1
|
Wang Z, Liu WJ, Tao J, Hu J, Zhang CY. Enzymatic cascade amplification-modulated Thermus thermophilus Argonaute biosensor for simultaneous monitoring of multiple Piwi-interacting RNAs. Biosens Bioelectron 2025; 276:117261. [PMID: 39978236 DOI: 10.1016/j.bios.2025.117261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
PIWI-interacting RNAs (piRNAs) play critical regulatory roles in a variety of physiological and pathological process, and their aberrant expression levels are implicated in the progression and prognosis of cancers. Herein, we construct an enzymatic cascade amplification-modulated Thermus thermophilus Argonaute (TtAgo) biosensor for simultaneous monitoring of multiple piRNAs (i.e., piR-36026 and piR-36743) in breast tissues. Targets piR-36026 and piR-36743 can initiate enzymatic cascade amplification events to produce two corresponding amplicons with 5'-phosphate termini (i.e., gDNAs 1 and 2), respectively. The gDNAs 1 and 2 can serve as the DNA guides to activate TtAgo-dependent cyclic cleavage of reporters 1 and 2, respectively, liberating numerous Cy3 and Cy5 fluorophores. Taking advantage of the high efficiency of enzymatic cascade amplification, and the precise recognition and multi-turnover cleavage activity of TtAgo, this TtAgo biosensor achieves high sensitivity, good selectivity, and multiplex analysis capability. Moreover, it can be employed for simultaneous quantification of endogenous piR-36026 and piR-36743 with single-cell sensitivity, and differentiation of piRNA levels in the tissues of breast cancer patients and healthy individuals, offering a promising platform for bioanalytical and biomedical researches.
Collapse
Affiliation(s)
- Ze Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 211189, China
| | - Wen-Jing Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 211189, China
| | - Jinqiu Tao
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China
| | - Juan Hu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 211189, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
2
|
Chennakesavan K, Haorah J, Samikkannu T. piRNA/PIWI pathways and epigenetic crosstalk in human diseases: Molecular insights into HIV-1 infection and drugs of abuse. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102473. [PMID: 40083650 PMCID: PMC11905891 DOI: 10.1016/j.omtn.2025.102473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
P-element-induced wimpy (PIWI)-interacting RNAs (piRNAs) and PIWI proteins have long been studied in insects and germline cells for their roles in regulating transposable elements (TEs). However, emerging evidence suggests that piRNAs and PIWI proteins also play crucial roles in human diseases beyond gametocyte protection, and these molecules are implicated in the onset and progression of various human diseases, particularly those arising in somatic cells. Notably, piRNAs and PIWI proteins are increasingly recognized for their involvement in cancers, cardiovascular diseases, neurodegenerative disorders, and viral infections, including HIV. This review first provides an overview of piRNAs/PIWIs and their interactions with TEs and primary targets. We then explore the molecular mechanisms and signaling pathways through which piRNAs and PIWIs modulate human disease processes, focusing on neurodegeneration, cancers, and HIV. Special attention is given to the role of piRNA/PIWI complexes in regulating gene transcription, translation, and post-translational modifications in the context of disease. Additionally, we address emerging research into the role of piRNAs/PIWIs in HIV- and drug abuse or substance abuse-associated neurodegenerative diseases, highlighting existing knowledge gaps. Finally, we discuss future research directions to understand better the functions of piRNAs/PIWI proteins in human health and disease.
Collapse
Affiliation(s)
- Karthick Chennakesavan
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - James Haorah
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Thangavel Samikkannu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Health Science Center, College Station, TX 77843, USA
| |
Collapse
|
3
|
Xu Y, Liu H, Zhang Y, Luo J, Li H, Lai C, Shi L, Heng B. piRNAs and circRNAs acting as diagnostic biomarkers in clear cell renal cell carcinoma. Sci Rep 2025; 15:7774. [PMID: 40044829 PMCID: PMC11882777 DOI: 10.1038/s41598-025-90874-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 02/17/2025] [Indexed: 03/09/2025] Open
Abstract
The discovery of diverse functions and mechanisms in cancer has underscored the significance of emerging non-coding RNAs (ncRNAs), such as PIWI-interacting RNAs (piRNAs) and circular RNAs (circRNAs), within the clinical context of cancer. Understanding their role in clear cell renal cell carcinoma (ccRCC) is imperative and necessitates comprehensive investigation. This study aims to further explore the diagnostic potential of piRNAs and circRNAs for ccRCC. The dysregulated piRNAs and circRNAs in ccRCC were identified using small RNA (sRNA) high-throughput sequencing technology, while their expression in clinical samples was assessed by RT-qPCR. A paired t-test was performed to compare the expression levels of piRNAs and circRNAs between ccRCC and adjacent tissues. Additionally, ROC curve analysis was conducted to evaluate the diagnostic specificity, sensitivity, and area under the curve (AUC) of piRNAs and circRNAs. High-throughput sequencing revealed a significant downregulation of 17 piRNAs and 694 circRNAs in ccRCC tissues, accompanied by a significant upregulation of 5 piRNAs and 490 circRNAs. RT-qPCR analysis demonstrated markedly lower expression levels of piR-has-150997, 133872, 132556, 154502, and uniq-84737 in the ccRCC group compared to the adjacent tissue group (p < 0.05). When considering the combined detection of piR-hsa-150997, piR-hsa-133872, piR-hsa-132556, piR-hsa-154502, uniq_84737, circABCC1, circNETO2_006, and circARID1B_037, the diagnostic AUC for ccRCC was found to be high at an approximate value of AUC = 0.878. The diagnostic performance of piR-has-150997, 133872, 132556, 154502, uniq-84737, circABCC1, circNETO2_006, and circARID1B_037 demonstrates promise for ccRCC. A model incorporating piR-hsa-150997, uniq_84737, circABCC1, circNETO2_006, and circARID1B_037 could serve as an ideal diagnostic marker system with significant clinical utility.
Collapse
Affiliation(s)
- Yin Xu
- Department of Urology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Road, Guangzhou, 510630, China.
- Department of Urology, The People's Hospital of Longhua Shenzhen, No. 38, Jianshe East Road, Shenzhen, 518109, China.
| | - Huiling Liu
- Department of Urology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Road, Guangzhou, 510630, China
| | - Yingzhi Zhang
- Department of Urology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Road, Guangzhou, 510630, China
| | - Jing Luo
- Department of Physical Examination, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Haomin Li
- Department of Urology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Road, Guangzhou, 510630, China
| | - Caiyong Lai
- Department of Urology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Road, Guangzhou, 510630, China.
- Department of Urology, The Sixth Affiliated Hospital of Jinan University, No. 88, Changdong Road, Dongguan, 523560, China.
| | - Liping Shi
- Department of Urology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Road, Guangzhou, 510630, China.
| | - Baoli Heng
- Department of Urology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Road, Guangzhou, 510630, China.
- Yingde Center, Institute of Kidney Surgery, Jinan University, Yingde, Guangdong, China.
| |
Collapse
|
4
|
Li W, Liu WJ, Lu J, Ma F, Zhang CY. A Programmable Automatic Cascade Machinery for Single-Molecule Profiling of Multiple Noncoding RNAs in Breast Tissues. Anal Chem 2025; 97:4224-4232. [PMID: 39930751 DOI: 10.1021/acs.analchem.4c07017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Noncoding RNAs (ncRNAs) are identified as critical regulatory molecules in tumorigenesis and progression. Investigating the expression patterns of multiple ncRNAs in living cells and tissues may facilitate the diagnosis of cancers. Herein, we develop a programmable automatic cascade machinery for single-molecule profiling of multiple ncRNAs. This method involves two successive amplification events that can convert extremely low-abundance target ncRNAs into abundant FAM/Cy5 molecules for the generation of amplified fluorescence signals. The subsequent single-molecule detection can identify piR-36026 with the FAM signal and DSCAM-AS1 with the Cy5 signal. Due to the high efficiency of automatic cascade machinery and the high signal-to-noise ratio of single-molecule imaging, this method can achieve sensitive detection of multiple ncRNAs with a detection limit of 44.67 aM for piR-36026 and 45.71 aM for DSCAM-AS1, and it can measure endogenous piR-36026 and DSCAM-AS1 at the single-cell level. Moreover, the profiling of piR-36026 and DSCAM-AS1 in healthy tissues and breast cancer tissues demonstrates the feasibility of the proposed method in cancer diagnostics. By programming the recognition sequences of dumbbell probes, this method can be extended to measure other cancer-related ncRNAs, with great prospects in clinical applications.
Collapse
Affiliation(s)
- Wen Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Wen-Jing Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Jun Lu
- Auckland Bioengineering Institute, University of Auckland, Auckland 1142, New Zealand
| | - Fei Ma
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
5
|
Yang DM, Li D, Zhang Q, Zhao S, Zhang CY. Development of a Single-Molecule Biosensor Based on Polymerization-Transcription-Mediated Target Regeneration for Simultaneously One-Pot Detection of Multiple piRNAs. Anal Chem 2025; 97:3145-3152. [PMID: 39882705 DOI: 10.1021/acs.analchem.4c06491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
PIWI-interacting RNAs (piRNAs) are a class of small noncoding RNAs associated with PIWI proteins within the male germline, and they play significant roles in maintaining genome stability via the modulation of gene expression. The piRNAs are implicated in the progression of various cancers, but the simultaneous monitoring of multiple piRNAs remains a challenge. Herein, we construct a single-molecule biosensor based on polymerization-transcription-mediated target regeneration for the simultaneous one-pot detection of multiple piRNAs. This assay involves two cycles. In step 1, target piRNAs hybridize with the template probe complexes to yield three-way junction (3WJ) structures. Then, KF DNA polymerase initiates the extension to generate a complete T7 promoter, and the extension product can act as an invading strand to displace signal probes, resulting in the release of fluorophores. Then, in step 2, the T7 promoter can be recognized by T7 RNA polymerase to initiate transcription, producing abundant transcripts with 3'-OH that are identical to piRNAs. The resultant transcripts can hybridize with free template probe complexes to obtain new 3WJ structures that can be elongated by KF polymerase for the recovery of fluorescence signals. This assay can be performed homogeneously in a one-pot format within 30 min, and it exhibits high sensitivity, with a limit of detection (LOD) of 19.26 aM for piRNA-36026 and 41.88 aM for piRNA-36743. Moreover, it can simultaneously detect endogenous piRNAs at the single-cell level and differentiate piRNA expression in the tissues of healthy individuals and breast cancer patients, offering a prospective platform for clinic diagnosis.
Collapse
Affiliation(s)
- Dong-Ming Yang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Dongling Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Qian Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
6
|
El Saftawy EA, Aboulhoda BE, AbdElkhalek MA, Alghamdi MA, AlHariry NS. Non-coding RNAs in urinary bladder cancer microenvironment: Diagnostic, therapeutic, and prognostic perspective. Pathol Res Pract 2025; 266:155815. [PMID: 39824086 DOI: 10.1016/j.prp.2025.155815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/30/2024] [Accepted: 01/05/2025] [Indexed: 01/20/2025]
Abstract
Urinary bladder cancer (UBC) is the ninth most common cancer worldwide. Despite the reliance of UBC therapy on definite pathological grading and classifications, the clinical response among patients varies widely. The molecular basis of this type of cancer appeals to considerable research; hence, new diagnostic and therapeutic options are introduced. Convenient keywords were searched in Google Scholar, PubMed, the Egyptian Knowledge Bank (EKB), and Web of Science. The recent era of UBC research is concerned with non-coding RNAs (ncRNAs), predominantly, microRNAs (miRNAs) and long non-coding RNA (lncRNAs). In addition, snoRNAs, PIWI-interacting RNAs, mitochondrial RNAs, circular, and Schistosoma haematobium-related ncRNAs appeared to contribute to the pathogenesis of the UBC. This review underscored the recently studied ncRNAs and their importance in the pathogenesis of UBC. Besides, we introduced the prospectives regarding their diagnostic, therapeutic, and prognostic significance in UBC clinical settings. Conclusion. Oncogenic and oncosuppressor ncRNAs' definite balances and interaction within the TME of UBC are key players in the fate of the tumor. Thus, profiling ncRNA in-depth inspects the TME of the UBC for better clinical insights.
Collapse
Affiliation(s)
- Enas A El Saftawy
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Cairo, Egypt; Department of Medical Parasitology, Armed Forces College of Medicine, Cairo, Egypt
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Marwa Ali AbdElkhalek
- Medical Biochemistry & Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Department of Medical Biochemistry & Molecular Biology, Armed Forces College of Medicine, Cairo, Egypt
| | - Mansour A Alghamdi
- Central Labs, King Khalid University, P.O. Box 960, AlQura'a, Abha, Saudi Arabia; Department of Anatomy, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia; Genomics and Personalized Medicine Unit, The Center for Medical and Health Research, King Khalid University, Abha 62529, Saudi Arabia
| | | |
Collapse
|
7
|
Silvia BJ, Shetty S, Behera R, Khandelwal A, Gore M, Bairy M, Ajjanagadde A, Shaheeda A, Bhat GK, Kabekkodu SP. A comprehensive review on the role of PIWI-interacting RNA (piRNA) in gynecological cancers. Life Sci 2024; 357:123065. [PMID: 39299387 DOI: 10.1016/j.lfs.2024.123065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Gynecological cancers are currently a major public health concern due to increase in incidence and mortality globally. PIWI-interacting RNA (piRNA) are small non-coding RNA consisting of 24-32 nucleotides that plays regulatory role by interacting with piwi family of protein. Recent studies have revealed that piRNAs are expressed in various kinds of human tissues and influences key signalling pathways at transcriptional and post transcriptional levels. Studies have also that suggested piRNA and PIWI proteins display frequently altered expression in several cancers. Recent research has indicated that abnormal expression of piRNA may play a significant role in development and progression of gynecological cancers. Clinical studies suggested that, abnormally expressed piRNAs may serve as diagnostic and prognostic marker, and as potential therapeutic targets in these cancers. In the present review article, we discussed the emerging role of piRNA and their utility as diagnostic and prognostic marker in gynecological cancers.
Collapse
Affiliation(s)
- Bobby J Silvia
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Sachin Shetty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Roopal Behera
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Ayush Khandelwal
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Mrudula Gore
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Medha Bairy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Anagha Ajjanagadde
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Aishath Shaheeda
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Gahan Krishna Bhat
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India.
| |
Collapse
|
8
|
Shi Q, Zheng K, Li H, Wang B, Liang X, Li X, Wang J. LKLPDA: A Low-Rank Fast Kernel Learning Approach for Predicting piRNA-Disease Associations. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:2179-2187. [PMID: 39213276 DOI: 10.1109/tcbb.2024.3452055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Piwi-interacting RNAs (piRNAs) are increasingly recognized as potential biomarkers for various diseases. Investig-ating the complex relationship between piRNAs and diseases through computational methods can reduce the costs and risks associated with biological experiments. Fast kernel learning (FKL) is a classical method for multi-source data fusion that is widely employed in association prediction research. However, biological networks are noisy due to the limitations of measurement technology and inherent natural variation, which can hamper the effectiveness of the network-based ideal kernel. The conventional FKL method does not address this issue. In this study, we propose a low-rank fast kernel learning (LRFKL) algorithm, which consists of low-rank representation (LRR) and the FKL algorithm. The LRFKL algorithm is designed to mitigate the effects of noise on the network-based ideal kernel. Using LRFKL, we propose a novel approach for predicting piRNA-disease associations called LKLPDA. Specifically, we first compute the similarity matrices for piRNAs and diseases. Then we use the LRFKL to fuse the similarity matrices for piRNAs and diseases separately. Finally, the LKLPDA employs AutoGluon-Tabular for predictive analysis. Computational results show that LKLPDA effectively predicts piRNA-disease associations with higher accuracy compared to previous methods. In addition, case studies confirm the reliability of the model in predicting piRNA-disease associations.
Collapse
|
9
|
Tong W, Han Y, Wang T, Wan J, Ma F, Zhang CY. Bidirectional Polymerization-Transcription Amplification-Encoded Dual-Color Fluorescent Biosensor for Label-Free and Primer-Free Detection of Multiple piRNAs. Anal Chem 2024. [PMID: 39250656 DOI: 10.1021/acs.analchem.4c03773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
PIWI-interacting RNAs (piRNAs) are a type of endogenous noncoding RNAs with a length of 24-31 nucleotides, and they can specifically bind with PIWI proteins to form the piRNA/PIWI complexes for regulating multiple physiological and pathological processes. Herein, we develop a bidirectional polymerization-transcription amplification-encoded dual-color fluorescent biosensor for label-free and primer-free measurements of multiple piRNAs. The designed hairpin probe contains a palindromic tail, and it can serve as the target recognition unit, polymerization primer, and transcription template. In the presence of target piRNAs, the hairpin probes are opened to expose a palindromic sequence that can trigger bidirectional polymerization and transcription reaction with the assistance of KF polymerase and T7 RNA polymerase for the production of numerous RNA aptamers. The aptamers subsequently bind with the corresponding fluorophores (DFHBI-1T/MG) to form the RNA aptamer-fluorophore complexes for the generation of enhanced fluorescence signals. This biosensor can sensitively detect piR-36026 with a limit of detection (LOD) of 82.08 aM and piR-36743 with a LOD of 44.44 aM. Moreover, it can quantify cellular piRNAs with single-cell sensitivity and distinguish cancer cells from normal cells. Furthermore, it has the capability of distinguishing the expression of piRNAs in the tissues of breast cancer patients and healthy individuals. By simply altering the target recognition site of the hairpin probe, this biosensor can be extended to detect various piRNAs, offering a powerful platform for piRNA-related clinical diagnostics and therapeutics.
Collapse
Affiliation(s)
- Weijie Tong
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Yun Han
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Tao Wang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210000, China
| | - Jiayi Wan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Fei Ma
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
10
|
Kondratov KA, Artamonov AA, Nikitin YV, Velmiskina AA, Mikhailovskii VY, Mosenko SV, Polkovnikova IA, Asinovskaya AY, Apalko SV, Sushentseva NN, Ivanov AM, Scherbak SG. Revealing differential expression patterns of piRNA in FACS blood cells of SARS-CoV-2 infected patients. BMC Med Genomics 2024; 17:212. [PMID: 39143590 PMCID: PMC11325581 DOI: 10.1186/s12920-024-01982-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
Non-coding RNA expression has shown to have cell type-specificity. The regulatory characteristics of these molecules are impacted by changes in their expression levels. We performed next-generation sequencing and examined small RNA-seq data obtained from 6 different types of blood cells separated by fluorescence-activated cell sorting of severe COVID-19 patients and healthy control donors. In addition to examining the behavior of piRNA in the blood cells of severe SARS-CoV-2 infected patients, our aim was to present a distinct piRNA differential expression portrait for each separate cell type. We observed that depending on the type of cell, different sorted control cells (erythrocytes, monocytes, lymphocytes, eosinophils, basophils, and neutrophils) have altering piRNA expression patterns. After analyzing the expression of piRNAs in each set of sorted cells from patients with severe COVID-19, we observed 3 significantly elevated piRNAs - piR-33,123, piR-34,765, piR-43,768 and 9 downregulated piRNAs in erythrocytes. In lymphocytes, all 19 piRNAs were upregulated. Monocytes were presented with a larger amount of statistically significant piRNA, 5 upregulated (piR-49039 piR-31623, piR-37213, piR-44721, piR-44720) and 35 downregulated. It has been previously shown that piR-31,623 has been associated with respiratory syncytial virus infection, and taking in account the major role of piRNA in transposon silencing, we presume that the differential expression patterns which we observed could be a signal of indirect antiviral activity or a specific antiviral cell state. Additionally, in lymphocytes, all 19 piRNAs were upregulated.
Collapse
Affiliation(s)
- Kirill A Kondratov
- City Hospital, No. 40 St, Petersburg, 197706, Russia.
- S. M. Kirov Military Medical Academy, St. Petersburg, 194044, Russia.
- Saint-Petersburg State University, St. Petersburg, 199034, Russia.
| | | | - Yuri V Nikitin
- S. M. Kirov Military Medical Academy, St. Petersburg, 194044, Russia
| | - Anastasiya A Velmiskina
- City Hospital, No. 40 St, Petersburg, 197706, Russia
- Saint-Petersburg State University, St. Petersburg, 199034, Russia
| | | | - Sergey V Mosenko
- City Hospital, No. 40 St, Petersburg, 197706, Russia
- Saint-Petersburg State University, St. Petersburg, 199034, Russia
| | - Irina A Polkovnikova
- City Hospital, No. 40 St, Petersburg, 197706, Russia
- Saint-Petersburg State University, St. Petersburg, 199034, Russia
| | - Anna Yu Asinovskaya
- City Hospital, No. 40 St, Petersburg, 197706, Russia
- Saint-Petersburg State University, St. Petersburg, 199034, Russia
| | - Svetlana V Apalko
- City Hospital, No. 40 St, Petersburg, 197706, Russia
- Saint-Petersburg State University, St. Petersburg, 199034, Russia
| | | | - Andrey M Ivanov
- S. M. Kirov Military Medical Academy, St. Petersburg, 194044, Russia
| | - Sergey G Scherbak
- City Hospital, No. 40 St, Petersburg, 197706, Russia
- Saint-Petersburg State University, St. Petersburg, 199034, Russia
| |
Collapse
|
11
|
Ma W, Xu L, Wang Y, Chen S, Li D, Huo X, Li R, Zhu X, Chen N, Jin Y, Luo J, Li C, Zhao K, Zheng Y, Han W, Yu D. piR-27222 mediates PM 2.5-induced lung cancer by resisting cell PANoptosis through the WTAP/m 6A axis. ENVIRONMENT INTERNATIONAL 2024; 190:108928. [PMID: 39106633 DOI: 10.1016/j.envint.2024.108928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/16/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
PM2.5 pollution has been associated with the incidence of lung cancer, but the underlying mechanism is still unclear. PIWI-interacting RNAs (piRNAs), initially identified in germline cells, have emerged as a novel class of small non-coding RNAs (26 - 32 nucleotides) with diverse functions in various diseases, including cancer. However, the role and mechanism of piRNAs in the development of PM2.5-induced lung cancer remain to be clarified. In the presented study, we used a PM2.5-induced malignant transformation cell model to analyze the change of piRNA profiles. Among the disturbed piRNAs, piR-27222 was identified as an oncogene that inhibited cell death in a m6A-dependent manner. Mechanistically, we found that piR-27222 could deubiquitinate and stabilize eIF4B by directly binding to eIF4B and reducing its interaction with PARK2. The enhanced expression of eIF4B, in turn, promoted the expression of WTAP, leading to increased m6A modification in the Casp8 transcript. Consequently, the stability of Casp8 transcripts was reduced, rendering lung cancer cells resistant to PANoptosis. Collectively, our findings reveal that PM2.5 exposure up-regulated piR-27222 expression, which could affect EIF4B/WTAP/m6A axis, thereby inhibiting PANoptosis of cells and promoting lung cancer. Our study provides new insights into understanding the epigenetic mechanisms underlining PM2.5-induced lung cancer.
Collapse
Affiliation(s)
- Wanli Ma
- School of Public Health, Qingdao University, Qingdao, China
| | - Lin Xu
- School of Public Health, Qingdao University, Qingdao, China
| | - Yixuan Wang
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, Qingdao, China
| | - Shen Chen
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Daochuan Li
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyu Huo
- School of Public Health, Qingdao University, Qingdao, China
| | - Ruoxi Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Xiaoxiao Zhu
- School of Public Health, Qingdao University, Qingdao, China
| | - Ningning Chen
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuan Jin
- School of Public Health, Qingdao University, Qingdao, China
| | - Jiao Luo
- School of Public Health, Qingdao University, Qingdao, China
| | - Chuanhai Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Kunming Zhao
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| | - Wei Han
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, Qingdao, China.
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
12
|
Yuan H, Hu J, Ge QQ, Liu WJ, Ma F, Zhang CY. Construction of a Spatial-Confined Self-Stacking Catalytic Circuit for Rapid and Sensitive Imaging of Piwi-Interacting RNA in Living Cells. NANO LETTERS 2024; 24:8732-8740. [PMID: 38958407 DOI: 10.1021/acs.nanolett.4c02230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Piwi-interacting RNAs (piRNAs) are small noncoding RNAs that repress transposable elements to maintain genome integrity. The canonical catalytic hairpin assembly (CHA) circuit relies on random collisions of free-diffused reactant probes, which substantially slow down reaction efficiency and kinetics. Herein, we demonstrate the construction of a spatial-confined self-stacking catalytic circuit for rapid and sensitive imaging of piRNA in living cells based on intramolecular and intermolecular hybridization-accelerated CHA. We rationally design a 3WJ probe that not only accelerates the reaction kinetics by increasing the local concentration of reactant probes but also eliminates background signal leakage caused by cross-entanglement of preassembled probes. This strategy achieves high sensitivity and good specificity with shortened assay time. It can quantify intracellular piRNA expression at a single-cell level, discriminate piRNA expression in tissues of breast cancer patients and healthy persons, and in situ image piRNA in living cells, offering a new approach for early diagnosis and postoperative monitoring.
Collapse
Affiliation(s)
- Huimin Yuan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Jinping Hu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Qi-Qin Ge
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Wen-Jing Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Fei Ma
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
13
|
Ahmadi Asouri S, Aghadavood E, Mirzaei H, Abaspour A, Esmaeil Shahaboddin M. PIWI-interacting RNAs (PiRNAs) as emerging biomarkers and therapeutic targets in biliary tract cancers: A comprehensive review. Heliyon 2024; 10:e33767. [PMID: 39040379 PMCID: PMC11261894 DOI: 10.1016/j.heliyon.2024.e33767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 06/09/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
Cancers affecting the biliary tract, such as gallbladder cancer and cholangiocarcinoma, make up a small percentage of adult gastrointestinal malignancies, but their incidence is on the rise. Due to the lack of dependable molecular biomarkers for diagnosis and prognosis, these cancers are often not detected until later stages and have limited treatment options. Piwi-interacting RNAs (piRNAs) are a type of small noncoding RNA that interacts with Piwi proteins and has been linked to various diseases, especially cancer. Manipulation of piRNA expression has the potential to serve as an important biomarker and target for therapy. This review uncovers the relationship between PIWI-interacting RNA (piRNA) and a variety of gastrointestinal cancers, including biliary tract cancer (BTC). It is evident that piRNAs have the ability to impact gene expression and regulate key genes and pathways related to the advancement of digestive cancers. Abnormal expression of piRNAs plays a significant role in the development and progression of digestive-related malignancies. The potential of piRNAs as potential biomarkers for diagnosis and prognosis, as well as therapeutic targets in BTC, is noteworthy. Nevertheless, there are obstacles and limitations that require further exploration to fully comprehend piRNAs' role in BTC and to devise effective diagnostic and therapeutic approaches using piRNAs. In summary, this review underscores the value of piRNAs as valuable biomarkers and promising targets for treating BTC, as we delve into the association between piRNAs and various gastrointestinal cancers, including BTC, and how piRNAs can impact gene expression and control essential pathways for digestive cancer advancement. The present research consists of a thorough evaluation presented in a storytelling style. The databases utilized to locate original sources were PubMed, MEDLINE, and Google Scholar, and the search was conducted using the designated keywords.
Collapse
Affiliation(s)
- Sahar Ahmadi Asouri
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Esmat Aghadavood
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Institute for Basic Sciences, Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Abaspour
- Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Esmaeil Shahaboddin
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Institute for Basic Sciences, Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
14
|
Liu Z, Zhao X. piRNAs as emerging biomarkers and physiological regulatory molecules in cardiovascular disease. Biochem Biophys Res Commun 2024; 711:149906. [PMID: 38640879 DOI: 10.1016/j.bbrc.2024.149906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/21/2024]
Abstract
Cardiovascular diseases (CVD) represent one of the most considerable global health threats, owing to their high incidence and mortality rates. Despite the ongoing advancements in detection, prevention, treatment, and prognosis of CVD, which have resulted in a decline in both incidence and mortality rates, CVD remains a major public health concern. Therefore, novel diagnostic biomarkers and therapeutic interventions are imperative to minimise the risk of CVD. Non-coding RNAs (ncRNAs) have recently gained increasing attention, with PIWI-interacting RNAs (piRNAs) emerging as a class of small ncRNAs traditionally recognised for their role in silencing transposons within cells. Although the functional roles of PIWI proteins and piRNAs in human cells remain unclear, growing evidence suggests that these molecules are gradually becoming valuable biomarkers for the diagnosis and treatment of CVD. This review provides a comprehensive summary of the latest studies on piRNAs in CVD. This review discusses the roles of piRNAs in various cardiovascular subtypes, including myocardial hypertrophy, heart failure, myocardial infarction, and cardiac regeneration. The perceived insights may contribute novel perspectives for the diagnosis and treatment of CVD.
Collapse
Affiliation(s)
- Zhihua Liu
- School of Basic Medical Sciences, Center for Precision Medicine, Kunming YanAn Hospital & Kunming University of Science and Technology, Kunming, China; Department of Biostatistics and Computational Biology, Bayer HealthCare, Harvard University, Boston, MA, USA.
| | - Xi Zhao
- School of Basic Medical Sciences, Center for Precision Medicine, Kunming YanAn Hospital & Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
15
|
Ge QQ, Han Q, Han Y, Ma F, Li CZ, Zhang CY. A multi-cycle signal amplification-mediated single quantum dot nanosensor for PIWI-interacting RNA detection. Chem Commun (Camb) 2024; 60:408-411. [PMID: 38084051 DOI: 10.1039/d3cc05639b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
We construct a single quantum dot-based nanosensor for piRNA detection based on ligation-mediated multi-cycle signal amplification. This nanosensor is homogenous, selective, and sensitive with a detection limit of 0.104 fM. Moreover, it can detect the endogenous piRNA level in different cell lines, and discriminate cancer tissues from normal tissues.
Collapse
Affiliation(s)
- Qi-Qin Ge
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Qian Han
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Yun Han
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Fei Ma
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Chen-Zhong Li
- Biomedical Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
16
|
Andrabi MQ, Kesavan Y, Ramalingam S. Non-coding RNAs as Biomarkers for Survival in Colorectal Cancer Patients. Curr Aging Sci 2024; 17:5-15. [PMID: 36733201 DOI: 10.2174/1874609816666230202101054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/25/2022] [Accepted: 12/19/2022] [Indexed: 02/04/2023]
Abstract
Colorectal cancer (CRC) has a high incidence and fatality rate worldwide. It ranks second concerning death worldwide. Cancer patients are diagnosed with the disease at a later stage due to the absence of early diagnostic methods, which leads to increased death. With the help of recent advancements in the fields of diagnosis and therapy, the development of novel methods using new targets could be helpful for the long-term survival of CRC patients when CRC is detected early. However, the prognosis for the advanced stage of CRC is abysmal. New biomarkers are emerging as promising alternatives since they can be utilized for early detection of CRC, are simple to use, and non-invasive. Non-coding RNAs (ncRNAs) have been seen to have an aberrant expression in the development of many malignancies, including CRC. In the past two decades, much research has been done on non-coding RNAs, which may be valuable as biomarkers and targets for antitumor therapy. Non-coding RNAs can be employed in detecting and treating CRC. Non-coding RNAs play an essential role in regulating gene expression. This article reviews ncRNAs and their expression levels in CRC patients that could be used as potential biomarkers. Various ncRNAs have been associated with CRC, such as microRNAs, long non-coding RNAs, circular RNAs, etc. The expression of these non-coding RNAs may provide insights into the stages of cancer and the prognosis of cancer patients and therefore proper precautionary measures can be taken to decrease cancer-related deaths.
Collapse
Affiliation(s)
- Mohammad Qasim Andrabi
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Yasodha Kesavan
- Department of Biotechnology, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Satish Ramalingam
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| |
Collapse
|
17
|
Dabi Y, Suisse S, Marie Y, Delbos L, Poilblanc M, Descamps P, Golfier F, Jornea L, Forlani S, Bouteiller D, Touboul C, Puchar A, Bendifallah S, Daraï E. New class of RNA biomarker for endometriosis diagnosis: The potential of salivary piRNA expression. Eur J Obstet Gynecol Reprod Biol 2023; 291:88-95. [PMID: 37857147 DOI: 10.1016/j.ejogrb.2023.10.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVES In contrast to miRNA expression, little attention has been given to piwiRNA (piRNA) expression among endometriosis patients. The aim of the present study was to explore the human piRNAome and to investigate a potential piRNA saliva-based diagnostic signature for endometriosis. METHODS Data from the prospective "ENDOmiRNA" study (ClinicalTrials.gov Identifier: NCT04728152) were used. Saliva samples from 200 patients were analyzed in order to evaluate human piRNA expression using the piRNA bank. Next Generation Sequencing (NGS), barcoding of unique molecular identifiers and both Artificial Intelligence (AI) and machine learning (ML) were used. For each piRNA, sensitivity, specificity, and ROC AUC values were calculated for the diagnosis of endometriosis. RESULTS 201 piRNAs were identified, none had an AUC ≥ 0.70, and only three piRNAs (piR-004153, piR001918, piR-020401) had an AUC between ≥ 0.6 and < 0.70. Seven were differentially expressed: piR-004153, piR-001918, piR-020401, piR-012864, piR-017716, piR-020326 and piR-016904. The respective correlation and accuracy to diagnose endometriosis according to the F1-score, sensitivity, specificity, and AUC ranged from 0 to 0.862 %, 0-0.961 %, 0.085-1, and 0.425-0.618. A correlation was observed between the patients' age (≥35 years) and piR-004153 (p = 0.002) and piR-017716 (p = 0.030). Among the 201 piRNAs, four were differentially expressed in patients with and without hormonal treatment: piR-004153 (p = 0.015), piR-020401 (p = 0.001), piR-012864 (p = 0.036) and piR-017716 (p = 0.009). CONCLUSION Our results support the link between piRNAs and endometriosis physiopathology and establish its utility as a potential diagnostic biomarker using saliva samples. Per se, piRNA expression should be analyzed along with the clinical status of a patient.
Collapse
Affiliation(s)
- Yohann Dabi
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 rue de la Chine, 75020 Paris, France; Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), France.
| | | | - Yannick Marie
- Department of Obstetrics and Reproductive Medicine - CHU d'Angers, France
| | - Léa Delbos
- Department of Obstetrics and Reproductive Medicine - CHU d'Angers, France; Endometriosis Expert Center - Pays de la Loire, France
| | - Mathieu Poilblanc
- Department of Obstetrics and Reproductive Medicine, Lyon South University Hospital, Lyon Civil Hospices, France; Endometriosis Expert Center - Steering Center of the EndAURA Network, France
| | - Philippe Descamps
- Department of Obstetrics and Reproductive Medicine - CHU d'Angers, France; Endometriosis Expert Center - Pays de la Loire, France
| | - Francois Golfier
- Department of Obstetrics and Reproductive Medicine, Lyon South University Hospital, Lyon Civil Hospices, France; Endometriosis Expert Center - Steering Center of the EndAURA Network, France
| | - Ludmila Jornea
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Sylvie Forlani
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Delphine Bouteiller
- Gentoyping and Sequencing Core Facility, iGenSeq, Institut du Cerveau et de la Moelle épinière, ICM, Hôpital Pitié-Salpêtrière, 47-83 Boulevard de l'Hôpital, 75013 Paris, France
| | - Cyril Touboul
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 rue de la Chine, 75020 Paris, France; Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), France
| | - Anne Puchar
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 rue de la Chine, 75020 Paris, France; Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), France
| | - Sofiane Bendifallah
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 rue de la Chine, 75020 Paris, France; Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), France
| | - Emile Daraï
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 rue de la Chine, 75020 Paris, France; Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), France
| |
Collapse
|
18
|
Wu Z, Yu X, Zhang S, He Y, Guo W. Novel roles of PIWI proteins and PIWI-interacting RNAs in human health and diseases. Cell Commun Signal 2023; 21:343. [PMID: 38031146 PMCID: PMC10685540 DOI: 10.1186/s12964-023-01368-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Non-coding RNA has aroused great research interest recently, they play a wide range of biological functions, such as regulating cell cycle, cell proliferation, and intracellular substance metabolism. Piwi-interacting RNAs (piRNAs) are emerging small non-coding RNAs that are 24-31 nucleotides in length. Previous studies on piRNAs were mainly limited to evaluating the binding to the PIWI protein family to play the biological role. However, recent studies have shed more lights on piRNA functions; aberrant piRNAs play unique roles in many human diseases, including diverse lethal cancers. Therefore, understanding the mechanism of piRNAs expression and the specific functional roles of piRNAs in human diseases is crucial for developing its clinical applications. Presently, research on piRNAs mainly focuses on their cancer-specific functions but lacks investigation of their expressions and epigenetic modifications. This review discusses piRNA's biogenesis and functional roles and the recent progress of functions of piRNA/PIWI protein complexes in human diseases. Video Abstract.
Collapse
Affiliation(s)
- Zeyu Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| |
Collapse
|
19
|
Wan D, Li R, Huang H, Zhu X, Li G. Pan-cancer landscape of immunology PIWI-interacting RNAs. Comput Struct Biotechnol J 2023; 21:5309-5325. [PMID: 37941657 PMCID: PMC10628341 DOI: 10.1016/j.csbj.2023.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023] Open
Abstract
PIWI-interacting RNAs (piRNAs), an emergent type of non-coding RNAs during oncogenesis, play critical roles in regulating tumor microenvironment. Systematic analysis of piRNAs' roles in modulating immune pathways is important for tumor immunotherapy. In this study, in-depth analysis of piRNAs was performed to develop an integrated computational algorithm, the immunology piRNA (ImmPI) pipeline, for uncovering the global expression landscape of piRNAs and identifying their regulatory roles in immune pathways. The immunology piRNAs show a tendency towards overexpression patterns in immune cells, causing perturbations in tumors, being significantly associated with infiltration of immune cells, and having prognostic value. The ImmPI score can contribute to prioritizing tumor-related piRNAs and distinguish two subtypes of SKCM (immune-cold and hot phenotypes), as characterized by different prognoses, immunogenicity and antitumor immunity. Finally, we developed an interactive web resource (ImmPI portal: http://www.hbpding.com/ImmPi) for the biomedical research community, with several useful modules to browse, visualize, and download the results of immunology piRNAs analysis. Overall, our work provides a comprehensive landscape of piRNAs across multiple cancer types and sheds light on their regulatory and functional roles in tumor immunity. These findings pave the way for future research and development of piRNA-based immunotherapies for cancer treatment.
Collapse
Affiliation(s)
- Dongyi Wan
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ran Li
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haohao Huang
- Department of Neurosurgery, General Hospital of Central Theater Command of Chinese People’s Liberation Army, Wuhan 430070, China
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ganxun Li
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
20
|
Gawade K, Raczynska KD. Imprinted small nucleolar RNAs: Missing link in development and disease? WILEY INTERDISCIPLINARY REVIEWS. RNA 2023:e1818. [PMID: 37722601 DOI: 10.1002/wrna.1818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/20/2023]
Abstract
The 14q32.2 (DLK1-DIO3) and 15q11-q13 (SNURF-SNRPN) imprinted gene loci harbor the largest known small nucleolar RNA clusters expressed from the respective maternal and paternal alleles. Recent studies have demonstrated significant roles for the 15q11-q13 located SNORD115-SNORD116 C/D box snoRNAs in Prader-Willi syndrome (PWS), a neurodevelopmental disorder. Even though the effect of SNORD116 deletion is apparent in the PWS phenotype, similar effects of a SNORD113-SNORD114 cluster deletion from the 14q32.2 locus in Kagami-Ogata syndrome (KOS14) and upregulation in Temple syndrome (TS14) remain to be explored. Moreover, apart from their probable involvement in neurodevelopmental disorders, snoRNAs from the SNORD113-SNORD114 cluster have been implicated in multiple biological processes, including pluripotency, development, cancers, and RNA modifications. Here we summarize the current understanding of the system to explore the possibility of a link between developmental disorders and C/D box snoRNA expression from the imprinted 14q32.2 locus. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development RNA Processing > Processing of Small RNAs.
Collapse
Affiliation(s)
- Kishor Gawade
- Laboratory of RNA Processing, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Katarzyna D Raczynska
- Laboratory of RNA Processing, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, Poznan, Poland
| |
Collapse
|
21
|
Zhao J, Li J, Zhang R. Off the fog to find the optimal choice: Research advances in biomarkers for early diagnosis and recurrence monitoring of bladder cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188926. [PMID: 37230421 DOI: 10.1016/j.bbcan.2023.188926] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
Bladder cancer (BC) has high morbidity and mortality rates owing to challenges in clinical diagnosis and treatment. Advanced BC is prone to recurrence after surgery, necessitating early diagnosis and recurrence monitoring to improve the prognosis of patients. Traditional detection methods for BC include cystoscopy, cytology, and imaging; however, these methods have drawbacks such as invasiveness, lack of sensitivity, and high costs. Existing reviews on BC focus on treatment and management and lack a comprehensive assessment of biomarkers. Our article reviews various biomarkers for the early diagnosis and recurrence monitoring of BC and outlines the existing challenges associated with their application and possible solutions. Furthermore, this study highlights the potential application of urine biomarkers as a non-invasive, inexpensive adjunctive test for screening high-risk populations or evaluating patients with suspected BC symptoms, thereby alleviating the discomfort and financial burden associated with cystoscopy and improving patient survival.
Collapse
Affiliation(s)
- Jiaxin Zhao
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, PR China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China
| | - Jinming Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, PR China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China.
| | - Rui Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, PR China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China.
| |
Collapse
|
22
|
Wang X, Zhang Y, Wu Y, Cheng H, Wang X. The role of E3 ubiquitin ligases and deubiquitinases in bladder cancer development and immunotherapy. Front Immunol 2023; 14:1202633. [PMID: 37215134 PMCID: PMC10196180 DOI: 10.3389/fimmu.2023.1202633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Bladder cancer is one of the common malignant urothelial tumors. Post-translational modification (PTMs), including ubiquitination, acetylation, methylation, and phosphorylation, have been revealed to participate in bladder cancer initiation and progression. Ubiquitination is the common PTM, which is conducted by E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme and E3 ubiquitin-protein ligase. E3 ubiquitin ligases play a key role in bladder oncogenesis and progression and drug resistance in bladder cancer. Therefore, in this review, we summarize current knowledge regarding the functions of E3 ubiquitin ligases in bladder cancer development. Moreover, we provide the evidence of E3 ubiquitin ligases in regulation of immunotherapy in bladder cancer. Furthermore, we mention the multiple compounds that target E3 ubiquitin ligases to improve the therapy efficacy of bladder cancer. We hope our review can stimulate researchers and clinicians to investigate whether and how targeting E3 ubiquitin ligases acts a novel strategy for bladder cancer therapy.
Collapse
|
23
|
Zhou J, Xie H, Liu J, Huang R, Xiang Y, Tian D, Bian E. PIWI-interacting RNAs: Critical roles and therapeutic targets in cancer. Cancer Lett 2023; 562:216189. [PMID: 37076042 DOI: 10.1016/j.canlet.2023.216189] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/02/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) are a novel class of small regulatory RNAs (approximately 24-31 nucleotides in length) that often bind to members of the PIWI protein family. piRNAs regulate transposons in animal germ cells; piRNAs are also specifically expressed in many human tissues and regulate pivotal signaling pathways. Additionally, the abnormal expression of piRNAs and PIWI proteins has been associated with various malignant tumours, and multiple mechanisms of piRNA-mediated target gene dysregulation are involved in tumourigenesis and progression, suggesting that they have the potential to serve as new biomarkers and therapeutic targets for tumours. However, the functions and potential mechanisms of action of piRNAs in cancer have not yet been elucidated. This review summarises the current findings on the biogenesis, function, and mechanisms of piRNAs and PIWI proteins in cancer. We also discuss the clinical significance of piRNAs as diagnostic or prognostic biomarkers and therapeutic tools for cancer. Finally, we present some critical questions regarding piRNA research that need to be addressed to provide insight into the future development of the field.
Collapse
Affiliation(s)
- Jialin Zhou
- Department of Clinical Medicine, The Second School of Clinical Medical, Anhui Medical University, Hefei, China
| | - Han Xie
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui Province, 230601, China; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - Jun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui Province, 230601, China; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - Ruixiang Huang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui Province, 230601, China; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - Yufei Xiang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui Province, 230601, China; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - Dasheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui Province, 230601, China; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China.
| | - Erbao Bian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui Province, 230601, China; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
24
|
Tumor Suppressor Role of INPP4B in Chemoresistant Retinoblastoma. JOURNAL OF ONCOLOGY 2023; 2023:2270097. [PMID: 36993823 PMCID: PMC10042642 DOI: 10.1155/2023/2270097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/21/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023]
Abstract
The chemotherapy of retinoblastoma (RB), a malignant ocular childhood disease, is often limited by the development of resistance against commonly used drugs. We identified inositol polyphosphate 4-phosphatase type II (INPP4B) as a differentially regulated gene in etoposide-resistant RB cell lines, potentially involved in the development of RB resistances. INPP4B is controversially discussed as a tumor suppressor and an oncogenic driver in various cancers, but its role in retinoblastoma in general and chemoresistant RB in particular is yet unknown. In the study presented, we investigated the expression of INPP4B in RB cell lines and patients and analyzed the effect of INPP4B overexpression on etoposide resistant RB cell growth in vitro and in vivo. INPP4B mRNA levels were significantly downregulated in RB cells lines compared to the healthy human retina, with even lower expression levels in etoposide-resistant compared to the sensitive cell lines. Besides, a significant increase in INPP4B expression was observed in chemotherapy-treated RB tumor patient samples compared to untreated tumors. INPP4B overexpression in etoposide-resistant RB cells resulted in a significant reduction in cell viability with reduced growth, proliferation, anchorage-independent growth, and in ovo tumor formation. Caspase-3/7-mediated apoptosis was concomitantly increased, suggesting a tumor suppressive role of INPP4B in chemoresistant RB cells. No changes in AKT signaling were discernible, but p-SGK3 levels increased following INPP4B overexpression, indicating a potential regulation of SGK3 signaling in etoposide-resistant RB cells. RNAseq analysis of INPP4B overexpressing, etoposide-resistant RB cell lines revealed differentially regulated genes involved in cancer progression, mirroring observed in vitro and in vivo effects of INPP4B overexpression and strengthening INPP4B’s importance for cell growth control and tumorigenicity.
Collapse
|
25
|
The epigenetic regulatory mechanism of PIWI/piRNAs in human cancers. Mol Cancer 2023; 22:45. [PMID: 36882835 PMCID: PMC9990219 DOI: 10.1186/s12943-023-01749-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/16/2023] [Indexed: 03/09/2023] Open
Abstract
PIWI proteins have a strong correlation with PIWI-interacting RNAs (piRNAs), which are significant in development and reproduction of organisms. Recently, emerging evidences have indicated that apart from the reproductive function, PIWI/piRNAs with abnormal expression, also involve greatly in varieties of human cancers. Moreover, human PIWI proteins are usually expressed only in germ cells and hardly in somatic cells, so the abnormal expression of PIWI proteins in different types of cancer offer a promising opportunity for precision medicine. In this review, we discussed current researches about the biogenesis of piRNA, its epigenetic regulatory mechanisms in human cancers, such as N6-methyladenosine (m6A) methylation, histone modifications, DNA methylation and RNA interference, providing novel insights into the markers for clinical diagnosis, treatment and prognosis in human cancers.
Collapse
|
26
|
Zheng K, Zhang XL, Wang L, You ZH, Zhan ZH, Li HY. Line graph attention networks for predicting disease-associated Piwi-interacting RNAs. Brief Bioinform 2022; 23:6748487. [PMID: 36198846 DOI: 10.1093/bib/bbac393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 12/14/2022] Open
Abstract
PIWI proteins and Piwi-Interacting RNAs (piRNAs) are commonly detected in human cancers, especially in germline and somatic tissues, and correlate with poorer clinical outcomes, suggesting that they play a functional role in cancer. As the problem of combinatorial explosions between ncRNA and disease exposes gradually, new bioinformatics methods for large-scale identification and prioritization of potential associations are therefore of interest. However, in the real world, the network of interactions between molecules is enormously intricate and noisy, which poses a problem for efficient graph mining. Line graphs can extend many heterogeneous networks to replace dichotomous networks. In this study, we present a new graph neural network framework, line graph attention networks (LGAT). And we apply it to predict PiRNA disease association (GAPDA). In the experiment, GAPDA performs excellently in 5-fold cross-validation with an AUC of 0.9038. Not only that, it still has superior performance compared with methods based on collaborative filtering and attribute features. The experimental results show that GAPDA ensures the prospect of the graph neural network on such problems and can be an excellent supplement for future biomedical research.
Collapse
Affiliation(s)
- Kai Zheng
- College of Information Science and Engineering, Zaozhuang University, Shandong 277100, China.,Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | | | - Lei Wang
- College of Information Science and Engineering, Zaozhuang University, Shandong 277100, China.,Big Data and Intelligent Computing Research Center, Guangxi Academy of Sciences, Nanning 530007, China
| | - Zhu-Hong You
- Big Data and Intelligent Computing Research Center, Guangxi Academy of Sciences, Nanning 530007, China
| | - Zhao-Hui Zhan
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong
| | - Hao-Yuan Li
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
27
|
Luo M, Lee LKC, Peng B, Choi CHJ, Tong WY, Voelcker NH. Delivering the Promise of Gene Therapy with Nanomedicines in Treating Central Nervous System Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201740. [PMID: 35851766 PMCID: PMC9475540 DOI: 10.1002/advs.202201740] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/19/2022] [Indexed: 06/01/2023]
Abstract
Central Nervous System (CNS) diseases, such as Alzheimer's diseases (AD), Parkinson's Diseases (PD), brain tumors, Huntington's disease (HD), and stroke, still remain difficult to treat by the conventional molecular drugs. In recent years, various gene therapies have come into the spotlight as versatile therapeutics providing the potential to prevent and treat these diseases. Despite the significant progress that has undoubtedly been achieved in terms of the design and modification of genetic modulators with desired potency and minimized unwanted immune responses, the efficient and safe in vivo delivery of gene therapies still poses major translational challenges. Various non-viral nanomedicines have been recently explored to circumvent this limitation. In this review, an overview of gene therapies for CNS diseases is provided and describes recent advances in the development of nanomedicines, including their unique characteristics, chemical modifications, bioconjugations, and the specific applications that those nanomedicines are harnessed to deliver gene therapies.
Collapse
Affiliation(s)
- Meihua Luo
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandSt LuciaQLD4072Australia
| | - Leo Kit Cheung Lee
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Bo Peng
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical materials & EngineeringNorthwestern Polytechnical UniversityXi'an710072China
| | - Chung Hang Jonathan Choi
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Wing Yin Tong
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO)ClaytonVIC3168Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication Facility151 Wellington RoadClaytonVIC3168Australia
- Materials Science and EngineeringMonash University14 Alliance LaneClaytonVIC3800Australia
| |
Collapse
|
28
|
Zheng K, Liang Y, Liu YY, Yasir M, Wang P. A decision support system based on multi-sources information to predict piRNA–disease associations using stacked autoencoder. Soft comput 2022. [DOI: 10.1007/s00500-022-07396-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Chattopadhyay T, Biswal P, Lalruatfela A, Mallick B. Emerging roles of PIWI-interacting RNAs (piRNAs) and PIWI proteins in head and neck cancer and their potential clinical implications. Biochim Biophys Acta Rev Cancer 2022; 1877:188772. [PMID: 35931391 DOI: 10.1016/j.bbcan.2022.188772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 02/08/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) are among the well-known neoplasms originating in the oral cavity, pharynx, and larynx. Despite advancements in chemotherapy, radiotherapy, and surgery, the survival rates of the patients are low, which has posed a major therapeutic challenge. A growing number of non-coding RNAs (ncRNAs), for instance, microRNAs, have been identified whose abnormal expression patterns have been implicated in HNSCC. However, more recently, several seminal research has shown that piwi-interacting RNAs (piRNAs), a promising and young class of small ncRNA, are linked to the emergence and progression of cancer. They can regulate transposable elements (TE) and gene expression through multiple mechanisms, making them potentially more powerful regulators than miRNAs. Hence, they can be more promising ncRNAs candidates for cancer therapeutic intervention. Here, we surveyed the roles and clinical implications of piRNAs and their PIWI proteins partners in tumorigenesis and associated molecular processes of cancer, with a particular focus on HNSCC, to offer a new avenue for diagnosis, prognosis, and therapeutic interventions for the malignancy, improving patient's outcomes.
Collapse
Affiliation(s)
- Trisha Chattopadhyay
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Priyajit Biswal
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Anthony Lalruatfela
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Bibekanand Mallick
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
30
|
Mukherjee P, Bhattacharjee S, Mandal DP. PIWI-interacting RNA (piRNA): a narrative review of its biogenesis, function, and emerging role in lung cancer. ASIAN BIOMED 2022; 16:3-14. [PMID: 37551397 PMCID: PMC10321162 DOI: 10.2478/abm-2022-0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cancer remains elusive in many aspects, especially in its causes and control. After protein profiling, genetic screening, and mutation studies, scientists now have turned their attention to epigenetic modulation. This new arena has brought to light the world of noncoding RNA (ncRNA). Although very complicated and often confusing, ncRNA domains are now among the most attractive molecular markers for epigenetic control of cancer. Long ncRNA and microRNA (miRNA) have been studied best among the noncoding genome and huge data have accumulated regarding their inhibitory and promoting effects in cancer. Another sector of ncRNAs is the world of PIWI-interacting RNAs (piRNAs). Initially discovered with the asymmetric division of germline stem cells in the Drosophila ovary, piRNAs have a unique capability to associate with mammalian proteins analogous to P-element induced wimpy testis (PIWI) in Drosophila and are capable of silencing transposons. After a brief introduction to its discovery timelines, the present narrative review covers the biogenesis, function, and role of piRNAs in lung cancer. The effects on lung cancer are highlighted under sections of cell proliferation, stemness maintenance, metastasis, and overall survival, and the review concludes with a discussion of recent discoveries of another class of small ncRNAs, the piRNA-like RNAs (piR-Ls).
Collapse
Affiliation(s)
- Pritha Mukherjee
- Department of Zoology, West Bengal State University, Berunanpukuria, Malikapur, Barasat, Kolkata700126, West Bengal, India
| | - Shamee Bhattacharjee
- Department of Zoology, West Bengal State University, Berunanpukuria, Malikapur, Barasat, Kolkata700126, West Bengal, India
| | - Deba Prasad Mandal
- Department of Zoology, West Bengal State University, Berunanpukuria, Malikapur, Barasat, Kolkata700126, West Bengal, India
| |
Collapse
|
31
|
Hanusek K, Poletajew S, Kryst P, Piekiełko-Witkowska A, Bogusławska J. piRNAs and PIWI Proteins as Diagnostic and Prognostic Markers of Genitourinary Cancers. Biomolecules 2022; 12:biom12020186. [PMID: 35204687 PMCID: PMC8869487 DOI: 10.3390/biom12020186] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/30/2022] Open
Abstract
piRNAs (PIWI-interacting RNAs) are small non-coding RNAs capable of regulation of transposon and gene expression. piRNAs utilise multiple mechanisms to affect gene expression, which makes them potentially more powerful regulators than microRNAs. The mechanisms by which piRNAs regulate transposon and gene expression include DNA methylation, histone modifications, and mRNA degradation. Genitourinary cancers (GC) are a large group of neoplasms that differ by their incidence, clinical course, biology, and prognosis for patients. Regardless of the GC type, metastatic disease remains a key therapeutic challenge, largely affecting patients’ survival rates. Recent studies indicate that piRNAs could serve as potentially useful biomarkers allowing for early cancer detection and therapeutic interventions at the stage of non-advanced tumour, improving patient’s outcomes. Furthermore, studies in prostate cancer show that piRNAs contribute to cancer progression by affecting key oncogenic pathways such as PI3K/AKT. Here, we discuss recent findings on biogenesis, mechanisms of action and the role of piRNAs and the associated PIWI proteins in GC. We also present tools that may be useful for studies on the functioning of piRNAs in cancers.
Collapse
Affiliation(s)
- Karolina Hanusek
- Centre of Postgraduate Medical Education, Department of Biochemistry and Molecular Biology, 01-813 Warsaw, Poland;
| | - Sławomir Poletajew
- Centre of Postgraduate Medical Education, II Department of Urology, 01-813 Warsaw, Poland; (S.P.); (P.K.)
| | - Piotr Kryst
- Centre of Postgraduate Medical Education, II Department of Urology, 01-813 Warsaw, Poland; (S.P.); (P.K.)
| | - Agnieszka Piekiełko-Witkowska
- Centre of Postgraduate Medical Education, Department of Biochemistry and Molecular Biology, 01-813 Warsaw, Poland;
- Correspondence: (A.P.-W.); (J.B.)
| | - Joanna Bogusławska
- Centre of Postgraduate Medical Education, Department of Biochemistry and Molecular Biology, 01-813 Warsaw, Poland;
- Correspondence: (A.P.-W.); (J.B.)
| |
Collapse
|
32
|
Zhang J, Zhang W, Liu Y, Pi M, Jiang Y, Ainiwaer A, Mao S, Chen H, Ran Y, Sun S, Li W, Yao X, Chang Z, Yan Y. Emerging roles and potential application of PIWI-interacting RNA in urological tumors. Front Endocrinol (Lausanne) 2022; 13:1054216. [PMID: 36733811 PMCID: PMC9887041 DOI: 10.3389/fendo.2022.1054216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
The piRNA (PIWI-interacting RNA) is P-Element induced wimpy testis (PIWI)-interacting RNA which is a small molecule, non-coding RNA with a length of 24-32nt. It was originally found in germ cells and is considered a regulator of germ cell function. It can interact with PIWI protein, a member of the Argonaute family, and play a role in the regulation of gene transcription and epigenetic silencing of transposable factors in the nucleus. More and more studies have shown that piRNAs are abnormally expressed in a variety of cancer tissues and patient fluids, and may become diagnostic tools, therapeutic targets, staging markers, and prognostic evaluation tools for cancer. This article reviews the recent research on piRNA and summarizes the structural characteristics, production mechanism, applications, and its role in urological tumors, to provide a reference value for piRNA to regulate urological tumors.
Collapse
Affiliation(s)
- Jingcheng Zhang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Wentao Zhang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Yuchao Liu
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Man Pi
- Department of Pathology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yufeng Jiang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Ailiyaer Ainiwaer
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Shiyu Mao
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Haotian Chen
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Yuefei Ran
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Shuwen Sun
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wei Li
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Yang Yan, ; Zhengyan Chang, ; Xudong Yao,
| | - Zhengyan Chang
- Department of Pathology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Yang Yan, ; Zhengyan Chang, ; Xudong Yao,
| | - Yang Yan
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Yang Yan, ; Zhengyan Chang, ; Xudong Yao,
| |
Collapse
|
33
|
Wang J, Shi Y, Zhou H, Zhang P, Song T, Ying Z, Yu H, Li Y, Zhao Y, Zeng X, He S, Chen R. piRBase: integrating piRNA annotation in all aspects. Nucleic Acids Res 2021; 50:D265-D272. [PMID: 34871445 PMCID: PMC8728152 DOI: 10.1093/nar/gkab1012] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 02/05/2023] Open
Abstract
Piwi-interacting RNAs are a type of small noncoding RNA that have various functions. piRBase is a manually curated resource focused on assisting piRNA functional analysis. piRBase release v3.0 is committed to providing more comprehensive piRNA related information. The latest release covers >181 million unique piRNA sequences, including 440 datasets from 44 species. More disease-related piRNAs and piRNA targets have been collected and displayed. The regulatory relationships between piRNAs and targets have been visualized. In addition to the reuse and expansion of the content in the previous version, the latest version has additional new content, including gold standard piRNA sets, piRNA clusters, piRNA variants, splicing-junction piRNAs, and piRNA expression data. In addition, the entire web interface has been redesigned to provide a better experience for users. piRBase release v3.0 is free to access, browse, search, and download at http://bigdata.ibp.ac.cn/piRBase.
Collapse
Affiliation(s)
- Jiajia Wang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Med-X Center for Informatics, Sichuan University, Chengdu 610041, China.,Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yirong Shi
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honghong Zhou
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Med-X Center for Informatics, Sichuan University, Chengdu 610041, China.,Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Zhang
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,National Genomics Data Center, Chinese Academy of Sciences, Beijing 100101, China
| | - Tingrui Song
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhiye Ying
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Med-X Center for Informatics, Sichuan University, Chengdu 610041, China
| | - Haopeng Yu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Med-X Center for Informatics, Sichuan University, Chengdu 610041, China
| | - Yanyan Li
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Med-X Center for Informatics, Sichuan University, Chengdu 610041, China.,Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Zhao
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Med-X Center for Informatics, Sichuan University, Chengdu 610041, China.,Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoxi Zeng
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Med-X Center for Informatics, Sichuan University, Chengdu 610041, China
| | - Shunmin He
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Med-X Center for Informatics, Sichuan University, Chengdu 610041, China.,Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,National Genomics Data Center, Chinese Academy of Sciences, Beijing 100101, China
| | - Runsheng Chen
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Med-X Center for Informatics, Sichuan University, Chengdu 610041, China.,Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,National Genomics Data Center, Chinese Academy of Sciences, Beijing 100101, China.,Guangdong Geneway Decoding Bio-Tech Co. Ltd, Foshan 528316, China
| |
Collapse
|
34
|
Mokarram P, Niknam M, Sadeghdoust M, Aligolighasemabadi F, Siri M, Dastghaib S, Brim H, Ashktorab H. PIWI interacting RNAs perspectives: a new avenues in future cancer investigations. Bioengineered 2021; 12:10401-10419. [PMID: 34723746 PMCID: PMC8809986 DOI: 10.1080/21655979.2021.1997078] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
As a currently identified small non-coding RNAs (ncRNAs) category, the PIWI-interacting RNAs (piRNAs) are crucial mediators of cell biology. The human genome comprises over 30.000 piRNA genes. Although considered a new field in cancer research, the piRNA pathway is shown by the existing evidence as an active pathway in a variety of different types of cancers with critical impacts on main aspects of cancer progression. Among the regulatory molecules that contribute to maintaining the dynamics of cancer cells, the P-element Induced WImpy testis (PIWI) proteins and piRNAs, as new players, have not been broadly studied so far. Therefore, the identification of cancer-related piRNAs and the assessment of target genes of piRNAs may lead to better cancer prevention and therapy strategies. This review articleaimed to highlight the role and function of piRNAs based on existing data. Understanding the role of piRNA in cancer may provide perspectives on their applications as particular biomarker signature in diagnosis in early stage, prognosis and therapeutic strategies.
Collapse
Affiliation(s)
- Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran,Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran,CONTACT Pooneh Mokarram Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Niknam
- Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadamin Sadeghdoust
- Department of Internal Medicine, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Farnaz Aligolighasemabadi
- Department of Internal Medicine, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Morvarid Siri
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Brim
- Pathology and Cancer Center, Howard University College of Medicine, Washington, DC, USA
| | - Hassan Ashktorab
- Department of Medicine, Gastroenterology Division and Cancer Center, Howard University College of Medicine, Washington, Dc, USA
| |
Collapse
|
35
|
piRNA-31115 Promotes Cell Proliferation and Invasion via PI3K/AKT Pathway in Clear Cell Renal Carcinoma. DISEASE MARKERS 2021; 2021:6915329. [PMID: 34790278 PMCID: PMC8592738 DOI: 10.1155/2021/6915329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/22/2021] [Accepted: 10/12/2021] [Indexed: 01/01/2023]
Abstract
PIWI-interacting RNAs (piRNAs) are small noncoding RNAs that play important roles in germline development and carcinogenesis. In this study, we used the deep sequencing of small RNA Transcriptome to explore the piRNA expression in six clear cell renal carcinoma (ccRCC) tissues and matched adjacent normal tissues and found that six piRNAs were upregulated and sixteen were downregulated in ccRCC tissues. Among them, piRNA-31115 (NCBI accession number: DQ571003) was the most upregulated piRNA in ccRCC tissues compared with matched adjacent normal tissues. Quantitative real-time PCR (qRT-PCR) was used to confirm piR-31115 expression in other ccRCC tissues (n = 40) and ccRCC cell lines. Besides, function analysis demonstrated that silencing of piR-31115 inhibited ccRCC cell proliferation, motility, and invasiveness. Mechanistic investigations showed that piRNA-31115 may activate epithelial-mesenchymal transition (EMT) via the PI3K/AKT signaling pathway. Hence, piR-31115 may represent an oncogene in the development of ccRCC.
Collapse
|
36
|
Peng Q, Chiu PKF, Wong CYP, Cheng CKL, Teoh JYC, Ng CF. Identification of piRNA Targets in Urinary Extracellular Vesicles for the Diagnosis of Prostate Cancer. Diagnostics (Basel) 2021; 11:diagnostics11101828. [PMID: 34679526 PMCID: PMC8534571 DOI: 10.3390/diagnostics11101828] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023] Open
Abstract
Emerging studies demonstrate that PIWI-interacting RNAs (piRNAs) are associated with various human cancers. This study aimed to evaluate the urinary extracellular vesicles (EVs) piRNAs as non-invasive biomarkers for prostate cancer (PCa) diagnosis. RNA was extracted from urinary EVs from five PCa patients and five healthy controls (HC), and the piRNAs were analyzed by small RNA sequencing. Dysregulated piRNAs were identified and then validated in another 30 PCa patients and 10 HC by reverse-transcription polymerase chain reaction (RT-qPCR). The expressions of novel_pir349843, novel_pir382289, novel_pir158533, and hsa_piR_002468 in urinary EVs were significantly increased in the PCa group compared with the HC group. The area under the curve (AUC) of novel_pir158533, novel_pir349843, novel_pir382289, hsa_piR_002468, and the combination of the four piRNA in PCa diagnosis was 0.723, 0.757, 0.777, 0.783, and 0.853, respectively. After the RNAhybrid program analysis, all four piRNAs had multiple potential binding sites with key mRNAs in PTEN/PI3K/Akt, Wnt/beta-catenin, or androgen receptor pathway, which are critical in PCa development and progression. In conclusion, our findings indicate that specific piRNAs in urinary EVs may serve as non-invasive diagnostic biomarkers for PCa.
Collapse
|
37
|
Bartos M, Siegl F, Kopkova A, Radova L, Oppelt J, Vecera M, Kazda T, Jancalek R, Hendrych M, Hermanova M, Kasparova P, Pleskacova Z, Vybihal V, Fadrus P, Smrcka M, Lakomy R, Lipina R, Cesak T, Slaby O, Sana J. Small RNA Sequencing Identifies PIWI-Interacting RNAs Deregulated in Glioblastoma-piR-9491 and piR-12488 Reduce Tumor Cell Colonies In Vitro. Front Oncol 2021; 11:707017. [PMID: 34485142 PMCID: PMC8415021 DOI: 10.3389/fonc.2021.707017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/20/2021] [Indexed: 11/24/2022] Open
Abstract
Glioblastoma (GBM) is the most frequently occurring primary malignant brain tumor of astrocytic origin. To change poor prognosis, it is necessary to deeply understand the molecular mechanisms of gliomagenesis and identify new potential biomarkers and therapeutic targets. PIWI-interacting RNAs (piRNAs) help in maintaining genome stability, and their deregulation has already been observed in many tumors. Recent studies suggest that these molecules could also play an important role in the glioma biology. To determine GBM-associated piRNAs, we performed small RNA sequencing analysis in the discovery set of 19 GBM and 11 non-tumor brain samples followed by TaqMan qRT-PCR analyses in the independent set of 77 GBM and 23 non-tumor patients. Obtained data were subsequently bioinformatically analyzed. Small RNA sequencing revealed 58 significantly deregulated piRNA molecules in GBM samples in comparison with non-tumor brain tissues. Deregulation of piR-1849, piR-9491, piR-12487, and piR-12488 was successfully confirmed in the independent groups of patients and controls (all p < 0.0001), and piR-9491 and piR-12488 reduced GBM cells’ ability to form colonies in vitro. In addition, piR-23231 was significantly associated with the overall survival of the GBM patients treated with Stupp regimen (p = 0.007). Our results suggest that piRNAs could be a novel promising diagnostic and prognostic biomarker in GBM potentially playing important roles in gliomagenesis.
Collapse
Affiliation(s)
- Michael Bartos
- Department of Neurosurgery, University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | - Frantisek Siegl
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Alena Kopkova
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Lenka Radova
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Jan Oppelt
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Marek Vecera
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Tomas Kazda
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute and Medical Faculty, Masaryk University, Brno, Czechia
| | - Radim Jancalek
- Department of Neurosurgery, St. Anne's University Hospital and Medical Faculty, Masaryk University, Brno, Czechia
| | - Michal Hendrych
- 1st Department of Pathology, St. Anne's University Hospital and Medical Faculty, Masaryk University, Brno, Czechia
| | - Marketa Hermanova
- 1st Department of Pathology, St. Anne's University Hospital and Medical Faculty, Masaryk University, Brno, Czechia
| | - Petra Kasparova
- The Fingerland Department of Pathology, University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | - Zuzana Pleskacova
- Department of Oncology and Radiotherapy, University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | - Vaclav Vybihal
- Department of Neurosurgery, University Hospital Brno, Brno, Czechia
| | - Pavel Fadrus
- Department of Neurosurgery, University Hospital Brno, Brno, Czechia
| | - Martin Smrcka
- Department of Neurosurgery, University Hospital Brno, Brno, Czechia
| | - Radek Lakomy
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Radim Lipina
- Department of Neurosurgery, University Hospital Ostrava, Ostrava, Czechia
| | - Tomas Cesak
- Department of Neurosurgery, University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Brno, Czechia.,Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czechia.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jiri Sana
- Central European Institute of Technology, Masaryk University, Brno, Czechia.,Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czechia.,Department of Pathology, University Hospital Brno, Brno, Czechia
| |
Collapse
|
38
|
Su JF, Concilla A, Zhang DZ, Zhao F, Shen FF, Zhang H, Zhou FY. PIWI-interacting RNAs: Mitochondria-based biogenesis and functions in cancer. Genes Dis 2021; 8:603-622. [PMID: 34291132 PMCID: PMC8278532 DOI: 10.1016/j.gendis.2020.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/27/2020] [Indexed: 12/29/2022] Open
Abstract
PIWI-interacting RNA (piRNAs), once thought to be mainly functioning in germlines, are now known to play an essential role in somatic and cancerous tissues. Ping-pong cycle initiation and mitochondria-based phased production constitute the core of the piRNA biogenesis and these two processes are well conserved in mammals, including humans. By being involved in DNA methylation, histone marker deposition, mRNA degradation, and protein modification, piRNAs also contribute to carcinogenesis partly due to oncogenic stress-induced piRNA dysregulation. Also, piRNAs play important roles in cancer stemness, drug resistance, and tumor immunology. Results from liquid biopsy analysis of piRNA can be used in both cancer diagnoses and cancer prognoses. A combination of targeting piRNA with other therapeutic strategies could be groundbreaking cancer treatment.
Collapse
Affiliation(s)
- Jing-Fen Su
- Anyang Key Laboratory for Esophageal Cancer Research, Anyang Cancer Hospital, The Forth Affiliated Hospital of Henan University of Science and Technology, Anyang, Henan Province, 455000, PR China
| | - Anthony Concilla
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Dian-zheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Fang Zhao
- Anyang Key Laboratory for Esophageal Cancer Research, Anyang Cancer Hospital, The Forth Affiliated Hospital of Henan University of Science and Technology, Anyang, Henan Province, 455000, PR China
| | - Fang-Fang Shen
- Key Laboratory for Tumor Translational Medicine, The Third Affiliated Hospital, Xinxiang Medical University, Xinxiang, Henan Province, 453000, PR China
| | - Hao Zhang
- Institute of Precision Cancer Medicine and Pathology, Jinan University Medical College, Guangzhou, Guangdong Province, 510630, PR China
| | - Fu-You Zhou
- Anyang Key Laboratory for Esophageal Cancer Research, Anyang Cancer Hospital, The Forth Affiliated Hospital of Henan University of Science and Technology, Anyang, Henan Province, 455000, PR China
| |
Collapse
|
39
|
Zhang K, Ji G, Zhao M, Wang Y. Candidate l-methionine target piRNA regulatory networks analysis response to cocaine-conditioned place preference in mice. Brain Behav 2021; 11:e2272. [PMID: 34196487 PMCID: PMC8413732 DOI: 10.1002/brb3.2272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/02/2021] [Accepted: 06/18/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Methionine has been proven to inhibit addictive behaviors of cocaine dependence. However, the mechanism of methionine response to cocaine CPP is unknown. Recent evidence highlights piRNAs to regulate genes via a miRNA-like mechanism. Here, next-generation sequencing is used to study mechanism on methionine response to drug-induced behaviors though piRNA. METHODS l-methionine treatment cocaine CPP animal model was used to do non-coding RNA sequencing. There were four groups to sequence: saline+saline (SS), MET+saline (MS), MET+cocaine (MC), and cocaine+saline. Combining mRNA sequencing data, the network and regulation of piRNA were analyzed with their corresponding mRNA and miRNA. RESULTS Analysis of the piRNAome reveals that piRNAs inversely regulated their target mRNA genes. KEGG analysis of DE-piRNA target mRNA genes were enriched in Morphine addiction, GABAergic synapse and Cholinergic synapse pathway. Furthermore, four significantly differential expressed genes Cacna2d3, Epha6, Nedd4l, and Vav2 were identified and regulated by piRNAs in the process of l-methionine inhibits cocaine CPP. Thereinto, Vav2 was regulated by multiple DE piRNAs by sharing the common sequence: GTCTCTCCAGCCACCTT. Meanwhile, it was found that piRNA positively regulates miRNA and three genes Bcl3, Il20ra, and Insrr were identified and regulated by piRNA through miRNA. CONCLUSION The results showed that piRNA negatively regulated target mRNA genes and positively regulated target miRNA genes. Genes located in substance dependence, signal transduction and also nervous functions pathways were identified. When taken together, these data may explain the roles of l-methionine in counteracting the effects of cocaine CPP via piRNAs.
Collapse
Affiliation(s)
- Kunlin Zhang
- Institute of Psychology, CAS Key Lab of Mental Health, Beijing, China
| | - Guanyu Ji
- ShenZhen Gendo Health Technology Co., Ltd, ShenZhen, China
| | - Mei Zhao
- Institute of Psychology, CAS Key Lab of Mental Health, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Wang
- Institute of Psychology, CAS Key Lab of Mental Health, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
40
|
Yuan C, Qin H, Ponnusamy M, Chen Y, Lin Z. PIWI‑interacting RNA in cancer: Molecular mechanisms and possible clinical implications (Review). Oncol Rep 2021; 46:209. [PMID: 34328192 DOI: 10.3892/or.2021.8160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/05/2021] [Indexed: 11/06/2022] Open
Abstract
PIWI‑interacting RNA is a class of non‑coding small RNA that is ~30 nt long and is primarily found in mammalian germ cells from mice and humans. In cooperation with the members of PIWI protein family, this macromolecule participates in germ cell development, inhibits DNA self‑-replication and maintains genomic stability. Increasing evidence has demonstrated that PIWI‑interacting RNA (piRNAs) are abnormally expressed in various human cancers, such as liver cancer, stomach cancer, colorectal cancer, osteosarcoma, breast cancer, lung cancer, prostate cancer, etc. piRNAs abnormal expression is also associated with the occurrence and development of human cancers, such as liver cancer, stomach cancer, colorectal cancer, etc. Despite their unclear molecular mechanisms, piRNAs may act as oncogenes or tumor suppressors by interacting with multiple cancer‑related signal pathways including STAT3/Bcl‑xl or coding genes, such as heat shock transcription factor‑1. Hence, piRNAs may be potential markers and targets and provide new opportunities for cancer diagnosis, treatment or prognosis monitoring. The current review mainly aims to highlight the latest research progress made in the biological functions and regulation of piRNAs in mammals, their involvement in various cancer forms and their potential clinical applications.
Collapse
Affiliation(s)
- Chao Yuan
- Department of Basic Medicine, Key Lab for Immunology in Universities of Shandong Province, Immunology Lab, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Hao Qin
- Department of Public Health, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Murugavel Ponnusamy
- Department of Basic Medicine, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Yong Chen
- Department of Basic Medicine, Key Lab for Immunology in Universities of Shandong Province, Immunology Lab, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Zhijuan Lin
- Department of Basic Medicine, Key Lab for Immunology in Universities of Shandong Province, Immunology Lab, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
41
|
Sadoughi F, Mirhashemi SM, Asemi Z. Epigenetic roles of PIWI proteins and piRNAs in colorectal cancer. Cancer Cell Int 2021; 21:328. [PMID: 34193172 PMCID: PMC8243752 DOI: 10.1186/s12935-021-02034-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/19/2021] [Indexed: 12/24/2022] Open
Abstract
Small non‐coding RNAs (sncRNAs) are a subgroup of non‐coding RNAs, with less than 200 nucleotides length and no potential for coding proteins. PiRNAs, a member of sncRNAs, were first discovered more than a decade ago and have attracted researcher’s attention because of their gene regulatory function both in the nucleus and in the cytoplasm. Recent investigations have found that the abnormal expression of these sncRNAs is involved in many human diseases, including cancers. Colorectal cancer (CRC), as a common gastrointestinal malignancy, is one of the important causes of cancer‐related deaths through the entire world and appears to be a consequence of mutation in the genome and epigenetic alterations. The aim of this review is to realize whether there is a relationship between CRC and piRNAs or not.
Collapse
Affiliation(s)
- Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. of Iran
| | - Seyyed Mehdi Mirhashemi
- Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. of Iran.
| |
Collapse
|
42
|
Chen S, Ben S, Xin J, Li S, Zheng R, Wang H, Fan L, Du M, Zhang Z, Wang M. The biogenesis and biological function of PIWI-interacting RNA in cancer. J Hematol Oncol 2021; 14:93. [PMID: 34118972 PMCID: PMC8199808 DOI: 10.1186/s13045-021-01104-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
Small non-coding RNAs (ncRNAs) are vital regulators of biological activities, and aberrant levels of small ncRNAs are commonly found in precancerous lesions and cancer. PIWI-interacting RNAs (piRNAs) are a novel type of small ncRNA initially discovered in germ cells that have a specific length (24-31 nucleotides), bind to PIWI proteins, and show 2'-O-methyl modification at the 3'-end. Numerous studies have revealed that piRNAs can play important roles in tumorigenesis via multiple biological regulatory mechanisms, including silencing transcriptional and posttranscriptional gene processes and accelerating multiprotein interactions. piRNAs are emerging players in the malignant transformation of normal cells and participate in the regulation of cancer hallmarks. Most of the specific cancer hallmarks regulated by piRNAs are involved in sustaining proliferative signaling, resistance to cell death or apoptosis, and activation of invasion and metastasis. Additionally, piRNAs have been used as biomarkers for cancer diagnosis and prognosis and have great potential for clinical utility. However, research on the underlying mechanisms of piRNAs in cancer is limited. Here, we systematically reviewed recent advances in the biogenesis and biological functions of piRNAs and relevant bioinformatics databases with the aim of providing insights into cancer diagnosis and clinical applications. We also focused on some cancer hallmarks rarely reported to be related to piRNAs, which can promote in-depth research of piRNAs in molecular biology and facilitate their clinical translation into cancer treatment.
Collapse
Affiliation(s)
- Silu Chen
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, People's Republic of China.,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shuai Ben
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Junyi Xin
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shuwei Li
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Rui Zheng
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hao Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lulu Fan
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, People's Republic of China. .,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China. .,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China. .,Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
43
|
Zivarpour P, Asemi Z, Jamilian H, Hallajzadeh J. PiRNAs and PIWI proteins as new biomarkers for diagnosis and treatment of liver cancer. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Wang K, Wang T, Gao XQ, Chen XZ, Wang F, Zhou LY. Emerging functions of piwi-interacting RNAs in diseases. J Cell Mol Med 2021; 25:4893-4901. [PMID: 33942984 PMCID: PMC8178273 DOI: 10.1111/jcmm.16466] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022] Open
Abstract
PIWI‐interacting RNAs (piRNAs) are recently discovered small non‐coding RNAs consisting of 24‐35 nucleotides, usually including a characteristic 5‐terminal uridine and an adenosine at position 10. PIWI proteins can specifically bind to the unique structure of the 3′ end of piRNAs. In the past, it was thought that piRNAs existed only in the reproductive system, but recently, it was reported that piRNAs are also expressed in several other human tissues with tissue specificity. Growing evidence shows that piRNAs and PIWI proteins are abnormally expressed in various diseases, including cancers, neurodegenerative diseases and ageing, and may be potential biomarkers and therapeutic targets. This review aims to discuss the current research status regarding piRNA biogenetic processes, functions, mechanisms and emerging roles in various diseases.
Collapse
Affiliation(s)
- Kai Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Tao Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Xiang-Qian Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Xin-Zhe Chen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Fei Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lu-Yu Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
45
|
He J, Wu F, Han Z, Hu M, Lin W, Li Y, Cao M. Biomarkers (mRNAs and Non-Coding RNAs) for the Diagnosis and Prognosis of Colorectal Cancer - From the Body Fluid to Tissue Level. Front Oncol 2021; 11:632834. [PMID: 33996548 PMCID: PMC8118670 DOI: 10.3389/fonc.2021.632834] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/09/2021] [Indexed: 12/24/2022] Open
Abstract
In recent years, the diagnosis and treatment of colorectal cancer (CRC) have been continuously improved, but the mortality rate continues to be high, especially in advanced patients. CRC patients usually have no obvious symptoms in the early stage and are already in the advanced stage when they are diagnosed. The 5-year survival rate is only 10%. The blood markers currently used to screen for CRC, such as carcinoembryonic antigen and carbohydrate antigen 19-9, have low sensitivity and specificity, whereas other methods are invasive or too expensive. As a result, recent research has shifted to the development of minimally invasive or noninvasive biomarkers in the form of body fluid biopsies. Non-coding RNA molecules are composed of microRNAs, long non-coding RNAs, small nucleolar RNAs, and circular RNAs, which have important roles in the occurrence and development of diseases and can be utilized for the early diagnosis and prognosis of tumors. In this review, we focus on the latest findings of mRNA-ncRNA as biomarkers for the diagnosis and prognosis of CRC, from fluid to tissue level.
Collapse
Affiliation(s)
- Jinhua He
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, China
| | - Feifeng Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zeping Han
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, China
| | - Min Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Weida Lin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuguang Li
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, China
| | - Mingrong Cao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
46
|
piRNA-823 Is a Unique Potential Diagnostic Non-Invasive Biomarker in Colorectal Cancer Patients. Genes (Basel) 2021; 12:genes12040598. [PMID: 33921704 PMCID: PMC8074037 DOI: 10.3390/genes12040598] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/12/2021] [Accepted: 04/17/2021] [Indexed: 12/24/2022] Open
Abstract
Early detection of colorectal cancer (CRC) is the most important factor in deciding its prognosis, so the need to develop an accurate screening test is a must. P-element induced wimpy testis (PIWI) RNA-823 (piR-823) is one of the first piRNAs recognized to be linked to malignancy. We aimed to investigate the expression levels of piR-823 in both serum and tissues of colorectal cancer patients and the ability to use its serum level as a non-invasive diagnostic biomarker to detect colorectal cancer. We determined piR-823 expression levels in 84 serum samples of CRC patients, 75 serum samples of healthy controls, and biological specimens obtained from the 84 patients with colorectal cancer from both the tumor tissues and the normal neighboring tissues using quantitative real-time reverse transcriptase-PCR. We showed that piR-823 had significantly higher serum and tissue expression levels in CRC patients compared to the controls. We observed a significant positive correlation between piR-823 serum levels and the staging of CRC, with significantly higher levels exhibiting advanced stages of CRC (III and IV). This translates into poorer differentiation and lymph node metastasis. The receiver operating characteristic curve (ROC curve) test showed 83.3% sensitivity and 89.3% specificity at a cut-off value of >5.98-fold change, with an area under the curve of 0.933 (p < 0.0001) concerning the ability of piR-823 in diagnosing patients with colorectal carcinoma. piR-823 expression is upregulated in colorectal cancer patients’ serum and tissues, and it can be used as a diagnostic noninvasive biomarker for CRC.
Collapse
|
47
|
Zeng Q, Cai J, Wan H, Zhao S, Tan Y, Zhang C, Qu S. PIWI-interacting RNAs and PIWI proteins in diabetes and cardiovascular disease: Molecular pathogenesis and role as biomarkers. Clin Chim Acta 2021; 518:33-37. [PMID: 33746016 DOI: 10.1016/j.cca.2021.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 01/02/2023]
Abstract
Cardiovascular disease (CVD) is still one of the most significant diseases and is a considerable threat to human health globally. PIWI-interacting RNAs (piRNAs) are novel small noncoding RNAs (ncRNAs) traditionally considered to be specifically expressed in the germline of many animal species and involved in the maintenance of germline stem cells and spermatogenesis. Although little is known about the origin and action of piRNAs and PIWI proteins in somatic cells, these molecules are emerging as readily available biomarkers for the diagnosis and treatment of cardiac injury and multiform CVD. Accumulating evidence reveals that piRNAs and PIWI proteins are associated with some molecular and cellular pathways in CVD. Here, we summarize recent evidence and evaluate the molecular mechanism of the involvement of piRNAs and PIWI proteins in CVD.
Collapse
Affiliation(s)
- Qian Zeng
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, China
| | - Jiaodi Cai
- Department of Pathology, The Fourth Hospital of Changsha, Changsha, China
| | - Hengquan Wan
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, China
| | - Simin Zhao
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, China
| | - Yao Tan
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, China
| | - Chi Zhang
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, China
| | - Shunlin Qu
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, China.
| |
Collapse
|
48
|
|
49
|
Zhang Z, Zhang J, Diao L, Han L. Small non-coding RNAs in human cancer: function, clinical utility, and characterization. Oncogene 2021; 40:1570-1577. [PMID: 33452456 DOI: 10.1038/s41388-020-01630-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/29/2023]
Abstract
Small non-coding RNAs (sncRNAs) play critical roles in multiple regulatory processes, including transcription, post-transcription, and translation. Emerging evidence reveals the critical roles of sncRNAs in cancer development and their potential role as biomarkers and/or therapeutic targets. In this paper, we review recent research on four sncRNA species with functional significance in cancer: small nucleolar RNAs, transfer RNA, small nuclear RNAs, and piwi-interacting RNAs. We introduce their functional roles in tumorigenesis and discuss the potential utility of sncRNAs as prognostic and diagnostic biomarkers and therapeutic targets. We further summarize approaches to characterize sncRNAs in a high-throughput manner, including the specific library construction and computational framework. Our review provides a perspective of the functions, clinical utility, and characterization of sncRNAs in cancer.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Jian Zhang
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Leng Han
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
50
|
piRNAs as Modulators of Disease Pathogenesis. Int J Mol Sci 2021; 22:ijms22052373. [PMID: 33673453 PMCID: PMC7956838 DOI: 10.3390/ijms22052373] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
Advances in understanding disease pathogenesis correlates to modifications in gene expression within different tissues and organ systems. In depth knowledge about the dysregulation of gene expression profiles is fundamental to fully uncover mechanisms in disease development and changes in host homeostasis. The body of knowledge surrounding mammalian regulatory elements, specifically regulators of chromatin structure, transcriptional and translational activation, has considerably surged within the past decade. A set of key regulators whose function still needs to be fully elucidated are small non-coding RNAs (sncRNAs). Due to their broad range of unfolding functions in the regulation of gene expression during transcription and translation, sncRNAs are becoming vital to many cellular processes. Within the past decade, a novel class of sncRNAs called PIWI-interacting RNAs (piRNAs) have been implicated in various diseases, and understanding their complete function is of vital importance. Historically, piRNAs have been shown to be indispensable in germline integrity and stem cell development. Accumulating research evidence continue to reveal the many arms of piRNA function. Although piRNA function and biogenesis has been extensively studied in Drosophila, it is thought that they play similar roles in vertebrate species, including humans. Compounding evidence suggests that piRNAs encompass a wider functional range than small interfering RNAs (siRNAs) and microRNAs (miRNAs), which have been studied more in terms of cellular homeostasis and disease. This review aims to summarize contemporary knowledge regarding biogenesis, and homeostatic function of piRNAs and their emerging roles in the development of pathologies related to cardiomyopathies, cancer, and infectious diseases.
Collapse
|