1
|
Liu X, He Q, Sun S, Lu X, Chen Y, Lu S, Wang Z. Research progress of SHP-1 agonists as a strategy for tumor therapy. Mol Divers 2024:10.1007/s11030-024-11059-5. [PMID: 39739293 DOI: 10.1007/s11030-024-11059-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/01/2024] [Accepted: 11/17/2024] [Indexed: 01/02/2025]
Abstract
Src homology-2 domain-containing protein tyrosine phosphatase 1 (SHP-1) is a member of protein tyrosine phosphatase (PTP) family, and serves as a crucial negative regulator of various oncogenic signaling pathways. The development of SHP-1 agonists has garnered extensive research attention and is considered as a promising strategy for treating tumors. In this review, we comprehensively analyze the advancements of SHP-1 agonists, focusing on their structures and biological activities. Based on the structure skeletons, we classify these SHP-1 agonists as kinase inhibitors, sorafenib derivatives, obatoclax derivatives, lithocholic acid derivatives and thieno[2,3-b]quinoline derivatives. Additionally, we discuss the potential opportunities and challenges for developing SHP-1 agonists. It is hoped that this review will provide inspiring insights into the discovery of drugs targeting SHP-1.
Collapse
Affiliation(s)
- Xiaoyue Liu
- School of Science, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Qindi He
- School of Science, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Shuding Sun
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Xun Lu
- School of Science, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yadong Chen
- School of Science, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Shuai Lu
- School of Science, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Zhijie Wang
- Shenzhen Key Laboratory of Viral Oncology, Ministry of Science and Innovation, ShenZhen Hospital, Southern Medical University, Shenzhen, 518000, People's Republic of China.
| |
Collapse
|
2
|
Hu Y, Dong Z, Liu K. Unraveling the complexity of STAT3 in cancer: molecular understanding and drug discovery. J Exp Clin Cancer Res 2024; 43:23. [PMID: 38245798 PMCID: PMC10799433 DOI: 10.1186/s13046-024-02949-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/08/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a transcriptional factor involved in almost all cancer hallmark features including tumor proliferation, metastasis, angiogenesis, immunosuppression, tumor inflammation, metabolism reprogramming, drug resistance, cancer stemness. Therefore, STAT3 has become a promising therapeutic target in a wide range of cancers. This review focuses on the up-to-date knowledge of STAT3 signaling in cancer. We summarize both the positive and negative modulators of STAT3 together with the cancer hallmarks involving activities regulated by STAT3 and highlight its extremely sophisticated regulation on immunosuppression in tumor microenvironment and metabolic reprogramming. Direct and indirect inhibitors of STAT3 in preclinical and clinical studies also have been summarized and discussed. Additionally, we highlight and propose new strategies of targeting STAT3 and STAT3-based combinations with established chemotherapy, targeted therapy, immunotherapy and combination therapy. These efforts may provide new perspectives for STAT3-based target therapy in cancer.
Collapse
Affiliation(s)
- Yamei Hu
- Tianjian Laboratory for Advanced Biomedical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zigang Dong
- Tianjian Laboratory for Advanced Biomedical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China.
| | - Kangdong Liu
- Tianjian Laboratory for Advanced Biomedical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Cotino-Nájera S, Herrera LA, Domínguez-Gómez G, Díaz-Chávez J. Molecular mechanisms of resveratrol as chemo and radiosensitizer in cancer. Front Pharmacol 2023; 14:1287505. [PMID: 38026933 PMCID: PMC10667487 DOI: 10.3389/fphar.2023.1287505] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/01/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
One of the primary diseases that cause death worldwide is cancer. Cancer cells can be intrinsically resistant or acquire resistance to therapies and drugs used for cancer treatment through multiple mechanisms of action that favor cell survival and proliferation, becoming one of the leading causes of treatment failure against cancer. A promising strategy to overcome chemoresistance and radioresistance is the co-administration of anticancer agents and natural compounds with anticancer properties, such as the polyphenolic compound resveratrol (RSV). RSV has been reported to be able to sensitize cancer cells to chemotherapeutic agents and radiotherapy, promoting cancer cell death. This review describes the reported molecular mechanisms by which RSV sensitizes tumor cells to radiotherapy and chemotherapy treatment.
Collapse
Affiliation(s)
- Sandra Cotino-Nájera
- Laboratorio de Oncología Molecular, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Luis A. Herrera
- Laboratorio de Oncología Molecular, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
- Escuela de Medicina y Ciencias de la Salud-Tecnológico de Monterrey, México City, Mexico
| | - Guadalupe Domínguez-Gómez
- Subdirección de Investigación Clínica, Instituto Nacional de Cancerología (INCAN), Ciudad de México, Mexico
| | - José Díaz-Chávez
- Unidad de Investigación en Cáncer, Instituto de Investigaciones Biomédicas-Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| |
Collapse
|
4
|
Synthesis and Biological Evaluation of 3-Amino-4,4-Dimethyl Lithocholic Acid Derivatives as Novel, Selective, and Cellularly Active Allosteric SHP1 Activators. Molecules 2023; 28:molecules28062488. [PMID: 36985458 PMCID: PMC10056611 DOI: 10.3390/molecules28062488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/14/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP1), a non-receptor member of the protein tyrosine phosphatase (PTP) family, negatively regulates several signaling pathways that are responsible for pathological cell processes in cancers. In this study, we report a series of 3-amino-4,4-dimethyl lithocholic acid derivatives as SHP1 activators. The most potent compounds, 5az-ba, showed low micromolar activating effects (EC50: 1.54–2.10 μM) for SHP1, with 7.63–8.79-fold maximum activation and significant selectivity over the closest homologue Src homology 2 domain-containing protein tyrosine phosphatase 2 (SHP2) (>32-fold). 5az-ba showed potent anti-tumor effects with IC50 values of 1.65–5.51 μM against leukemia and lung cancer cells. A new allosteric mechanism of SHP1 activation, whereby small molecules bind to a central allosteric pocket and stabilize the active conformation of SHP1, was proposed. The activation mechanism was consistent with the structure–activity relationship (SAR) data. This study demonstrates that 3-amino-4,4-dimethyl lithocholic acid derivatives can be selective SHP1 activators with potent cellular efficacy.
Collapse
|
5
|
Xu L, Mu X, Liu M, Wang Z, Shen C, Mu Q, Feng B, Xu Y, Hou T, Gao L, Jiang H, Li J, Zhou Y, Wang W. Novel thieno[2,3-b]quinoline-procaine hybrid molecules: A new class of allosteric SHP-1 activators evolved from PTP1B inhibitors. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022]
|
6
|
STAT3 and PD-L1 are negatively correlated with ATM and have impact on the prognosis of triple-negative breast cancer patients with low ATM expression. Breast Cancer Res Treat 2022; 196:45-56. [PMID: 36056297 DOI: 10.1007/s10549-022-06679-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/10/2022] [Accepted: 07/04/2022] [Indexed: 11/02/2022]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is known for its aggressive behaviors and lacking of effective treatment. Programmed cell death ligand-1 (PD-L1) inhibitor has just been approved for using in the management of advanced TNBC. To accurately screen TNBC sensitive to anti-PD-L1 treatment and to explore the feasibility of the ataxia-telangiectasia mutation protein (ATM) inhibitor combined with PD-L1 inhibitor, radiotherapy and chemotherapy, we focus on whether ATM participates in the regulation of PD-L1 and affects the prognosis of patients through c-Src, signal transducer and activator of transcription 1&3 (STAT1 and STAT3). MATERIALS AND METHODS We used immunohistochemical staining to explore the relationship of ATM with c-Src, STAT1, STAT3, PD-1/PD-L1, Tumor-infiltrating lymphocytes (TILs), as well as other clinicopathologic features in 86 pathological stage III TNBCs. Their impact on prognosis was also explored. RESULTS We found ATM expression was negatively correlated with STAT1, STAT3, PD-L1, TILs and CD8 + cells in TNBC. STAT1 positively correlated the expression of PD-L1. In TNBC with ATM low expression, STAT3 was an independent factor for improved prognosis, while PD-L1 was an independent negative prognostic factor. Furthermore, in low ATM group, the phosphorylation of tyrosine at position 419 of c-Src (p-c-src Y419) was correlated with the overexpression of STAT3. CONCLUSION Locally advanced TNBC with low ATM expression may be more likely to benefit from anti-PD-L1 inhibitors. The feasibility of ATM functional inhibitor combined with immune checkpoint blockade therapies in the treatment of TNBC is also worthy of further exploration. Our study suggests that STAT3 has different impacts on tumor progression in different tumors.
Collapse
|
7
|
Wang X, Zhang X, Qiu C, Yang N. STAT3 Contributes to Radioresistance in Cancer. Front Oncol 2020; 10:1120. [PMID: 32733808 PMCID: PMC7358404 DOI: 10.3389/fonc.2020.01120] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/06/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy has been used in the clinic for more than one century and it is recognized as one of the main methods in the treatment of malignant tumors. Signal Transducers and Activators of Transcription 3 (STAT3) is reported to be upregulated in many tumor types, and it is believed to be involved in the tumorigenesis, development and malignant behaviors of tumors. Previous studies also found that STAT3 contributes to chemo-resistance of various tumor types. Recently, many studies reported that STAT3 is involved in the response of tumor cells to radiotherapy. But until now, the role of the STAT3 in radioresistance has not been systematically demonstrated. In this study, we will review the radioresistance induced by STAT3 and relative solutions will be discussed.
Collapse
Affiliation(s)
- Xuehai Wang
- Department of Otolaryngology, Weihai Municipal Hospital, Shandong University, Weihai, China
| | - Xin Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Chen Qiu
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, China
| | - Ning Yang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| |
Collapse
|
8
|
Yazdani HO, Huang H, Tsung A. Autophagy: Dual Response in the Development of Hepatocellular Carcinoma. Cells 2019; 8:cells8020091. [PMID: 30695997 PMCID: PMC6406383 DOI: 10.3390/cells8020091] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/31/2018] [Revised: 01/22/2019] [Accepted: 01/26/2019] [Indexed: 12/16/2022] Open
Abstract
Autophagy is an evolutionary conserved intracellular mechanism which helps eukaryotic cells in maintaining their metabolic state to afford high-efficiency energy requirements. In the physiology of a normal liver and the pathogenesis of liver diseases, autophagy plays a crucial role. Autophagy has been found to be both upregulated and downregulated in different cancers providing the evidence that autophagy plays a dual role in suppressing and promoting cell survival. Hepatocellular carcinoma (HCC) is the most common primary liver cancer and the major leading cause of cancer mortality worldwide. In light of its high complexity and poor prognosis, it is essential to improve our understanding of autophagy’s role in HCC. In this review, we summarize the dual mechanism of autophagy in the development of HCC and elucidate the currently used therapeutic strategies for anti-HCC therapy.
Collapse
Affiliation(s)
- Hamza O Yazdani
- Department of Surgery, University of Pittsburgh, Pittsburg, PA 15213-2582, USA.
| | - Hai Huang
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center, N924 Doan Hall, 410 West 10th Ave., Columbus, OH 43210, USA.
| | - Allan Tsung
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center, N924 Doan Hall, 410 West 10th Ave., Columbus, OH 43210, USA.
| |
Collapse
|
9
|
Zhang X, Wang X, Xu R, Ji J, Xu Y, Han M, Wei Y, Huang B, Chen A, Zhang Q, Li W, Wang J, Li X, Qiu C. YM155 decreases radiation-induced invasion and reverses epithelial-mesenchymal transition by targeting STAT3 in glioblastoma. J Transl Med 2018; 16:79. [PMID: 29571296 PMCID: PMC5865331 DOI: 10.1186/s12967-018-1451-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/05/2017] [Accepted: 03/15/2018] [Indexed: 01/09/2023] Open
Abstract
Background Radiotherapy constitutes a standard arm of therapy in the multimodal treatment of patients with glioblastoma (GBM). Ironically, studies have recently revealed that radiation can augment malignant progression, by promoting migration and invasion, which make the disease especially difficult to cure. Here, we investigated the anticancer effects of YM155, a purported radiosensitizer, in GBM cell lines. Methods GBM cell lines U251 and U87 were treated with YM155 to assess cytotoxicity and activity of the molecule in vitro. Nude mice were implanted with cells to generate orthotopic xenografts for in vivo studies. Response of cells to treatment was examined using cell viability, immunofluorescence, wound healing, and the Transwell invasion assay. Molecules potentially mediating response were examined through western blot analysis, phospho-kinase arrays, and qPCR. Cells were transfected with siRNA knockdown and gene expression constructs to identify molecular mediators of response. Results YM155 reduced viability of U251 and U87 cells and enhanced radiosensitivity through inhibition of homologous recombination. Besides, YM155 decreased invasion caused by radiation and led to expression changes in molecular markers associated with EMT. STAT3 was one of 10 molecules identified on a phosphokinase array exhibiting significant change in phosphorylation under YM155 treatment. Transfection with STAT3 siRNAs or expression constructs demonstrated that EMT changes were achieved by inhibiting the phosphorylation of STAT3 and were survivin-independent. Finally, combining YM155 and radiation in orthotopic xenografts reduced growth and prolonged overall survival of animals. Conclusions YM155 decreased radiation-induced invasion in GBM cell lines in vitro and in vivo through inhibition of STAT3. Electronic supplementary material The online version of this article (10.1186/s12967-018-1451-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Xuehai Wang
- Department of Otolaryngology, Weihai Municipal Hospital, Weihai, 264200, Shandong, People's Republic of China
| | - Ran Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Jianxiong Ji
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Yangyang Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Mingzhi Han
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Yuzhen Wei
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China.,Department of Neurosurgery, Jining No. 1, People's Hospital, Jining, 272011, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Qing Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Wenjie Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China.,Department of Biomedicine, University of Bergen, 5009, Bergen, Norway
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Chen Qiu
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China.
| |
Collapse
|
10
|
Huang Y, Zhang Y, Ge L, Lin Y, Kwok HF. The Roles of Protein Tyrosine Phosphatases in Hepatocellular Carcinoma. Cancers (Basel) 2018; 10:cancers10030082. [PMID: 29558404 PMCID: PMC5876657 DOI: 10.3390/cancers10030082] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/08/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 02/08/2023] Open
Abstract
The protein tyrosine phosphatase (PTP) family is involved in multiple cellular functions and plays an important role in various pathological and physiological processes. In many chronic diseases, for example cancer, PTP is a potential therapeutic target for cancer treatment. In the last two decades, dozens of PTP inhibitors which specifically target individual PTP molecules were developed as therapeutic agents. Hepatocellular carcinoma (HCC) is one of the most common malignant tumors and is the second most lethal cancer worldwide due to a lack of effective therapies. Recent studies have unveiled both oncogenic and tumor suppressive functions of PTP in HCC. Here, we review the current knowledge on the involvement of PTP in HCC and further discuss the possibility of targeting PTP in HCC.
Collapse
Affiliation(s)
- Yide Huang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
| | - Yafei Zhang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Lilin Ge
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yao Lin
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Hang Fai Kwok
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
| |
Collapse
|
11
|
Ziogas IA, Tsoulfas G. Evolving role of Sorafenib in the management of hepatocellular carcinoma. World J Clin Oncol 2017; 8:203-213. [PMID: 28638790 PMCID: PMC5465010 DOI: 10.5306/wjco.v8.i3.203] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/28/2017] [Revised: 04/03/2017] [Accepted: 04/24/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant diseases worldwide and comes third in cancer-related mortality. Although there is a broad spectrum of treatment options to choose from, only a few patients are eligible candidates to receive a curative therapy according to their stage of disease, and thus palliative treatment is implemented in the majority of the patients suffering from liver cancer. Sorafenib, a multikinase inhibitor, is the only currently approved agent for systemic therapy in patients with advanced stage HCC and early stage liver disease. It has been shown to improve the overall survival, but with various side effects, while its cost is not negligible. Sorafenib has been in the market for a decade and has set the stage for personalized targeted therapy. Its role during this time has ranged from monotherapy to neoadjuvant and adjuvant treatment with surgical resection, liver transplantation and chemoembolization or even in combination with other chemotherapeutic agents. In this review our aim is to highlight in depth the current position of Sorafenib in the armamentarium against HCC and how that has evolved over time in its use either as a single agent or in combination with other therapies.
Collapse
|
12
|
Alteration of SHP-1/p-STAT3 Signaling: A Potential Target for Anticancer Therapy. Int J Mol Sci 2017; 18:ijms18061234. [PMID: 28594363 PMCID: PMC5486057 DOI: 10.3390/ijms18061234] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/02/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 12/12/2022] Open
Abstract
The Src homology 2 (SH2) domain-containing protein tyrosine phosphatase 1 (SHP-1), a non-receptor protein tyrosine phosphatase, has been reported as a negative regulator of phosphorylated signal transducer and activator of transcription 3 (STAT3) and linked to tumor development. In this present review, we will discuss the importance and function of SHP-1/p-STAT3 signaling in nonmalignant conditions as well as malignancies, its cross-talk with other pathways, the current clinical development and the potential role of inhibitors of this pathway in anticancer therapy and clinical relevance of SHP-1/p-STAT3 in cancers. Lastly, we will summarize and highlight work involving novel drugs/compounds targeting SHP-1/p-STAT3 signaling and combined strategies that were/are discovered in our and our colleagues’ laboratories.
Collapse
|
13
|
Xu J, Lin H, Li G, Sun Y, Shi L, Ma WL, Chen J, Cai X, Chang C. Sorafenib with ASC-J9 ® synergistically suppresses the HCC progression via altering the pSTAT3-CCL2/Bcl2 signals. Int J Cancer 2016; 140:705-717. [PMID: 27668844 PMCID: PMC5215679 DOI: 10.1002/ijc.30446] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/06/2016] [Revised: 09/07/2016] [Accepted: 09/09/2016] [Indexed: 12/21/2022]
Abstract
Sorafenib is currently used as a standard treatment to suppress the progression of hepatocellular carcinoma (HCC), especially in advanced stages. However, patients who receive Sorafenib treatment eventually develop resistance without clear mechanisms. There is a great need for better efficacy of Sorafenib treatment in combination with other therapies. Here, we demonstrated that the treatment combining Sorafenib with ASC‐J9® could synergistically suppress HCC progression via altering cell‐cycle regulation, apoptosis and invasion. Mechanism dissection suggests that while Sorafenib impacts little or even slightly increases the activated/phosphorylated STAT3 (p‐STAT3), a key stimulator to promote the HCC progression, adding ASC‐J9® significantly suppresses the p‐STAT3 expression and its downstream genes including CCL2 and Bcl2. Interrupting these signals via constitutively active STAT3 partially reverses the synergistic suppression of Sorafenib‐ASC‐J9® combination on HCC progression. In vivo studies further confirmed the synergistic effect of Sorafenib‐ASC‐J9® combination. Together, these results suggest the newly developed Sorafenib‐ASC‐J9® combination is a novel therapy to better suppress HCC progression. What's new? Sorafenib is currently a standard treatment to suppress the progression of hepatocellular carcinoma (HCC). STAT3 activation may however play a role in the development of Sorafenib resistance. Following earlier studies suggesting that ASC‐J9® may alter activated p‐STAT3 signals to suppress prostate cancer metastasis, here the authors found that combining Sorafenib with ASC‐J9® may synergistically suppress HCC progression. Sorafenib had little impact on p‐STAT3, whereas ASC‐J9® significantly suppressed p‐STAT3 expression and its downstream genes, including CCL2 and Bcl2. Clinical studies using human HCC samples also demonstrated that higher expression of p‐STAT3 might be linked to the lower response to Sorafenib treatment.
Collapse
Affiliation(s)
- Junjie Xu
- Chawnshang Chang Liver Cancer Center, Departments of General Surgery and Urology, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Hui Lin
- Chawnshang Chang Liver Cancer Center, Departments of General Surgery and Urology, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Gonghui Li
- Chawnshang Chang Liver Cancer Center, Departments of General Surgery and Urology, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yin Sun
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Liang Shi
- Chawnshang Chang Liver Cancer Center, Departments of General Surgery and Urology, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Wen-Lung Ma
- Sex Hormone Research Center, China Medical University/Hospital, Taichung, Taiwan
| | - Jiang Chen
- Chawnshang Chang Liver Cancer Center, Departments of General Surgery and Urology, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xiujun Cai
- Chawnshang Chang Liver Cancer Center, Departments of General Surgery and Urology, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA.,Sex Hormone Research Center, China Medical University/Hospital, Taichung, Taiwan
| |
Collapse
|
14
|
Abstract
BACKGROUND During the past two decades, external-beam radiation technology has substantially changed from traditional two-dimensional to conformal three-dimensional to intensity-modulated planning and stereotactic body radiotherapy (SBRT). SUMMARY Modern techniques of radiotherapy (RT) are highly focused and capable of delivering an ablative dose to targeted hepatocellular carcinoma (HCC) tumors. SBRT is an option for selected patients with limited tumor volume and non-eligibility for other invasive treatments. Moreover, RT combined with a radiation sensitizer (RS) to increase the therapeutic ratio has shown promising results in select studies, prompting further investigation of this combination. With the undetermined role of RT in treatment guidelines and variation in patterns of treatment failure after RT in patient with HCC, useful biomarkers to guide RT decision-making and selection of patients are needed and emerging. KEY MESSAGE The objective of this review is to summarize the current RS with SBRT schemes and biomarkers for patient selection used to maximize the effect of RT on HCC.
Collapse
Affiliation(s)
- Chiao-Ling Tsai
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan (ROC),Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan (ROC)
| | - Feng-Ming Hsu
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan (ROC)
| | - Jason Chia-Hsien Cheng
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan (ROC),Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan (ROC),*Jason Chia-Hsien Cheng, MD, PhD, Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, No.7, Chung Shan S. Rd., Zhongzheng Dist., Taipei 10002, Taiwan (ROC), Tel. +886 2 2356 2842, E-Mail
| |
Collapse
|
15
|
Abstract
Hepatocellular cancer (HCC) is a leading cause of cancer death worldwide, and most patients who are diagnosed with HCC are ineligible for curative local therapy. The targeted agent sorafenib provides modest survival benefits in the setting of advanced disease. Novel systemic treatment options for HCC are sorely needed. In this review, we identify and categorize the drugs and targets that are in various phases of testing for use against HCC. We also focus on the potential for combining these agents with radiotherapy. This would help identify directions for future study that are likely to yield positive findings and improve outcomes for patients with HCC.
Collapse
Affiliation(s)
- Nitin Ohri
- Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY
| | - Andreas Kaubisch
- Department of Medical Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY
| | - Madhur Garg
- Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY
| | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY.
| |
Collapse
|
16
|
Joo MK, Park JJ, Chun HJ. Recent updates of precision therapy for gastric cancer: Towards optimal tailored management. World J Gastroenterol 2016; 22:4638-4650. [PMID: 27217696 PMCID: PMC4870071 DOI: 10.3748/wjg.v22.i19.4638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/27/2016] [Revised: 04/01/2016] [Accepted: 04/20/2016] [Indexed: 02/06/2023] Open
Abstract
Signaling pathways of gastric carcinogenesis and gastric cancer progression are being avidly studied to seek optimal treatment of gastric cancer. Among them, hepatocyte growth factor (HGF)/c-MET, phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) and janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathways have been widely investigated. Their aberrant expression or mutation has been significantly associated with advanced stage or poor prognosis of gastric cancer. Recently, aberrations of immune checkpoints including programmed cell death-1/programmed cell death ligand-1 (PD-1/PD-L1) have been suggested as an important step in the formation of a microenvironment favorable for gastric cancer. Accomplishments in basic research have led to the development of novel agents targeting these signaling pathways. However, phase III studies of selective anti-HGF/c-MET antibodies and mTOR inhibitor failed to show significant benefits in terms of overall survival and progression-free survival. Few agents directly targeting STAT3 have been developed. However, this target is still critical issue in terms of chemoresistance, and SH2-containing protein tyrosine phosphatase 1 might be a significant link to effectively inhibit STAT3 activity. Inhibition of PD-1/PD-L1 showed durable efficacy in phase I studies, and phase III evaluation is warranted. Therapeutic strategy to concurrently inhibit multiple tyrosine kinases is a reasonable option, however, lapatinib needs to be further evaluated to identify good responders. Regorafenib has shown promising effectiveness in prolonging progression-free survival in a phase II study. In this topic highlight, we review the biologic roles and outcomes of clinical studies targeting these signaling pathways.
Collapse
|
17
|
Huang CY, Tai WT, Wu SY, Shih CT, Chen MH, Tsai MH, Kuo CW, Shiau CW, Hung MH, Chen KF. Dovitinib Acts As a Novel Radiosensitizer in Hepatocellular Carcinoma by Targeting SHP-1/STAT3 Signaling. Int J Radiat Oncol Biol Phys 2016; 95:761-71. [PMID: 26960749 DOI: 10.1016/j.ijrobp.2016.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/14/2015] [Revised: 01/01/2016] [Accepted: 01/11/2016] [Indexed: 12/12/2022]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is among the most lethal human malignancies, and curative therapy is not an option for most patients. There is growing interest in the potential benefit of combining targeted therapies with radiation therapy (RT). This study aimed to characterize the efficacy and mechanism of an investigational drug, dovitinib, used in combination with RT. METHODS AND MATERIALS HCC cell lines (PLC5, Hep3B, SK-Hep1, HA59T, and Huh-7) were treated with dovitinib, RT, or both, and apoptosis and signal transduction were analyzed. RESULTS Dovitinib treatment resulted in Src homology region 2 (SH2) domain-containing phosphatase 1 (SHP-1)-mediated downregulation of p-STAT3 and promoted potent apoptosis of HCC cells. Ectopic expression of STAT3, or inhibition of SHP-1, diminished the effects of dovitinib on HCC cells. By ectopic expression and purified recombinant proteins of various mutant forms of SHP-1, the N-SH2 domain of SHP-1 was found to be required for dovitinib treatment. Overexpression of STAT3 or catalytic-dead mutant SHP-1 restored RT-induced reduction of HCC cell survival. Conversely, ectopic expression of SHP-1 or activation of SHP-1 by dovitinib enhanced the effects of RT against HCC in vitro and in vivo. CONCLUSIONS SHP-1/STAT3 signaling is critically associated with the radiosensitivity of HCC cells. Combination therapy with RT and the SHP-1 agonist, such as dovitinib, resulted in enhanced in vitro and in vivo anti-HCC effects.
Collapse
Affiliation(s)
- Chao-Yuan Huang
- Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Department of Radiological Technology, Yuanpei University, Hsinchu, Taiwan
| | - Wei-Tien Tai
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan; National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Szu-Yuan Wu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Radiation Oncology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Biotechnology, Hungkuang University, Taichung, Taiwan
| | - Chih-Ting Shih
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Min-Hsuan Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Hsien Tsai
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chiung-Wen Kuo
- Department of Medical Imaging and Radiological Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Chung-Wai Shiau
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Man-Hsin Hung
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Program in Molecular Medicine, School of Life Science, National Yang-Ming University, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Kuen-Feng Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan; National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
18
|
Wu Y, Li R, Zhang J, Wang G, Liu B, Huang X, Zhang T, Luo R. Protein tyrosine phosphatase SHP-1 sensitizes EGFR/HER-2 positive breast cancer cells to trastuzumab through modulating phosphorylation of EGFR and HER-2. Onco Targets Ther 2015; 8:2577-87. [PMID: 26396531 PMCID: PMC4576899 DOI: 10.2147/ott.s82225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022] Open
Abstract
Background Trastuzumab resistance in HER-2 positive breast cancer cells is closely related to overexpression of both epidermal growth factor receptor (EGFR) and human epidermal receptor (HER-2). SHP-1 has been demonstrated to downregulate tyrosine kinase activity including EGFR via its phosphatase function, but its effect on HER-2 activity is still unknown. Here, we examined the hypothesis that SHP-1 enhances the anticancer efficacy of trastuzumab in EGFR/HER-2 positive breast cancer cells through combining dual inhibition of EGFR and HER-2. Methods Trastuzumab-resistant breast cancer SKBr-3 cells were generated by long-term in vitro culture of SKBr-3cells in the presence of trastuzumab. The SHP-1 was ectopically expressed by stable transfection. The activity and expression of EGFR, HER-2, and downstream signaling pathways were tested by Western blot. Cell viability was examined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and apoptosis was examined by flow cytometry. The binding between SHP-1 and EGFR/HER-2 was evaluated by immunoprecipitation assay and bimolecular fluorescence complementation. The effects of SHP-1 on tumorigenicity and trastuzumab sensitivity were confirmed via in vivo xenograft model. Results Trastuzumab-resistant SKBr-3 cells showed aberrant co-expression of EGFR and HER-2. Introduction of wild-type SHP-1 inhibited cell proliferation, clone formation, and promoted the apoptosis induced by trastuzumab. Meanwhile, SHP-1 overexpression reduced phosphorylation levels of EGFR and HER-2 both in parental and trastuzumab-resistant SKBr-3 cells. In vivo study showed an increased antitumor effect of trastuzumab in SHP-1 overexpressed xenografts. At last, we discovered that SHP-1 can make complexes with both EGFR and HER-2, and both phospho-EGFR and phosphor-HER-2 levels in wild-type SHP-1 immunoprecipitates were less than those in phosphatase-inactive SHP-1 (C453S) immunoprecipitates, indicating that EGFR and HER-2 are potential substrates of SHP-1. Conclusion Taken together, we have demonstrated that the SHP-1 is a negative regulatory factor of the tyrosine kinase activity of HER-2 and EGFR through inhibiting phosphorylation. Dual targeting of EGFR and HER-2, by combining trastuzumab with SHP-1 overexpression, may improve response in HER-2 overexpressing breast cancer cells that also express high levels of EGFR.
Collapse
Affiliation(s)
- Yifen Wu
- Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, People's Republic of China ; Department of Oncology, Dongguan People's Hospital, Dongguan, People's Republic of China
| | - Rong Li
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Junyi Zhang
- Department of Oncology, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Gang Wang
- Department of Radiology, Dongguan People's Hospital, Dongguan, People's Republic of China
| | - Bin Liu
- Second Affiliated Hospital of Guangzhou Medical College, Southern Medical University, Guangdong, People's Republic of China
| | - Xiaofang Huang
- College of Traditional Chinese medicine, Southern Medical University, Guangdong, People's Republic of China
| | - Tao Zhang
- College of Traditional Chinese medicine, Southern Medical University, Guangdong, People's Republic of China
| | - Rongcheng Luo
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
19
|
Zhang J, Du J, Liu Q, Zhang Y. Down-regulation of STAT3 expression using vector-based RNA interference promotes apoptosis in Hepatocarcinoma cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1201-5. [PMID: 26134753 DOI: 10.3109/21691401.2015.1029628] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/25/2022]
Abstract
In this study, we followed a DNA vector-based RNAi approach to silence the signal transducer and activator of transcription 3 (STAT3) expression in Bel-7402 cells, to explore how the Janus kinase (JAK)/STAT3 signaling pathway influences the apoptosis of hepatocarcinoma cells. According to GenBank's STAT3 cDNA, the plasmid pGCsi.U6/neoRFP STAT3, which was designed for expression of STAT3 small interfering RNA (siRNA), was constructed and synthesized, and then transfected into Bel-7402 cells using Lipofectamine 2000. Cells with or without siRNA transfection were treated in wells. The apoptotic rate was detected by flow cytometry (FCM) and by staining with the Annexin V/propidium iodide (PI) apoptosis detection kit. Simultaneously, the mitochondrial membrane potential (ΔΨm) was visualized by JC-1 fluorescence staining and observed using the inverted fluorescence microscope. Furthermore, the expression of caspase-3 protein was analyzed by Western blotting. The results showed that treatment with STAT3 siRNA displayed effects in the Bel-7402 cells, causing a significantly increased apoptotic ratio (P < 0.05). The mitochondrial membrane potential of the STAT3 siRNA group, observed by the JC-1 fluorescence staining, decreased significantly. The protein expression of active caspase-3 increased with STAT3 siRNA treatment, and was significantly higher than that of the control group (P < 0.05). STAT3 gene-silencing significantly improves the apoptotic effect against Bel-7402 cells.
Collapse
Affiliation(s)
- Junwei Zhang
- a Institute of Oncology, Provincial Hospital Affiliated to Shandong University, Shandong University , Jinan , P.R. China.,b Department of Oncology , The Central Hospital of Panjin , Panjin , P.R. China
| | - Jiajun Du
- c Department of thoracic surgery , Provincial Hospital Affiliated to Shandong University, Shandong University , Jinan , P.R. China
| | - Qi Liu
- a Institute of Oncology, Provincial Hospital Affiliated to Shandong University, Shandong University , Jinan , P.R. China
| | - Yi Zhang
- d Department of General Surgery , The Central Hospital of Panjin , Panjin , P.R. China
| |
Collapse
|
20
|
Yuan X, Du J, Hua S, Zhang H, Gu C, Wang J, Yang L, Huang J, Yu J, Liu F. Suppression of autophagy augments the radiosensitizing effects of STAT3 inhibition on human glioma cells. Exp Cell Res 2015; 330:267-276. [DOI: 10.1016/j.yexcr.2014.09.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/16/2014] [Revised: 08/29/2014] [Accepted: 09/03/2014] [Indexed: 12/21/2022]
|