such as AGTR2, ZNF132, TFDP3 and others are master regulators in this gene regulatory network. Sets of genes controlled by these regulators are involved in processes that are well-known hallmarks of cancer. This kind of analyses may help to understand the most upstream events in the development of phenotypes, in particular, those regarding cancer biology.
Collapse
|
27
|
Cohen-Solal KA, Boregowda RK, Lasfar A. RUNX2 and the PI3K/AKT axis reciprocal activation as a driving force for tumor progression. Mol Cancer 2015. [PMID: 26204939 PMCID: PMC4513933 DOI: 10.1186/s12943-015-0404-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
From the first reported role of the transcription factor RUNX2 in osteoblast and chondrocyte differentiation and migration to its involvement in promigratory/proinvasive behavior of breast, prostate, and thyroid cancer cells, osteosarcoma, or melanoma cells, RUNX2 currently emerges as a key player in metastasis. In this review, we address the interaction of RUNX2 with the PI3K/AKT signaling pathway, one of the critical axes controlling cancer growth and metastasis. AKT, either by directly phosphorylating/activating RUNX2 or phosphorylating/inactivating regulators of RUNX2 stability or activity, contributes to RUNX2 transcriptional activity. Reciprocally, the activation of the PI3K/AKT pathway by RUNX2 regulation of its different components has been described in non-transformed and transformed cells. This mutual activation in the context of cancer cells exhibiting constitutive AKT activation and high levels of RUNX2 might constitute a major driving force in tumor progression and aggressiveness.
Collapse
Affiliation(s)
- Karine A Cohen-Solal
- Rutgers Cancer Institute of New Jersey, Department of Medicine, Division of Medical Oncology - Rutgers, the State University of New Jersey, Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, New Jersey, 08903, USA.
| | - Rajeev K Boregowda
- Rutgers Cancer Institute of New Jersey, Department of Medicine, Division of Medical Oncology - Rutgers, the State University of New Jersey, Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, New Jersey, 08903, USA
| | - Ahmed Lasfar
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, 08903, USA
| |
Collapse
|
28
|
Sancisi V, Gandolfi G, Ambrosetti DC, Ciarrocchi A. Histone Deacetylase Inhibitors Repress Tumoral Expression of the Proinvasive Factor RUNX2. Cancer Res 2015; 75:1868-82. [PMID: 25769725 DOI: 10.1158/0008-5472.can-14-2087] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 01/20/2015] [Indexed: 11/16/2022]
Abstract
Aberrant reactivation of embryonic pathways occurs commonly in cancer. The transcription factor RUNX2 plays a fundamental role during embryogenesis and is aberrantly reactivated during progression and metastasization of different types of human tumors. In this study, we attempted to dissect the molecular mechanisms governing RUNX2 expression and its aberrant reactivation. We identified a new regulatory enhancer element, located within the RUNX2 gene, which is responsible for the activation of the RUNX2 promoter and for the regulation of its expression in cancer cells. Furthermore, we have shown that treatment with the anticancer compounds histone deacetylase inhibitor (HDACi) results in a profound inhibition of RUNX2 expression, which is determined by the disruption of the transcription-activating complex on the identified enhancer. These data envisage a possible targeting strategy to counteract the oncongenic function of RUNX2 in cancer cells and provide evidence that the cytotoxic activity of HDACi in cancer is not only dependent on the reactivation of silenced oncosuppressors but also on the repression of oncogenic factors that are necessary for survival and progression.
Collapse
Affiliation(s)
- Valentina Sancisi
- Laboratory of Translational Research, Research and Statistic Infrastructure, Arcispedale S. Maria Nuova-IRCCS, Reggio Emilia, Italy.
| | - Greta Gandolfi
- Laboratory of Translational Research, Research and Statistic Infrastructure, Arcispedale S. Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Davide Carlo Ambrosetti
- Laboratory of Molecular Biology, Department of Pharmacology and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Research and Statistic Infrastructure, Arcispedale S. Maria Nuova-IRCCS, Reggio Emilia, Italy.
| |
Collapse
|
29
|
Sun SS, Zhang L, Yang J, Zhou X. Role of runt-related transcription factor 2 in signal network of tumors as an inter-mediator. Cancer Lett 2015; 361:1-7. [PMID: 25727319 DOI: 10.1016/j.canlet.2015.02.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/20/2015] [Accepted: 02/20/2015] [Indexed: 10/23/2022]
Abstract
Runt-related transcription factor 2 (RUNX2) is a member of the polyomavirus enhancer-binding protein 2/core-binding factor superfamily. RUNX2 is known for its contribution to osteoblast phenotype and bone formation. In recent years, increasing attention has been focused on the relationship of Runx2 with tumorigenesis. In different types of tumor cells, RUNX2 cooperates with its co-activators or co-inhibitors, and mediates the responses of cells to various signaling pathways that are hyperactive in tumors. Thus, several downstream target genes of RUNX2 are activated when RUNX2 interacts with its co-factors, leading to a variety of effects on tumor cells (epithelial-mesenchymal transition, metastasis, proliferation, and osteolytic lesion). This review focuses on the involvement of RUNX2 in tumor cells in the crosstalk of diverse signaling pathways and its multiple functions to develop optimal and feasible approaches for clinical treatment based on the functions of RUNX2.
Collapse
Affiliation(s)
- Shan-Shan Sun
- The Maxillary Facial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer, Institute & Hospital, Tianjin Key Laboratory of Cancer, Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin 300060, China
| | - Lun Zhang
- The Maxillary Facial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer, Institute & Hospital, Tianjin Key Laboratory of Cancer, Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin 300060, China
| | - Jingxuan Yang
- Department of Medicine, University of Oklahoma Health Science Center, Stanton L. Young Biomedical, Research Center, BRC I264, Oklahoma City, OK 73 104, USA
| | - Xuan Zhou
- The Maxillary Facial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer, Institute & Hospital, Tianjin Key Laboratory of Cancer, Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin 300060, China.
| |
Collapse
|
30
|
Haley JA, Haughney E, Ullman E, Bean J, Haley JD, Fink MY. Altered Transcriptional Control Networks with Trans-Differentiation of Isogenic Mutant-KRas NSCLC Models. Front Oncol 2014; 4:344. [PMID: 25538889 PMCID: PMC4259114 DOI: 10.3389/fonc.2014.00344] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/17/2014] [Indexed: 01/05/2023] Open
Abstract
Background: The capacity of cancer cells to undergo epithelial mesenchymal trans-differentiation has been implicated as a factor driving metastasis, through the acquisition of enhanced migratory/invasive cell programs and the engagement of anti-apoptotic mechanisms promoting drug and radiation resistance. Our aim was to define molecular signaling changes associated with mesenchymal trans-differentiation in two KRas mutant NSCLC models. We focused on central transcription and epigenetic regulators predicted to be important for mesenchymal cell survival. Experimental design: We have modeled trans-differentiation and cancer stemness in inducible isogenic mutant-KRas H358 and A549 non-small cell lung cell backgrounds. As expected, our models show mesenchymal-like tumor cells acquire novel mechanisms of cellular signaling not apparent in their epithelial counterparts. We employed large-scale quantitative phosphoproteomic, proteomic, protein–protein interaction, RNA-Seq, and network function prediction approaches to dissect the molecular events associated with the establishment and maintenance of the mesenchymal state. Results: Gene-set enrichment and pathway prediction indicated BMI1, KDM5B, RUNX2, MYC/MAX, NFκB, LEF1, and HIF1 target networks were significantly enriched in the trans-differentiation of H358 and A549 NSCLC models. Physical overlaps between multiple networks implicate NR4A1 as an overlapping control between TCF and NFκB pathways. Enrichment correlations also indicated marked decrease in cell cycling, which occurred early in the EMT process. RNA abundance time course studies also indicated early expression of epigenetic and chromatin regulators within 8–24 h, including CITED4, RUNX3, CMBX1, and SIRT4. Conclusion: Multiple transcription and epigenetic pathways where altered between epithelial and mesenchymal tumor cell states, notably the polycomb repressive complex-1, HP1γ, and BAF/Swi-Snf. Network analysis suggests redundancy in the activation and inhibition of pathway regulators, notably factors controlling epithelial cell state. Through large-scale transcriptional and epigenetic cell reprograming, mesenchymal trans-differentiation can promote diversification of signaling networks potentially important in resistance to cancer therapies.
Collapse
Affiliation(s)
- John A Haley
- Department of Biomedical Sciences, LIU Post , Brookville, NY , USA
| | | | - Erica Ullman
- Regeneron Pharmaceuticals Inc. , Tarrytown, NY , USA
| | - James Bean
- Infectious Disease Division, Memorial Sloan Kettering Cancer Center , New York, NY , USA
| | - John D Haley
- Department of Pathology, Cancer Center, Stony Brook School of Medicine , Stony Brook, NY , USA
| | - Marc Y Fink
- Department of Biomedical Sciences, LIU Post , Brookville, NY , USA
| |
Collapse
|
31
|
Pawlowska E, Wysokiński D, Tokarz P, Piastowska-Ciesielska A, Szczepanska J, Blasiak J. Dexamethasone and 1,25-dihydroxyvitamin D3 reduce oxidative stress-related DNA damage in differentiating osteoblasts. Int J Mol Sci 2014; 15:16649-64. [PMID: 25244015 PMCID: PMC4200756 DOI: 10.3390/ijms150916649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/13/2014] [Accepted: 09/09/2014] [Indexed: 01/22/2023] Open
Abstract
The process of osteoblast differentiation is regulated by several factors, including RUNX2. Recent reports suggest an involvement of RUNX2 in DNA damage response (DDR), which is important due to association of differentiation with oxidative stress. In the present work we explore the influence of two RUNX2 modifiers, dexamethasone (DEX) and 1,25-dihydroxyvitamin D3 (1,25-D3), in DDR in differentiating MC3T3-E1 preosteoblasts challenged by oxidative stress. The process of differentiation was associated with reactive oxygen species (ROS) production and tert-butyl hydroperoxide (TBH) reduced the rate of differentiation. The activity of alkaline phosphatase (ALP), a marker of the process of osteoblasts differentiation, increased in a time-dependent manner and TBH further increased this activity. This may indicate that additional oxidative stress, induced by TBH, may accelerate the differentiation process. The cells displayed changes in the sensitivity to TBH in the course of differentiation. DEX increased ALP activity, but 1,25-D3 had no effect on it. These results suggest that DEX might stimulate the process of preosteoblasts differentiation. Finally, we observed a protective effect of DEX and 1,25-D3 against DNA damage induced by TBH, except the day 24 of differentiation, when DEX increased the extent of TBH-induced DNA damage. We conclude that oxidative stress is associated with osteoblasts differentiation and induce DDR, which may be modulated by RUNX2-modifiers, DEX and 1,25-D3.
Collapse
Affiliation(s)
- Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland.
| | - Daniel Wysokiński
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Paulina Tokarz
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | | | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland.
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|