1
|
Zhang X, Zong R, Han Y, Li X, Liu S, Cao Y, Jiang N, Chen P, Gao H. Novel benzoylurea derivative decreases TRPM7 channel function and inhibits cancer cells migration. Channels (Austin) 2024; 18:2396339. [PMID: 39212541 PMCID: PMC11370923 DOI: 10.1080/19336950.2024.2396339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
The transient receptor potential melastatin 7 channel (TRPM7) is a nonselective cation channel highly expressed in some human cancer tissues. TRPM7 is involved in the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of cancer cells. Modulation of TRPM7 could be a promising therapeutic strategy for treating cancer; however, efficient and selective pharmacological TRPM7 modulators are lacking. In this study we investigated N- [4- (4, 6-dimethyl- 2-pyrimidinyloxy) - 3- methylphenyl] -N' - [2 -(dimethylamino)] benzoylurea (SUD), a newly synthesized benzoylurea derivative, for its effects on cancer cell migration and EMT and on functional expression of TRPM7. Our previous studies showed that SUD induces cell cycle arrest and apoptosis of MCF-7 and BGC-823 cells (human breast cancer and gastric cancer cell lines, respectively). Here, we show that SUD significantly decreased the migration of both types of cancer cells. Moreover, SUD decreased vimentin expression and increased E-cadherin expression in both cell types, indicating that EMT is also decreased by SUD. Importantly, SUD potentially reduced the TRPM7-like current in a concentration-dependent manner and decreased TRPM7 expression through the PI3K/Akt signaling pathway. Finally, molecular docking simulations were used to investigate potential SUD binding sites on TRPM7. In summary, our research demonstrated that SUD is an effective TRPM7 inhibitor and a potential agent to suppress the metastasis of breast and gastric cancer by inhibiting TRPM7 expression and function.
Collapse
Affiliation(s)
- Xiaoding Zhang
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Rui Zong
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yu Han
- Department of Pharmacy, Hebei Children’s Hospital, Shijiazhuang, Hebei, China
| | - Xiaoming Li
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Shuangyu Liu
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yixue Cao
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Nan Jiang
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Pingping Chen
- The Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Haixia Gao
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
2
|
Zhao F, Yu W, Hu J, Xia Y, Li Y, Liu S, Liu A, Wang C, Zhang H, Zhang L, Shi J. Hypoxia-induced TRPM7 promotes glycolytic metabolism and progression in hepatocellular carcinoma. Eur J Pharmacol 2024; 974:176601. [PMID: 38677534 DOI: 10.1016/j.ejphar.2024.176601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Hypoxia disrupts glucose metabolism in hepatocellular carcinoma (HCC). Transient receptor potential cation channel, subfamily M, member 7 (TRPM7) plays an ontogenetic role. Thus, we aimed to explore the regulation of TRPM7 by hypoxia-induced factor (HIF) and its underlying mechanisms in HCC. METHODS hypoxia was induced in multiple HCC cells using 1% O2 or CoCl2 treatment, and subsequently blocked using siRNAs targeting HIF-1α or HIF-2α as well as a HIF-1α protein synthesis inhibitor. The levels of HIF-1α and TRPM7 were assessed using quantitative PCR (qPCR) and Western blot analysis. Chromatin immunoprecipitation (ChIP) and luciferase assays were performed to observe the regulation of TRPM7 promoter regions by HIF-1α. A PCR array was utilized to screen glucose metabolism-related enzymes in HEK293 cells overexpressing TRPM7 induced by tetracycline, and then verified in TRPM7-overexpressed huh7 cells. Finally, CCK-8, transwell, scratch and tumor formation experiments in nude mice were conducted to examine the effect of TRPM7 on proliferation and metastasis in HCC. RESULTS Exposure to hypoxia led to increase the levels of TRPM7 and HIF-1α in HCC cells, which were inhibited by HIF-1α siRNA or enhanced by HIF-1α overexpression. HIF-1α directly bound to two hypoxia response elements (HREs) in the TRPM7 promoter. Several glycolytic metabolism-related enzymes, were simultaneously upregulated in HEK293 and huh7 cells overexpressing TRPM7 during hypoxia. In vitro and in vivo experiments demonstrated that TRPM7 promoted the proliferation and metastasis of HCC cells. CONCLUSIONS TRPM7 was directly transcriptionally regulated by HIF-1α, leading to glycolytic metabolic reprogramming and the promotion of HCC proliferation and metastasis in vitro and in vivo. Our findings suggest that TRPM7 might be a potential diagnostic indicator and therapeutic target for HCC.
Collapse
Affiliation(s)
- Fengbo Zhao
- Institute of Interdisciplinary Integrative Medicine Research, Medical School of Nantong University, Nantong, 226001, China
| | - Weili Yu
- Institute of Interdisciplinary Integrative Medicine Research, Medical School of Nantong University, Nantong, 226001, China
| | - Jingyan Hu
- Institute of Interdisciplinary Integrative Medicine Research, Medical School of Nantong University, Nantong, 226001, China
| | - Yi Xia
- Institute of Interdisciplinary Integrative Medicine Research, Medical School of Nantong University, Nantong, 226001, China
| | - YuXuan Li
- Institute of Interdisciplinary Integrative Medicine Research, Medical School of Nantong University, Nantong, 226001, China
| | - Siqi Liu
- Institute of Interdisciplinary Integrative Medicine Research, Medical School of Nantong University, Nantong, 226001, China
| | - Aifen Liu
- Institute of Interdisciplinary Integrative Medicine Research, Medical School of Nantong University, Nantong, 226001, China
| | - Chengniu Wang
- Institute of Interdisciplinary Integrative Medicine Research, Medical School of Nantong University, Nantong, 226001, China
| | - Hong Zhang
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, China
| | - Lei Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Medical School of Nantong University, Nantong, 226001, China; Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, 12 Shanghai, 200433, China.
| | - Jianwu Shi
- Institute of Interdisciplinary Integrative Medicine Research, Medical School of Nantong University, Nantong, 226001, China.
| |
Collapse
|
3
|
Su T, Chen YH, Wu KK, Xu XH. Anti-cancer agent piperlongumine is an inhibitor of transient receptor potential melastatin 7 channel in oral squamous cell carcinoma. J Oral Biosci 2024; 66:430-438. [PMID: 38452870 DOI: 10.1016/j.job.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/09/2024]
Abstract
OBJECTIVES To elucidate the association between the anticancer activities of piperlongumine (PL) and its potential target, transient receptor potential melastatin 7 channel (TRPM7), in oral squamous cell carcinoma (OSCC). METHODS The expression levels and electrical characteristics of TRPM7 as well as cell viability in response to various PL treatments were investigated in the OSCC cell line Cal27. RESULTS PL treatment resulted in a concentration- and time-dependent reduction in TRPM7 mRNA and protein expression in Cal27 cells. Furthermore, PL treatment inhibited TRPM7-like rectifying currents in Cal27 cells; however, this inhibition was less effective than that of the TRPM7 antagonist waixenicin A. Rapid perfusion and washout experiments revealed an immediate inhibitory effect of PL on TRPM7-like currents. The antagonistic effect of PL occurred within 1 min and was not completely reversed following washout. Notably, the extracellular Ca2+ concentration still influenced PL-induced changes in the TRPM7-like current, indicating that PL can directly but gently antagonize the TRPM7 channel. Functional changes in TRPM7 correlated with the observed antiproliferative and cytotoxic effects of PL in Cal27 cells. CONCLUSIONS These findings suggest that PL exhibits potent inhibitory effects on TRPM7 and exerts its anti-cancer effects by downregulating TRPM7 expression and antagonizing channel currents.
Collapse
Affiliation(s)
- Tao Su
- Department of Stomatology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Institute of Neuroscience, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Yi-Hui Chen
- Department of Prevention and Health-Care, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kan-Kui Wu
- Department of Stomatology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao-Hong Xu
- Department of Stomatology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China.
| |
Collapse
|
4
|
Pan T, Gao Y, Xu G, Yu L, Xu Q, Yu J, Liu M, Zhang C, Ma Y, Li Y. Widespread transcriptomic alterations of transient receptor potential channel genes in cancer. Brief Funct Genomics 2024; 23:214-227. [PMID: 37288496 DOI: 10.1093/bfgp/elad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023] Open
Abstract
Ion channels, in particular transient-receptor potential (TRP) channels, are essential genes that play important roles in many physiological processes. Emerging evidence has demonstrated that TRP genes are involved in a number of diseases, including various cancer types. However, we still lack knowledge about the expression alterations landscape of TRP genes across cancer types. In this review, we comprehensively reviewed and summarised the transcriptomes from more than 10 000 samples in 33 cancer types. We found that TRP genes were widespreadly transcriptomic dysregulated in cancer, which was associated with clinical survival of cancer patients. Perturbations of TRP genes were associated with a number of cancer pathways across cancer types. Moreover, we reviewed the functions of TRP family gene alterations in a number of diseases reported in recent studies. Taken together, our study comprehensively reviewed TRP genes with extensive transcriptomic alterations and their functions will directly contribute to cancer therapy and precision medicine.
Collapse
Affiliation(s)
- Tao Pan
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Yueying Gao
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Gang Xu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | | | - Qi Xu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Jinyang Yu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Meng Liu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Can Zhang
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Yongsheng Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| |
Collapse
|
5
|
Köles L, Ribiczey P, Szebeni A, Kádár K, Zelles T, Zsembery Á. The Role of TRPM7 in Oncogenesis. Int J Mol Sci 2024; 25:719. [PMID: 38255793 PMCID: PMC10815510 DOI: 10.3390/ijms25020719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
This review summarizes the current understanding of the role of transient receptor potential melastatin-subfamily member 7 (TRPM7) channels in the pathophysiology of neoplastic diseases. The TRPM family represents the largest and most diverse group in the TRP superfamily. Its subtypes are expressed in virtually all human organs playing a central role in (patho)physiological events. The TRPM7 protein (along with TRPM2 and TRPM6) is unique in that it has kinase activity in addition to the channel function. Numerous studies demonstrate the role of TRPM7 chanzyme in tumorigenesis and in other tumor hallmarks such as proliferation, migration, invasion and metastasis. Here we provide an up-to-date overview about the possible role of TRMP7 in a broad range of malignancies such as tumors of the nervous system, head and neck cancers, malignant neoplasms of the upper gastrointestinal tract, colorectal carcinoma, lung cancer, neoplasms of the urinary system, breast cancer, malignant tumors of the female reproductive organs, prostate cancer and other neoplastic pathologies. Experimental data show that the increased expression and/or function of TRPM7 are observed in most malignant tumor types. Thus, TRPM7 chanzyme may be a promising target in tumor therapy.
Collapse
Affiliation(s)
- László Köles
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Polett Ribiczey
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Andrea Szebeni
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
| | - Kristóf Kádár
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
| | - Tibor Zelles
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Ákos Zsembery
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
| |
Collapse
|
6
|
Erdogan MA, Ugo D, Ines F. The role of ion channels in the relationship between the immune system and cancer. CURRENT TOPICS IN MEMBRANES 2023; 92:151-198. [PMID: 38007267 DOI: 10.1016/bs.ctm.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
The immune system is capable of identifying and eliminating cancer, a complicated illness marked by unchecked cellular proliferation. The significance of ion channels in the complex interaction between the immune system and cancer has been clarified by recent studies. Ion channels, which are proteins that control ion flow across cell membranes, have variety of physiological purposes, such as regulating immune cell activity and tumor development. Immune cell surfaces contain ion channels, which have been identified to control immune cell activation, motility, and effector activities. The regulation of immune responses against cancer cells has been linked to a number of ion channels, including potassium, calcium, and chloride channels. As an example, potassium channels are essential for regulating T cell activation and proliferation, which are vital for anti-tumor immunity. Calcium channels play a crucial role when immune cells produce cytotoxic chemicals in order to eliminate cancer cells. Chloride channels also affect immune cell infiltration and invasion into malignancies. Additionally, tumor cells' own expressed ion channels have an impact on their behavior and in the interaction with the immune system. The proliferation, resistance to apoptosis, and immune evasion of cancer cells may all be impacted by changes in ion channel expression and function. Ion channels may also affect the tumor microenvironment by controlling angiogenesis, inflammatory responses, and immune cell infiltration. Ion channel function in the interaction between the immune system and cancer has important implications for cancer treatment. A possible method to improve anti-tumor immune responses and stop tumor development is to target certain ion channels. Small compounds and antibodies are among the ion channel modulators under investigation as possible immunotherapeutics. The complex interaction between ion channels, the immune system, and cancer highlights the significance of these channels for tumor immunity. The development of novel therapeutic strategies for the treatment of cancer will be made possible by unraveling the processes by which ion channels control immune responses and tumor activity. Hence, the main driving idea of the present chapter is trying to understand the possible function of ion channels in the complex crosstalk between cancer and immunoresponse. To this aim, after giving a brief journey of ion channels throughout the history, a classification of the main ion channels involved in cancer disease will be discussed. Finally, the last paragraph will focus on more recently advancements in the use of biomaterials as therapeutic strategy for cancer treatment. The hope is that future research will take advantage of the promising combination of ion channels, immunomodulation and biomaterials filed to provide better solutions in the treatment of cancer disease.
Collapse
Affiliation(s)
- Mumin Alper Erdogan
- Izmir Katip Celebi University Faculty of Medicine, Department of Physiology, Izmir, Turkey.
| | - D'Amora Ugo
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, Italy
| | - Fasolino Ines
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, Italy
| |
Collapse
|
7
|
Shoji KF, Bayet E, Leverrier-Penna S, Le Devedec D, Mallavialle A, Marionneau-Lambot S, Rambow F, Perret R, Joussaume A, Viel R, Fautrel A, Khammari A, Constantin B, Tartare-Deckert S, Penna A. The mechanosensitive TRPV2 calcium channel promotes human melanoma invasiveness and metastatic potential. EMBO Rep 2023; 24:e55069. [PMID: 36744297 PMCID: PMC10074106 DOI: 10.15252/embr.202255069] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 12/21/2022] [Accepted: 01/10/2023] [Indexed: 02/07/2023] Open
Abstract
Melanoma is a highly aggressive cancer endowed with a unique capacity of rapidly metastasizing, which is fundamentally driven by aberrant cell motility behaviors. Discovering "migrastatics" targets, specifically controlling invasion and dissemination of melanoma cells during metastasis, is therefore of primary importance. Here, we uncover the prominent expression of the plasma membrane TRPV2 calcium channel as a distinctive feature of melanoma tumors, directly related to melanoma metastatic dissemination. In vitro as well as in vivo, TRPV2 activity is sufficient to confer both migratory and invasive potentials, while conversely TRPV2 silencing in highly metastatic melanoma cells prevents aggressive behavior. In invasive melanoma cells, TRPV2 channel localizes at the leading edge, in dynamic nascent adhesions, and regulates calcium-mediated activation of calpain and the ensuing cleavage of the adhesive protein talin, along with F-actin organization. In human melanoma tissues, TRPV2 overexpression correlates with advanced malignancy and poor prognosis, evoking a biomarker potential. Hence, by regulating adhesion and motility, the mechanosensitive TRPV2 channel controls melanoma cell invasiveness, highlighting a new therapeutic option for migrastatics in the treatment of metastatic melanoma.
Collapse
Affiliation(s)
- Kenji F Shoji
- Inserm, EHESP, IRSET, UMR_S 1085, Université de Rennes 1, Rennes, France
| | - Elsa Bayet
- Inserm, EHESP, IRSET, UMR_S 1085, Université de Rennes 1, Rennes, France.,CNRS, 4CS, Université de Poitiers, Poitiers, France
| | | | - Dahiana Le Devedec
- Inserm, EHESP, IRSET, UMR_S 1085, Université de Rennes 1, Rennes, France
| | - Aude Mallavialle
- INSERM, C3M, team 'labellisée Ligue Contre le Cancer 2022, Université Côte d'Azur, Nice, France
| | | | - Florian Rambow
- Department of Applied Computational Cancer Research, Institute for AI in Medicine (IKIM), University Hospital Essen, Essen, Germany.,University of Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site Essen, Essen, Germany
| | - Raul Perret
- Service de Dermatologie, CHU Nantes, CIC 1413, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Nantes Université, Nantes, France
| | - Aurélie Joussaume
- Inserm, EHESP, IRSET, UMR_S 1085, Université de Rennes 1, Rennes, France
| | - Roselyne Viel
- CNRS, Inserm UMS Biosit, H2P2 Core Facility, Université de Rennes 1, Rennes, France
| | - Alain Fautrel
- CNRS, Inserm UMS Biosit, H2P2 Core Facility, Université de Rennes 1, Rennes, France
| | - Amir Khammari
- Service de Dermatologie, CHU Nantes, CIC 1413, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Nantes Université, Nantes, France
| | | | - Sophie Tartare-Deckert
- INSERM, C3M, team 'labellisée Ligue Contre le Cancer 2022, Université Côte d'Azur, Nice, France
| | - Aubin Penna
- Inserm, EHESP, IRSET, UMR_S 1085, Université de Rennes 1, Rennes, France.,CNRS, 4CS, Université de Poitiers, Poitiers, France
| |
Collapse
|
8
|
Karska J, Kowalski S, Saczko J, Moisescu MG, Kulbacka J. Mechanosensitive Ion Channels and Their Role in Cancer Cells. MEMBRANES 2023; 13:167. [PMID: 36837670 PMCID: PMC9965697 DOI: 10.3390/membranes13020167] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Mechanical forces are an inherent element in the world around us. The effects of their action can be observed both on the macro and molecular levels. They can also play a prominent role in the tissues and cells of animals due to the presence of mechanosensitive ion channels (MIChs) such as the Piezo and TRP families. They are essential in many physiological processes in the human body. However, their role in pathology has also been observed. Recent discoveries have highlighted the relationship between these channels and the development of malignant tumors. Multiple studies have shown that MIChs mediate the proliferation, migration, and invasion of various cancer cells via various mechanisms. This could show MIChs as new potential biomarkers in cancer detection and prognosis and interesting therapeutic targets in modern oncology. Our paper is a review of the latest literature on the role of the Piezo1 and TRP families in the molecular mechanisms of carcinogenesis in different types of cancer.
Collapse
Affiliation(s)
- Julia Karska
- Faculty of Medicine, Wroclaw Medical University, 50-345 Wroclaw, Poland
| | - Szymon Kowalski
- Faculty of Medicine, Wroclaw Medical University, 50-345 Wroclaw, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Mihaela G. Moisescu
- Department of Biophysics and Cellular Biotechnology, Research Center of Excellence in Biophysics and Cellular Biotechnology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania
| |
Collapse
|
9
|
Liu H, Dilger JP, Lin J. A pan-cancer-bioinformatic-based literature review of TRPM7 in cancers. Pharmacol Ther 2022; 240:108302. [PMID: 36332746 DOI: 10.1016/j.pharmthera.2022.108302] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
Abstract
TRPM7, a divalent cation-selective channel with kinase domains, has been widely reported to potentially affect cancers. In this study, we conducted multiple bioinformatic analyses based on open databases and reviewed articles that provided evidence for the effects of TRPM7 on cancers. The purposes of this paper are 1) to provide a pan-cancer overview of TRPM7 in cancers; 2) to summarize evidence of TRPM7 effects on cancers; 3) to identify potential future studies of TRPM7 in cancer. Bioinformatics analysis revealed that no cancer-related TRPM7 mutation was found. TRPM7 is aberrantly expressed in most cancer types but the cancer-noncancer expression pattern varies across cancer types. TRPM7 was not associated with survival, TMB, or cancer stemness in most cancer types. TRPM7 affected drug sensitivity and tumor immunity in some cancer types. The in vitro evidence, preclinical in vivo evidence, and clinical evidence for TRPM7 effects on cancers as well as TRPM7 kinase substrate and TRPM7-targeting drugs associated with cancers were summarized to facilitate comparison. We matched the bioinformatics evidence to literature evidence, thereby unveiling potential avenues for future investigation of TRPM7 in cancers. We believe that this paper will help orient research toward important and relevant aspects of the role of TRPM7 in cancers.
Collapse
Affiliation(s)
- Hengrui Liu
- Department of Anesthesiology, Health Science Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - James P Dilger
- Department of Anesthesiology, Health Science Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jun Lin
- Department of Anesthesiology, Health Science Center, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
10
|
He M, Wu G, Wang Z, Ren K, Yang Z, Xue Q. Development and validation of a TRP-related gene signature for overall survival prediction in lung adenocarcinoma. Front Genet 2022; 13:905650. [PMID: 36186485 PMCID: PMC9521679 DOI: 10.3389/fgene.2022.905650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
The transient receptor potential (TRP) channel is a type of channel protein widely distributed in peripheral and central nervous systems. Genes encoding TRP can be regulated by natural aromatic substances and serve as a therapeutic target for many diseases. However, the role of TRP-related genes in lung adenocarcinoma (LUAD) remains unclear. In this study, we used data from TCGA to screen and identify 17 TRP-related genes that are differentially expressed between LUAD and normal lung tissues. Based on these differentially expressed genes (DEGs), we classified all patients with LUAD into two subtypes. Significant differences in prognosis, clinical features, and immune cell infiltration characteristics were observed between the two subtypes. Subsequently, a prognostic signature with 12 genes was established by applying the least absolute shrinkage and selection operator (LASSO) Cox regression method, and all patients with LUAD were classified into low- and high-risk groups. Patients with LUAD in the low-risk group had a significantly longer survival time than those in the high-risk group (p < 0.001), which was confirmed by LUAD data from the GSE72094 and GSE68571 validation datasets. Combined with clinical characteristics, the risk score was found to be an independent predictor of overall survival (OS) in patients with LUAD. Additionally, patients with high TRP scores exhibited poorer clinical characteristics and immune status while showing a sensitive response to chemotherapeutic agents. In conclusion, the TRP score is a promising biomarker for determining the prognosis, molecular subtype, tumor microenvironment, and guiding personalized treatment in patients with LUAD.
Collapse
Affiliation(s)
- Min He
- Medical College of Nantong University, Nantong, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Gujie Wu
- Medical College of Nantong University, Nantong, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ziheng Wang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Kuan Ren
- Medical College of Nantong University, Nantong, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Zheng Yang
- Cardiothoracic Surgery Department, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- *Correspondence: Qun Xue, ; Zheng Yang,
| | - Qun Xue
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- *Correspondence: Qun Xue, ; Zheng Yang,
| |
Collapse
|
11
|
Pan-cancer analyses reveal the genetic and pharmacogenomic landscape of transient receptor potential channels. NPJ Genom Med 2022; 7:32. [PMID: 35614079 PMCID: PMC9132893 DOI: 10.1038/s41525-022-00304-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/05/2022] [Indexed: 12/15/2022] Open
Abstract
Transient-receptor potential (TRP) channels comprise a diverse family of ion channels, which play important roles in regulation of intracellular calcium. Emerging evidence has revealed the critical roles of TRP channels in tumor development and progression. However, we still lack knowledge about the genetic and pharmacogenomics landscape of TRP genes across cancer types. Here, we comprehensively characterized the genetic and transcriptome alterations of TRP genes across >10,000 patients of 33 cancer types. We revealed prevalent somatic mutations and copy number variation in TRP genes. In particular, mutations located in transmembrane regions of TRP genes were likely to be deleterious mutations (p-values < 0.001). Genetic alterations were correlated with transcriptome dysregulation of TRP genes, and we found that TRPM2, TRPM8, and TPRA1 showed extent dysregulation in cancer. Patients with TRP gene alterations were with significantly higher hypoxia scores, tumor mutation burdens, tumor stages and grades, and poor survival. The alterations of TRP genes were significantly associated with the activity of cancer-related pathways. Moreover, we found that the expression of TRP genes were potentially useful for development of targeted therapies. Our study provided the landscape of genomic and transcriptomic alterations of TPRs across 33 cancer types, which is a comprehensive resource for guiding both mechanistic and therapeutic analyses of the roles of TRP genes in cancer. Identifying the TRP genes with extensive genetic alterations will directly contribute to cancer therapy in the context of predictive, preventive, and personalized medicine.
Collapse
|
12
|
Sharma A, Ramena GT, Elble RC. Advances in Intracellular Calcium Signaling Reveal Untapped Targets for Cancer Therapy. Biomedicines 2021; 9:1077. [PMID: 34572262 PMCID: PMC8466575 DOI: 10.3390/biomedicines9091077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023] Open
Abstract
Intracellular Ca2+ distribution is a tightly regulated process. Numerous Ca2+ chelating, storage, and transport mechanisms are required to maintain normal cellular physiology. Ca2+-binding proteins, mainly calmodulin and calbindins, sequester free intracellular Ca2+ ions and apportion or transport them to signaling hubs needing the cations. Ca2+ channels, ATP-driven pumps, and exchangers assist the binding proteins in transferring the ions to and from appropriate cellular compartments. Some, such as the endoplasmic reticulum, mitochondria, and lysosomes, act as Ca2+ repositories. Cellular Ca2+ homeostasis is inefficient without the active contribution of these organelles. Moreover, certain key cellular processes also rely on inter-organellar Ca2+ signaling. This review attempts to encapsulate the structure, function, and regulation of major intracellular Ca2+ buffers, sensors, channels, and signaling molecules before highlighting how cancer cells manipulate them to survive and thrive. The spotlight is then shifted to the slow pace of translating such research findings into anticancer therapeutics. We use the PubMed database to highlight current clinical studies that target intracellular Ca2+ signaling. Drug repurposing and improving the delivery of small molecule therapeutics are further discussed as promising strategies for speeding therapeutic development in this area.
Collapse
Affiliation(s)
- Aarushi Sharma
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Grace T. Ramena
- Department of Aquaculture, University of Arkansas, Pine Bluff, AR 71601, USA;
| | - Randolph C. Elble
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| |
Collapse
|
13
|
Cui C, Zhang Y, Liu G, Zhang S, Zhang J, Wang X. Advances in the study of cancer metastasis and calcium signaling as potential therapeutic targets. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:266-291. [PMID: 36046433 PMCID: PMC9400724 DOI: 10.37349/etat.2021.00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/21/2021] [Indexed: 11/19/2022] Open
Abstract
Metastasis is still the primary cause of cancer-related mortality. However, the underlying mechanisms of cancer metastasis are not yet fully understood. Currently, the epithelial-mesenchymal transition, metabolic remodeling, cancer cell intercommunication and the tumor microenvironment including diverse stromal cells, are reported to affect the metastatic process of cancer cells. Calcium ions (Ca2+) are ubiquitous second messengers that manipulate cancer metastasis by affecting signaling pathways. Diverse transporter/pump/channel-mediated Ca2+ currents form Ca2+ oscillations that can be decoded by Ca2+-binding proteins, which are promising prognostic biomarkers and therapeutic targets of cancer metastasis. This paper presents a review of the advances in research on the mechanisms underlying cancer metastasis and the roles of Ca2+-related signals in these events.
Collapse
Affiliation(s)
- Chaochu Cui
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Yongxi Zhang
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Gang Liu
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Shuhong Zhang
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Jinghang Zhang
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| |
Collapse
|
14
|
Meng S, Alanazi R, Ji D, Bandura J, Luo ZW, Fleig A, Feng ZP, Sun HS. Role of TRPM7 kinase in cancer. Cell Calcium 2021; 96:102400. [PMID: 33784560 DOI: 10.1016/j.ceca.2021.102400] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 01/09/2023]
Abstract
Cancer is the second leading cause of death worldwide and accounted for an estimated 9.6 million deaths, or 1 in 6 deaths, in 2018. Despite recent advances in cancer prevention, diagnosis, and treatment strategies, the burden of this disease continues to grow with each year, with dire physical, emotional, and economic consequences for all levels of society. Classic characteristics of cancer include rapid, uncontrolled cell proliferation and spread of cancerous cells to other parts of the body, a process known as metastasis. Transient receptor potential melastatin 7 (TRPM7), a Ca2+- and Mg2+-permeable nonselective divalent cation channel defined by the atypical presence of an α-kinase within its C-terminal domain, has been implicated, due to its modulation of Ca2+ and Mg2+ influx, in a wide variety of physiological and pathological processes, including cancer. TRPM7 is overexpressed in several cancer types and has been shown to variably increase cellular proliferation, migration, and invasion of tumour cells. However, the relative contribution of TRPM7 kinase domain activity to cancer as opposed to ion flux through its channel pore remains an area of active discovery. In this review, we describe the specific role of the TRPM7 kinase domain in cancer processes as well as mechanisms of regulation and inhibition of the kinase domain.
Collapse
Affiliation(s)
- Selena Meng
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Rahmah Alanazi
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Delphine Ji
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Julia Bandura
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Zheng-Wei Luo
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Andrea Fleig
- Center for Biomedical Research at The Queen's Medical Center and John A. Burns School of Medicine and Cancer Center at the University of Hawaii, Honolulu, HI, 96720, USA
| | - Zhong-Ping Feng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada.
| | - Hong-Shuo Sun
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Pharmacology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada.
| |
Collapse
|
15
|
Abstract
Transient receptor potential (TRP) channels comprise a diverse family of ion channels, the majority of which are calcium permeable and show sophisticated regulatory patterns in response to various environmental cues. Early studies led to the recognition of TRP channels as environmental and chemical sensors. Later studies revealed that TRP channels mediated the regulation of intracellular calcium. Mutations in TRP channel genes result in abnormal regulation of TRP channel function or expression, and interfere with normal spatial and temporal patterns of intracellular local Ca2+ distribution. The resulting dysregulation of multiple downstream effectors, depending on Ca2+ homeostasis, is associated with hallmarks of cancer pathophysiology, including enhanced proliferation, survival and invasion of cancer cells. These findings indicate that TRP channels affect multiple events that control cellular fate and play a key role in cancer progression. This review discusses the accumulating evidence supporting the role of TRP channels in tumorigenesis, with emphasis on prostate cancer. [BMB Reports 2020; 53(3): 125-132].
Collapse
Affiliation(s)
- Dongki Yang
- Departments of Physiology, College of Medicine, Gachon University, Incheon 21999, Korea
| | - Jaehong Kim
- Departments of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Korea
| |
Collapse
|
16
|
Chinigò G, Fiorio Pla A, Gkika D. TRP Channels and Small GTPases Interplay in the Main Hallmarks of Metastatic Cancer. Front Pharmacol 2020; 11:581455. [PMID: 33132914 PMCID: PMC7550629 DOI: 10.3389/fphar.2020.581455] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
Transient Receptor Potential (TRP) cations channels, as key regulators of intracellular calcium homeostasis, play a central role in the essential hallmarks of cancer. Among the multiple pathways in which TRPs may be involved, here we focus our attention on the ones involving small guanosine triphosphatases (GTPases), summarizing the main processes associated with the metastatic cascade, such as migration, invasion and tumor vascularization. In the last decade, several studies have highlighted a bidirectional interplay between TRPs and small GTPases in cancer progression: TRP channels may affect small GTPases activity via both Ca2+-dependent or Ca2+-independent pathways, and, conversely, some small GTPases may affect TRP channels activity through the regulation of their intracellular trafficking to the plasma membrane or acting directly on channel gating. In particular, we will describe the interplay between TRPC1, TRPC5, TRPC6, TRPM4, TRPM7 or TRPV4, and Rho-like GTPases in regulating cell migration, the cooperation of TRPM2 and TRPV2 with Rho GTPases in increasing cell invasiveness and finally, the crosstalk between TRPC1, TRPC6, TRPM8, TRPV4 and both Rho- and Ras-like GTPases in inducing aberrant tumor vascularization.
Collapse
Affiliation(s)
- Giorgia Chinigò
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.,Laboratoire de Cell Physiology, Université de Lille, Department of Life Sciences, Univ. Lille, Inserm, U1003-PHYCEL, Lille, France
| | - Alessandra Fiorio Pla
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.,Laboratoire de Cell Physiology, Université de Lille, Department of Life Sciences, Univ. Lille, Inserm, U1003-PHYCEL, Lille, France
| | - Dimitra Gkika
- Laboratoire de Cell Physiology, Université de Lille, Department of Life Sciences, Univ. Lille, Inserm, U1003-PHYCEL, Lille, France.,Univ. Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020-UMR 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
17
|
Kiss F, Pohóczky K, Szállási A, Helyes Z. Transient Receptor Potential (TRP) Channels in Head-and-Neck Squamous Cell Carcinomas: Diagnostic, Prognostic, and Therapeutic Potentials. Int J Mol Sci 2020; 21:E6374. [PMID: 32887395 PMCID: PMC7569891 DOI: 10.3390/ijms21176374] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 12/24/2022] Open
Abstract
Head-and-neck squamous cell carcinomas (HNSCC) remain a leading cause of cancer morbidity and mortality worldwide. This is a largely preventable disease with smoking, alcohol abuse, and human papilloma virus (HPV) being the main risk factors. Yet, many patients are diagnosed with advanced disease, and no survival improvement has been seen for oral SCC in the past decade. Clearly, new diagnostic and prognostic markers are needed for early diagnosis and to guide therapy. Gene expression studies implied the involvement of transient receptor potential (TRP) channels in the pathogenesis of HNSCC. TRPs are expressed in normal epithelium where they play a key role in proliferation and differentiation. There is increasing evidence that the expression of TRP channels may change in HNSCC with important implications for diagnosis, prognosis, and therapy. In this review, we propose that TRP channel expression may afford a novel opportunity for early diagnosis of HNSCC and targeted molecular treatment.
Collapse
Affiliation(s)
- Fruzsina Kiss
- Somogy County Kaposi Mór Teaching Hospital, H-7400 Kaposvár, Hungary;
| | - Krisztina Pohóczky
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary;
- János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Arpad Szállási
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary;
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary;
- János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
- PharmInVivo Ltd., H-7629 Pécs, Hungary
| |
Collapse
|
18
|
Trapani V, Wolf FI. Dysregulation of Mg2+ homeostasis contributes to acquisition of cancer hallmarks. Cell Calcium 2019; 83:102078. [DOI: 10.1016/j.ceca.2019.102078] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/26/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023]
|
19
|
Canales J, Morales D, Blanco C, Rivas J, Díaz N, Angelopoulos I, Cerda O. A TR(i)P to Cell Migration: New Roles of TRP Channels in Mechanotransduction and Cancer. Front Physiol 2019; 10:757. [PMID: 31275168 PMCID: PMC6591513 DOI: 10.3389/fphys.2019.00757] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/31/2019] [Indexed: 12/20/2022] Open
Abstract
Cell migration is a key process in cancer metastasis, allowing malignant cells to spread from the primary tumor to distant organs. At the molecular level, migration is the result of several coordinated events involving mechanical forces and cellular signaling, where the second messenger Ca2+ plays a pivotal role. Therefore, elucidating the regulation of intracellular Ca2+ levels is key for a complete understanding of the mechanisms controlling cellular migration. In this regard, understanding the function of Transient Receptor Potential (TRP) channels, which are fundamental determinants of Ca2+ signaling, is critical to uncovering mechanisms of mechanotransduction during cell migration and, consequently, in pathologies closely linked to it, such as cancer. Here, we review recent studies on the association between TRP channels and migration-related mechanotransduction events, as well as in the involvement of TRP channels in the migration-dependent pathophysiological process of metastasis.
Collapse
Affiliation(s)
- Jimena Canales
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile
| | - Diego Morales
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile
| | - Constanza Blanco
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile
| | - José Rivas
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile
| | - Nicolás Díaz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile
| | - Ioannis Angelopoulos
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile
| | - Oscar Cerda
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile.,The Wound Repair, Treatment and Health (WoRTH) Initiative, Santiago, Chile
| |
Collapse
|
20
|
TRPM7 controls mesenchymal features of breast cancer cells by tensional regulation of SOX4. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2409-2419. [DOI: 10.1016/j.bbadis.2018.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/13/2018] [Accepted: 04/18/2018] [Indexed: 01/04/2023]
|
21
|
Zhao Z, Zhang M, Duan X, Chen Y, Li E, Luo L, Wu W, Peng Z, Qiu H, Zeng G. TRPM7 Regulates AKT/FOXO1–Dependent Tumor Growth and Is an Independent Prognostic Indicator in Renal Cell Carcinoma. Mol Cancer Res 2018; 16:1013-1023. [PMID: 29545479 DOI: 10.1158/1541-7786.mcr-17-0767] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/15/2018] [Accepted: 03/06/2018] [Indexed: 11/16/2022]
Affiliation(s)
- Zhijian Zhao
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, and Guangdong Key Laboratory of Urology, Guangzhou, China.
| | - Mengping Zhang
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaolu Duan
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, and Guangdong Key Laboratory of Urology, Guangzhou, China
| | - Yiwen Chen
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, and Guangdong Key Laboratory of Urology, Guangzhou, China
| | - Ermao Li
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, and Guangdong Key Laboratory of Urology, Guangzhou, China
| | - Lianmin Luo
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, and Guangdong Key Laboratory of Urology, Guangzhou, China
| | - Wenqi Wu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, and Guangdong Key Laboratory of Urology, Guangzhou, China
| | - Zhenwei Peng
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Huijuan Qiu
- Department of VIP, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Guohua Zeng
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, and Guangdong Key Laboratory of Urology, Guangzhou, China.
| |
Collapse
|
22
|
Rybarczyk P, Vanlaeys A, Brassart B, Dhennin-Duthille I, Chatelain D, Sevestre H, Ouadid-Ahidouch H, Gautier M. The Transient Receptor Potential Melastatin 7 Channel Regulates Pancreatic Cancer Cell Invasion through the Hsp90α/uPA/MMP2 pathway. Neoplasia 2017; 19:288-300. [PMID: 28284058 PMCID: PMC5345960 DOI: 10.1016/j.neo.2017.01.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/05/2017] [Accepted: 01/13/2017] [Indexed: 12/28/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a very poor prognosis. There is an urgent need to better understand the molecular mechanisms that regulate PDAC cell aggressiveness. The transient receptor potential melastatin 7 (TRPM7) is a nonselective cationic channel that mainly conducts Ca2+ and Mg2+. TRPM7 is overexpressed in numerous malignancies including PDAC. In the present study, we used the PANC-1 and MIA PaCa-2 cell lines to specifically assess the role of TRPM7 in cell invasion and matrix metalloproteinase secretion. We show that TRPM7 regulates Mg2+ homeostasis and constitutive cation entry in both PDAC cell lines. Moreover, cell invasion is strongly reduced by TRPM7 silencing without affecting the cell viability. Conditioned media were further studied, by gel zymography, to detect matrix metalloproteinase (MMP) secretion in PDAC cells. Our results show that MMP-2, urokinase plasminogen activator (uPA), and heat-shock protein 90α (Hsp90α) secretions are significantly decreased in TRPM7-deficient PDAC cells. Moreover, TRPM7 expression in human PDAC lymph node metastasis is correlated to the channel expression in primary tumor. Taken together, our results show that TRPM7 is involved in PDAC cell invasion through regulation of Hsp90α/uPA/MMP-2 proteolytic axis, confirming that this channel could be a promising biomarker and possibly a target for PDAC metastasis therapy.
Collapse
Affiliation(s)
- Pierre Rybarczyk
- Laboratoire de Physiologie Cellulaire et Moléculaire-EA4667, UFR Sciences, Université de Picardie Jules Verne, F-80039 Amiens, France; SFR CAP-Santé (FED 4231)
| | - Alison Vanlaeys
- Laboratoire de Physiologie Cellulaire et Moléculaire-EA4667, UFR Sciences, Université de Picardie Jules Verne, F-80039 Amiens, France; SFR CAP-Santé (FED 4231)
| | - Bertrand Brassart
- SFR CAP-Santé (FED 4231); UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), F-51095 Reims, France
| | - Isabelle Dhennin-Duthille
- Laboratoire de Physiologie Cellulaire et Moléculaire-EA4667, UFR Sciences, Université de Picardie Jules Verne, F-80039 Amiens, France; SFR CAP-Santé (FED 4231)
| | - Denis Chatelain
- Service d'anatomie pathologique, CHU d'Amiens, Université de Picardie Jules Verne, F-80000 Amiens, France, France
| | - Henri Sevestre
- Laboratoire de Physiologie Cellulaire et Moléculaire-EA4667, UFR Sciences, Université de Picardie Jules Verne, F-80039 Amiens, France; SFR CAP-Santé (FED 4231); Service d'anatomie pathologique, CHU d'Amiens, Université de Picardie Jules Verne, F-80000 Amiens, France, France
| | - Halima Ouadid-Ahidouch
- Laboratoire de Physiologie Cellulaire et Moléculaire-EA4667, UFR Sciences, Université de Picardie Jules Verne, F-80039 Amiens, France; SFR CAP-Santé (FED 4231)
| | - Mathieu Gautier
- Laboratoire de Physiologie Cellulaire et Moléculaire-EA4667, UFR Sciences, Université de Picardie Jules Verne, F-80039 Amiens, France; SFR CAP-Santé (FED 4231).
| |
Collapse
|
23
|
The TRPM7 interactome defines a cytoskeletal complex linked to neuroblastoma progression. Eur J Cell Biol 2016; 95:465-474. [DOI: 10.1016/j.ejcb.2016.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/16/2016] [Accepted: 06/23/2016] [Indexed: 01/27/2023] Open
|
24
|
Chen Y, Yu Y, Sun S, Wang Z, Liu P, Liu S, Jiang J. Bradykinin promotes migration and invasion of hepatocellular carcinoma cells through TRPM7 and MMP2. Exp Cell Res 2016; 349:68-76. [DOI: 10.1016/j.yexcr.2016.09.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 12/26/2022]
|
25
|
Middelbeek J, Visser D, Henneman L, Kamermans A, Kuipers AJ, Hoogerbrugge PM, Jalink K, van Leeuwen FN. TRPM7 maintains progenitor-like features of neuroblastoma cells: implications for metastasis formation. Oncotarget 2016; 6:8760-76. [PMID: 25797249 PMCID: PMC4496182 DOI: 10.18632/oncotarget.3315] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/08/2015] [Indexed: 12/18/2022] Open
Abstract
Neuroblastoma is an embryonal tumor derived from poorly differentiated neural crest cells. Current research is aimed at identifying the molecular mechanisms that maintain the progenitor state of neuroblastoma cells and to develop novel therapeutic strategies that induce neuroblastoma cell differentiation. Mechanisms controlling neural crest development are typically dysregulated during neuroblastoma progression, and provide an appealing starting point for drug target discovery. Transcriptional programs involved in neural crest development act as a context dependent gene regulatory network. In addition to BMP, Wnt and Notch signaling, activation of developmental gene expression programs depends on the physical characteristics of the tissue microenvironment. TRPM7, a mechanically regulated TRP channel with kinase activity, was previously found essential for embryogenesis and the maintenance of undifferentiated neural crest progenitors. Hence, we hypothesized that TRPM7 may preserve progenitor-like, metastatic features of neuroblastoma cells. Using multiple neuroblastoma cell models, we demonstrate that TRPM7 expression closely associates with the migratory and metastatic properties of neuroblastoma cells in vitro and in vivo. Moreover, microarray-based expression profiling on control and TRPM7 shRNA transduced neuroblastoma cells indicates that TRPM7 controls a developmental transcriptional program involving the transcription factor SNAI2. Overall, our data indicate that TRPM7 contributes to neuroblastoma progression by maintaining progenitor-like features.
Collapse
Affiliation(s)
- Jeroen Middelbeek
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Daan Visser
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Linda Henneman
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alwin Kamermans
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Arthur J Kuipers
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Peter M Hoogerbrugge
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands.,Princes Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Kees Jalink
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Frank N van Leeuwen
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
26
|
Shapovalov G, Ritaine A, Skryma R, Prevarskaya N. Role of TRP ion channels in cancer and tumorigenesis. Semin Immunopathol 2016; 38:357-69. [PMID: 26842901 DOI: 10.1007/s00281-015-0525-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/03/2015] [Indexed: 12/12/2022]
Abstract
Transient receptor potential (TRP) channels are recently identified proteins that form a versatile family of ion channels, the majority of which are calcium permeable and exhibit complex regulatory patterns with sensitivity to multiple environmental factors. While this sensitivity has captured early attention, leading to recognition of TRP channels as environmental and chemical sensors, many later studies concentrated on the regulation of intracellular calcium by TRP channels. Due to mutations, dysregulation of ion channel gating or expression levels, normal spatiotemporal patterns of local Ca(2+) distribution become distorted. This causes deregulation of downstream effectors sensitive to changes in Ca(2+) homeostasis that, in turn, promotes pathophysiological cancer hallmarks, such as enhanced survival, proliferation and invasion. These observations give rise to the appreciation of the important contributions that TRP channels make to many cellular processes controlling cell fate and positioning these channels as important players in cancer regulation. This review discusses the accumulated scientific knowledge focused on TRP channel involvement in regulation of cell fate in various transformed tissues.
Collapse
Affiliation(s)
- George Shapovalov
- Inserm U1003, Equipe Labellisee par la Ligue Nationale Contre le Cancer, Universite de Sciences et Technologies de Lille (USTL), F-59655, Villeneuve d'Ascq, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Abigael Ritaine
- Inserm U1003, Equipe Labellisee par la Ligue Nationale Contre le Cancer, Universite de Sciences et Technologies de Lille (USTL), F-59655, Villeneuve d'Ascq, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Roman Skryma
- Inserm U1003, Equipe Labellisee par la Ligue Nationale Contre le Cancer, Universite de Sciences et Technologies de Lille (USTL), F-59655, Villeneuve d'Ascq, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Natalia Prevarskaya
- Inserm U1003, Equipe Labellisee par la Ligue Nationale Contre le Cancer, Universite de Sciences et Technologies de Lille (USTL), F-59655, Villeneuve d'Ascq, France. .,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France.
| |
Collapse
|
27
|
Qin Y, Liao ZW, Luo JY, Wu WZ, Lu AS, Su PX, Lai BQ, Wang XX. Functional characterization of TRPM7 in nasopharyngeal carcinoma and its knockdown effects on tumorigenesis. Tumour Biol 2016; 37:9273-83. [PMID: 26779625 DOI: 10.1007/s13277-015-4636-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/10/2015] [Indexed: 01/18/2023] Open
Abstract
The aim of this study was to evaluate the association of functional expression of TRPM7 with nasopharyngeal carcinoma (NPC) growth. We examined the correlation of TRPM7 expression with cell growth and proliferation, cell cycle, and apoptosis in vitro in NPC cell lines and NPC tumorigenesis in mice by conducting experiments in mice and by further analyzing the tumor volume and growth. We further explored to see whether there is any positive correlation with the TRPM7 knockdown in NPC cells with their sensitivity to radiation. We found that the functional expression of TRPM7 in nasopharyngeal carcinoma is a critical requirement for physiological processes such as cell cycle, resistance to apoptosis, and cell proliferation. TRPM7 knockdown also enhanced sensitivity to radiotherapy of nasopharyngeal carcinoma. Moreover, we identified TRPM7 as a novel potential regulator of cell proliferation in NPC, through signal transducer and activator of transcription 3 (STAT3)-mediated signaling pathway and other anti-apoptotic factors. TRPM7 and STAT3 activation might be critical for the growth of NPC cells and could be an effective target for treatment of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Yi Qin
- Department of Orthopedics, Zhuhai People's Hospital, Zhuhai, 519000, China
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Zhi-Wei Liao
- Department of Radiation Oncology, Cancer Center of Guangzhou Medical University, Guangzhou, China
| | - Jing-Yan Luo
- Forevergen Biosciences Center, R&D Unit 602, Guangzhou, 510000, China
| | - Wen-Zhe Wu
- Forevergen Biosciences Center, R&D Unit 602, Guangzhou, 510000, China
| | - An-Shang Lu
- Forevergen Biosciences Center, R&D Unit 602, Guangzhou, 510000, China
| | - Pu-Xia Su
- Forevergen Biosciences Center, R&D Unit 602, Guangzhou, 510000, China
| | - Bing-Quan Lai
- Forevergen Biosciences Center, R&D Unit 602, Guangzhou, 510000, China.
| | - Xiao-Xiao Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
28
|
Smani T, Shapovalov G, Skryma R, Prevarskaya N, Rosado JA. Functional and physiopathological implications of TRP channels. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1772-82. [DOI: 10.1016/j.bbamcr.2015.04.016] [Citation(s) in RCA: 289] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/22/2015] [Accepted: 04/24/2015] [Indexed: 10/23/2022]
|
29
|
Banerji J. Asparaginase treatment side-effects may be due to genes with homopolymeric Asn codons (Review-Hypothesis). Int J Mol Med 2015; 36:607-26. [PMID: 26178806 PMCID: PMC4533780 DOI: 10.3892/ijmm.2015.2285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/15/2015] [Indexed: 12/14/2022] Open
Abstract
The present treatment of childhood T-cell leukemias involves the systemic administration of prokary-otic L-asparaginase (ASNase), which depletes plasma Asparagine (Asn) and inhibits protein synthesis. The mechanism of therapeutic action of ASNase is poorly understood, as are the etiologies of the side-effects incurred by treatment. Protein expression from genes bearing Asn homopolymeric coding regions (N-hCR) may be particularly susceptible to Asn level fluctuation. In mammals, N-hCR are rare, short and conserved. In humans, misfunctions of genes encoding N-hCR are associated with a cluster of disorders that mimic ASNase therapy side-effects which include impaired glycemic control, dislipidemia, pancreatitis, compromised vascular integrity, and neurological dysfunction. This paper proposes that dysregulation of Asn homeostasis, potentially even by ASNase produced by the microbiome, may contribute to several clinically important syndromes by altering expression of N-hCR bearing genes. By altering amino acid abundance and modulating ribosome translocation rates at codon repeats, the microbiomic environment may contribute to genome decoding and to shaping the proteome. We suggest that impaired translation at poly Asn codons elevates diabetes risk and severity.
Collapse
Affiliation(s)
- Julian Banerji
- Center for Computational and Integrative Biology, MGH, Simches Research Center, Boston, MA 02114, USA
| |
Collapse
|