1
|
Kim CY, Lee EH, Kwak SH, Lee SH, Kim EY, Park MK, Cha YJ, Chang YS. UCHL1 Overexpression Is Related to the Aggressive Phenotype of Non-small Cell Lung Cancer. Tuberc Respir Dis (Seoul) 2024; 87:494-504. [PMID: 39362830 PMCID: PMC11468449 DOI: 10.4046/trd.2023.0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 08/06/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Ubiquitin C-terminal hydrolase L1 (UCHL1), which encodes thiol protease that hydrolyzes a peptide bond at the C-terminal glycine residue of ubiquitin, regulates cell differentiation, proliferation, transcriptional regulation, and numerous other biological processes and may be involved in lung cancer progression. UCHL1 is mainly expressed in the brain and plays a tumor-promoting role in a few cancer types; however, there are limited reports regarding its role in lung cancer. METHODS Single-cell RNA (scRNA) sequencing using 10X chromium v3 was performed on a paired normal-appearing and tumor tissue from surgical specimens of a patient who showed unusually rapid progression. To validate clinical implication of the identified biomarkers, immunohistochemical (IHC) analysis was performed on 48 non-small cell lung cancer (NSCLC) tissue specimens, and the correlation with clinical parameters was evaluated. RESULTS We identified 500 genes overexpressed in tumor tissue compared to those in normal tissue. Among them, UCHL1, brain expressed X-linked 3 (BEX3), and midkine (MDK), which are associated with tumor growth and progression, exhibited a 1.5-fold increase in expression compared to that in normal tissue. IHC analysis of NSCLC tissues showed that only UCHL1 was specifically overexpressed. Additionally, in 48 NSCLC specimens, UCHL1 was specifically upregulated in the cytoplasm and nuclear membrane of tumor cells. Multivariable logistic analysis identified several factors, including smoking, tumor size, and high-grade dysplasia, to be typically associated with UCHL1 overexpression. Survival analyses using The Cancer Genome Atlas (TCGA) datasets revealed that UCHL1 overexpression is substantially associated with poor survival outcomes. Furthermore, a strong association was observed between UCHL1 expression and the clinicopathological features of patients with NSCLC. CONCLUSION UCHL1 overexpression was associated with smoking, tumor size, and high-grade dysplasia, which are typically associated with a poor prognosis and survival outcome. These findings suggest that UCHL1 may serve as an effective biomarker of NSCLC.
Collapse
Affiliation(s)
- Chi Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Hye Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Se Hyun Kwak
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Hoon Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Kyoung Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoon Jin Cha
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoon Soo Chang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Mao P, Feng Z, Liu Y, Zhang K, Zhao G, Lei Z, Di T, Zhang H. The Role of Ubiquitination in Osteosarcoma Development and Therapies. Biomolecules 2024; 14:791. [PMID: 39062505 PMCID: PMC11274928 DOI: 10.3390/biom14070791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The ubiquitin-proteasome system (UPS) maintains intracellular protein homeostasis and cellular function by regulating various biological processes. Ubiquitination, a common post-translational modification, plays a crucial role in the regulation of protein degradation, signal transduction, and other physiological and pathological processes, and is involved in the pathogenesis of various cancers, including osteosarcoma. Osteosarcoma, the most common primary malignant bone tumor, is characterized by high metastatic potential and poor prognosis. It is a refractory bone disease, and the main treatment modalities are surgery combined with chemotherapy. Increasing evidence suggests a close association between UPS abnormalities and the progression of osteosarcoma. Due to the complexity and pleiotropy of the ubiquitination system, each step in the ubiquitination process can be targeted by drugs. In recent years, research and development of inhibitors targeting the ubiquitin system have increased gradually, showing great potential for clinical application. This article reviews the role of the ubiquitination system in the development and treatment of osteosarcoma, as well as research progress, with the hope of improving the therapeutic effects and prognosis of osteosarcoma patients by targeting effective molecules in the ubiquitination system.
Collapse
Affiliation(s)
- Peng Mao
- Department of Orthopedics, Lanzhou University Second Hospital, Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopaedics of Gansu Province, Lanzhou University, Lanzhou 730030, China
| | - Zuxi Feng
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Yong Liu
- Department of Orthopedics, Lanzhou University Second Hospital, Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopaedics of Gansu Province, Lanzhou University, Lanzhou 730030, China
| | - Kai Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopaedics of Gansu Province, Lanzhou University, Lanzhou 730030, China
| | - Guanghai Zhao
- Department of Orthopedics, Lanzhou University Second Hospital, Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopaedics of Gansu Province, Lanzhou University, Lanzhou 730030, China
| | - Zeyuan Lei
- Department of Orthopedics, Lanzhou University Second Hospital, Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopaedics of Gansu Province, Lanzhou University, Lanzhou 730030, China
| | - Tianning Di
- Department of Orthopedics, Lanzhou University Second Hospital, Second Clinical School, Lanzhou University, Lanzhou 730030, China
| | - Haihong Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopaedics of Gansu Province, Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
3
|
Di Gregorio J, Di Giuseppe L, Terreri S, Rossi M, Battafarano G, Pagliarosi O, Flati V, Del Fattore A. Protein Stability Regulation in Osteosarcoma: The Ubiquitin-like Modifications and Glycosylation as Mediators of Tumor Growth and as Targets for Therapy. Cells 2024; 13:537. [PMID: 38534381 DOI: 10.3390/cells13060537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/11/2024] [Accepted: 03/16/2024] [Indexed: 03/28/2024] Open
Abstract
The identification of new therapeutic targets and the development of innovative therapeutic approaches are the most important challenges for osteosarcoma treatment. In fact, despite being relatively rare, recurrence and metastatic potential, particularly to the lungs, make osteosarcoma a deadly form of cancer. In fact, although current treatments, including surgery and chemotherapy, have improved survival rates, the disease's recurrence and metastasis are still unresolved complications. Insights for analyzing the still unclear molecular mechanisms of osteosarcoma development, and for finding new therapeutic targets, may arise from the study of post-translational protein modifications. Indeed, they can influence and alter protein structure, stability and function, and cellular interactions. Among all the post-translational modifications, ubiquitin-like modifications (ubiquitination, deubiquitination, SUMOylation, and NEDDylation), as well as glycosylation, are the most important for regulating protein stability, which is frequently altered in cancers including osteosarcoma. This review summarizes the relevance of ubiquitin-like modifications and glycosylation in osteosarcoma progression, providing an overview of protein stability regulation, as well as highlighting the molecular mediators of these processes in the context of osteosarcoma and their possible targeting for much-needed novel therapy.
Collapse
Affiliation(s)
- Jacopo Di Gregorio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Laura Di Giuseppe
- Department of Clinical, Internal, Anaesthesiological and Cardiovascular Sciences, Sapienza University, 00185 Rome, Italy
| | - Sara Terreri
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Michela Rossi
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Giulia Battafarano
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Olivia Pagliarosi
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Andrea Del Fattore
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| |
Collapse
|
4
|
Zheng LL, Wang LT, Pang YW, Sun LP, Shi L. Recent advances in the development of deubiquitinases inhibitors as antitumor agents. Eur J Med Chem 2024; 266:116161. [PMID: 38262120 DOI: 10.1016/j.ejmech.2024.116161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Ubiquitination is a type of post-translational modification that covalently links ubiquitin to a target protein, which plays a critical role in modulating protein activity, stability, and localization. In contrast, this process is reversed by deubiquitinases (DUBs), which remove ubiquitin from ubiquitinated substrates. Dysregulation of DUBs is associated with several human diseases, such as cancer, inflammation, neurodegenerative disorders, and autoimmune diseases. Thus, DUBs have become promising targets for drug development. Although the physiological and pathological effects of DUBs are increasingly well understood, the clinical drug discovery of selective DUB inhibitors has been challenging. Herein, we summarize the structures and functions of main classes of DUBs and discuss the recent progress in developing selective small-molecule DUB inhibitors as antitumor agents.
Collapse
Affiliation(s)
- Li-Li Zheng
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Li-Ting Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ye-Wei Pang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Li-Ping Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Lei Shi
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
5
|
Jia Q, Wang H, Xiao X, Sun Y, Tan X, Chai J, Yang Y, Yin Z, Li M, Wang K, Liu J. UCHL1 acts as a prognostic factor and promotes cancer stemness in cervical squamous cell carcinoma. Pathol Res Pract 2023; 247:154574. [PMID: 37257242 DOI: 10.1016/j.prp.2023.154574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND The incidence and death rate of cervical cancer rank fourth among female malignant tumors worldwide. A growing number of researches are devoted to exploring more effective treatment methods and cancer stem cells (CSCs) are thought to be a potential therapeutic target in cervical cancer. In our study, we focused on the expression and function of UCHL1 in cervical squamous cell carcinoma (CESC). METHODS We detected and the expression of UCHL1 in 134 CESC patients through immunohistochemistry and further confirm UCHL1 was a prognostic factor by univariate and multivariate analysis. Then, according to TCGA database for CESC, we found that UCHL1 expression correlated with the markers associated with CSCs (CD133, ABCG2 and SOX2). Therefore, we used western blot and spheroid formation assays to future evaluate the function of UCHL1 on cancer stemness in C-33A and SiHa cell lines. At the same time, we detected the cell proliferation, migration and invasion change by CCK-8 assay, scratch assay and transwell assay, when UCHL1 was knockdown or overexpressed. Finally, xenograft models were used to examine the effect of UCHL1 in vivo. RESULTS We found the expression of UCHL1 in mRNA and protein was higher in tumor than in paired normal tissue and was a prognostic factor in CESC. The UCHL1 high expression group showed a shorter survival in the overall survival. According to TCGA database, the expression of UCHL1 was correlated with CD133, ABCG2 and SOX2. The results of sphere-forming ability and CSCs related markers expression were showed UCHL1 promoted cancer stemness in CESC. Similarly, CCK-8 assay, scratch assay and transwell assay were applied to demonstrate that overexpression of UCHL1 promoted the proliferation, migration and invasion in SiHa, but when UCHL1 was knockdown in C-33A, the function of UCHL1 displayed the opposite result. Finally, knockdown UCHL1 inhibited CESC tumor propagation in xenograft models. CONCLUSION Our results suggest that UCHL1 is a prognostic factor and correlated with cancer stemness, proliferation, migration and invasion of CESC, which may provide a novel therapeutic strategy for CESC treatment.
Collapse
Affiliation(s)
- Qingge Jia
- Department of Reproductive Endocrinology, Xi'an International Medical Center Hospital, Northwest University, Xi'an, China
| | - Hongjie Wang
- Department of Military and Special medicine, No. 971 Hospital of the PLA Navy, Qingdao, China
| | - Xin Xiao
- Department of Military and Special medicine, No. 971 Hospital of the PLA Navy, Qingdao, China
| | - Yameng Sun
- Department of Military and Special medicine, No. 971 Hospital of the PLA Navy, Qingdao, China
| | - Xiao Tan
- Center of Medical Security, No. 971 Hospital of the PLA Navy, Qingdao, China
| | - Jia Chai
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yanru Yang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Zhiyong Yin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Mingyang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| | - Ke Wang
- Department of Reproductive Medicine, Xi'an Gaoxin Hospital, Xi'an, China.
| | - Jin Liu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
6
|
Wang X, Zhang N, Li M, Hong T, Meng W, Ouyang T. Ubiquitin C‑terminal hydrolase‑L1: A new cancer marker and therapeutic target with dual effects (Review). Oncol Lett 2023; 25:123. [PMID: 36844618 PMCID: PMC9950345 DOI: 10.3892/ol.2023.13709] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/08/2022] [Indexed: 02/11/2023] Open
Abstract
Ubiquitin C-terminal hydrolase-L1 (UCH-L1), a member of the lesser-known deubiquitinating enzyme family, has deubiquitinase and ubiquitin (Ub) ligase activity and the role of stabilizing Ub. UCH-L1 was first discovered in the brain and is associated with regulating cell differentiation, proliferation, transcriptional regulation and numerous other biological processes. UCH-L1 is predominantly expressed in the brain and serves a role in tumor promotion or inhibition. There is still controversy about the effect of UCH-L1 dysregulation in cancer and its mechanisms are unknown. Extensive research to investigate the mechanism of UCH-L1 in different types of cancer is key for the future treatment of UCH-L1-associated cancer. The present review details the molecular structure and function of UCH-L1. The role of UCH-L1 in different types of cancer is also summarized and how novel treatment targets provide a theoretical foundation in cancer research is discussed.
Collapse
Affiliation(s)
- Xiaowei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China,Department of The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Na Zhang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wei Meng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China,Correspondence to: Dr Wei Meng or Dr Taohui Ouyang, Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi 330006, P.R. China, E-mail:
| | - Taohui Ouyang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China,Correspondence to: Dr Wei Meng or Dr Taohui Ouyang, Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi 330006, P.R. China, E-mail:
| |
Collapse
|
7
|
Celik B, Cicek K, Leal AF, Tomatsu S. Regulation of Molecular Targets in Osteosarcoma Treatment. Int J Mol Sci 2022; 23:12583. [PMID: 36293439 PMCID: PMC9604206 DOI: 10.3390/ijms232012583] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
The most prevalent malignant bone tumor, osteosarcoma, affects the growth plates of long bones in adolescents and young adults. Standard chemotherapeutic methods showed poor response rates in patients with recurrent and metastatic phases. Therefore, it is critical to develop novel and efficient targeted therapies to address relapse cases. In this regard, RNA interference technologies are encouraging options in cancer treatment, in which small interfering RNAs regulate the gene expression following RNA interference pathways. The determination of target tissue is as important as the selection of tissue-specific promoters. Moreover, small interfering RNAs should be delivered effectively into the cytoplasm. Lentiviral vectors could encapsulate and deliver the desired gene into the cell and integrate it into the genome, providing long-term regulation of targeted genes. Silencing overexpressed genes promote the tumor cells to lose invasiveness, prevents their proliferation, and triggers their apoptosis. The uniqueness of cancer cells among patients requires novel therapeutic methods that treat patients based on their unique mutations. Several studies showed the effectiveness of different approaches such as microRNA, drug- or chemotherapy-related methods in treating the disease; however, identifying various targets was challenging to understanding disease progression. In this regard, the patient-specific abnormal gene might be targeted using genomics and molecular advancements such as RNA interference approaches. Here, we review potential therapeutic targets for the RNA interference approach, which is applicable as a therapeutic option for osteosarcoma patients, and we point out how the small interfering RNA method becomes a promising approach for the unmet challenge.
Collapse
Affiliation(s)
- Betul Celik
- Department of Biological Science, University of Delaware, Newark, DE 19716, USA
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Kader Cicek
- Department of Biological Science, University of Delaware, Newark, DE 19716, USA
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Andrés Felipe Leal
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Shunji Tomatsu
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| |
Collapse
|
8
|
Zhang D, Fu Y, Tian G, Li J, Shang D, Zhou S. UCHL1 promotes proliferation and metastasis in head and neck squamous cell carcinoma and could be a potential therapeutic target. Oral Surg Oral Med Oral Pathol Oral Radiol 2022; 133:684-697. [PMID: 35165060 DOI: 10.1016/j.oooo.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The purpose of this study was to research the physiological roles of ubiquitin carboxyl-terminal esterase L1 (UCHL1) in head and neck squamous cell carcinoma (HNSCC). STUDY DESIGN Ten HNSCC samples and matched normal oral mucosal tissues were collected. UCHL1 expression of these tissues was detected by the immunohistochemical staining and real-time quantitative polymerase chain reaction. The human HNSCC cell line HN6 UCHL1 knockout (UCHL1 KO) cell line was constructed using CRISPR/CAS9 gene editing and verified by western blotting. Wound healing assay, cell proliferation assay, cell invasion assay, and flow cytometric analysis of the cell cycle and apoptosis were applied to research the role of UCHL1 in HNSCC. Also, an RNAseq gene expression data set and HNSCC patient survival data from The Cancer Genome Atlas were analyzed. RESULTS UCHL1 was highly expressed in HNSCC tissues compared with normal oral mucosal tissues (P = .032). A decreased proliferation (P < .0001), migration (P < .0001), and invasion (P = .0049) ability of HN6 cells was exhibited after knockout of UCHL1. However, HN6 UCHL1 KO cells showed no significant differences in the cell cycle or apoptosis. The progression, nodal metastasis status, and stage of HNSCC had a positive correlation with the expression of UCHL1. CONCLUSIONS UCHL1 plays an important role in HNSCC, and we consider that targeting UCHL1 may be a feasible therapeutic strategy for HNSCC.
Collapse
Affiliation(s)
- Dahe Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, Shanghai, China; National Center for Stomatology, Shanghai, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, Shanghai, China
| | - You Fu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, Shanghai, China; National Center for Stomatology, Shanghai, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, Shanghai, China
| | - Guocai Tian
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, Shanghai, China; National Center for Stomatology, Shanghai, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, Shanghai, China
| | - Jiayi Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, Shanghai, China; National Center for Stomatology, Shanghai, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, Shanghai, China
| | - Dihua Shang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, Shanghai, China; National Center for Stomatology, Shanghai, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, Shanghai, China
| | - Shanghui Zhou
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, Shanghai, China; National Center for Stomatology, Shanghai, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, Shanghai, China.
| |
Collapse
|
9
|
Ming GF, Gao BH, Chen P. Identification of Conserved Pappalysin 1-Derived Circular RNA-Mediated Competing Endogenous RNA in Osteosarcoma. Evol Bioinform Online 2021; 17:11769343211041379. [PMID: 34707339 PMCID: PMC8544760 DOI: 10.1177/11769343211041379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
The etiology of osteosarcoma (OS) is complex and not fully understood till now. This study aimed to identify the miRNAs, circRNAs, and genes (mRNAs) that are differentially expressed in OS cell lines to investigate the mechanism of circRNA-associated competing endogenous RNAs (ceRNAs) in OS. Microarray datasets reporting mRNA (GSE70414), miRNA (GSE70367), and circRNA changes (GSE96964) in human OS cell lines were downloaded, differentially expressed (DE) RNAs were identified, and DEmRNAs were used for the annotation of Gene Ontology (GO) biological processes (BP), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The mechanisms of DEcircRNA-mediated ceRNAs were identified in a step-by-step process. A total of 326 DEmRNAs, 45 DEmiRNAs, and 110 DEcircRNAs were identified from 3 datasets. The DEmRNAs were associated with GO BP terms, including cholesterol biosynthetic process, angiogenesis, extracellular matrix organization and KEGG pathways, including p53 signaling pathway and biosynthesis of antibiotics. The final ceRNA network consisted of 8 DEcircRNAs, including 5 pappalysin (PAPPA) 1-derived DEcircRNAs (hsa_circ_0005456, hsa_circ_0088209, hsa_circ_0002052, hsa_circ_0088214 and has_circ_0008792, all downregulated), 3 DEmiRNAs (hsa-miR-760, hsa-miR-4665-5p and hsa-miR-4539, all upregulated), and downregulated genes (including MMP13 and HMOX1). The ceRNA regulation network of OS was built, which played important roles in the pathogenesis of OS and might be of great importance in therapy.
Collapse
Affiliation(s)
- Guang-Fu Ming
- Department of Orthopedics, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Bo-Hua Gao
- Department of Orthopedics, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Peng Chen
- Department of Orthopedics, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| |
Collapse
|
10
|
Tanshinone IIA Inhibits Osteosarcoma Growth through a Src Kinase-Dependent Mechanism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5563691. [PMID: 34422073 PMCID: PMC8376467 DOI: 10.1155/2021/5563691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/04/2021] [Accepted: 06/21/2021] [Indexed: 01/01/2023]
Abstract
Introduction Osteosarcoma is a malignant tumor associated with high mortality rates due to the toxic side effects of current therapeutic methods. Tanshinone IIA can inhibit cell proliferation and promote apoptosis in vitro, but the exact mechanism is still unknown. The aims of this study are to explore the antiosteosarcoma effect of tanshinone IIA via Src kinase and demonstrate the mechanism of this effect. Materials and Methods Osteosarcoma MG-63 and U2-OS cell lines were stable transfections with Src-shRNA. Then, the antiosteosarcoma effect of tanshinone IIA was tested in vitro. The protein expression levels of Src, p-Src, p-ERK1/2, and p-AKt were detected by Western blot and RT-PCR. CCK-8 assay and BrdU immunofluorescence assay were used to detect cell proliferation. Transwell assay, cell scratch assay, and flow cytometry were used to detect cell invasion, migration, and cell cycle. Tumor-bearing nude mice with osteosarcoma were constructed. The effect of tanshinone IIA was detected by tumor HE staining, tumor inhibition rate, incidence of lung metastasis, and X-ray. Results The oncogene role of Src kinase in osteosarcoma is reflected in promoting cell proliferation, invasion, and migration and in inhibiting apoptosis. However, Src has different effects on cell proliferation, apoptosis, and cell cycle regulation among cell lines. At a cellular level, the antiosteosarcoma effect of tanshinone IIA is mediated by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways. At the animal level, tanshinone IIA played a role in resisting osteosarcoma formation by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways. Conclusion Tanshinone IIA plays an antiosteosarcoma role in vitro and in vivo and inhibits the progression of osteosarcoma mediated by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways.
Collapse
|
11
|
Kamseng P, Siriboonpiputtana T, Puavilai T, Chuncharunee S, Paisooksantivatana K, Chareonsirisuthigul T, Junking M, Chiraphapphaiboon W, Yenchitsomanus PT, Rerkamnuaychoke B. Targeting UCHL1 Induces Cell Cycle Arrest in High-Risk Multiple Myeloma with t(4;14). Pathol Oncol Res 2021; 27:606567. [PMID: 34257568 PMCID: PMC8262241 DOI: 10.3389/pore.2021.606567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/11/2021] [Indexed: 11/13/2022]
Abstract
Multiple myeloma (MM) patients considered to be at high cytogenetic risk commonly fail to respond to standard treatment. A thorough understanding of the molecular mechanism of MM development is, therefore, needed. We endeavored to explore the transcriptional signature among different subgroups of newly diagnosed MM using gene chip-based expression microarray. Bone marrow samples of 15 newly diagnosed Thai MM patients were included. The chromosomal translocation t(4;14) was the most frequently identified genetic alteration in the high-risk subgroup. Cluster analysis from expression profiling demonstrated that high-risk MM have a distinctly different expression pattern compared to standard-risk patients. The most significant differentially expressed gene was UCHL1. Functional enrichment analysis by Gene Set Enrichment Analysis, FUNRICH, and Gene Ontology Panther pathway revealed the gene sets involved in cell cycle control to be enriched in the t(4;14) high-risk group. Interestingly, among the well-established downstream targets of UCHL1, only CCND2 was significantly expressed in the t(4;14) high-risk group. Suppression of UCHL1 protein level by LDN-5744 inhibitor could arrest the cell cycle in G1 phase in cell lines. These findings shed light on the molecular mechanism of UCHL1 in t(4;14) high-risk MM and support the evidence that alteration of the UCHL1 pathway may play a role in the pathogenesis of high-risk MM.
Collapse
Affiliation(s)
- Parin Kamseng
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Teeraya Puavilai
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Suporn Chuncharunee
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Karan Paisooksantivatana
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Takol Chareonsirisuthigul
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Mutita Junking
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wannasiri Chiraphapphaiboon
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Budsaba Rerkamnuaychoke
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
12
|
Bian Y, Yuan L, Yang X, Weng L, Zhang Y, Bai H, Chen J. SMURF1-mediated ubiquitylation of SHP-1 promotes cell proliferation and invasion of endometrial stromal cells in endometriosis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:362. [PMID: 33842583 PMCID: PMC8033391 DOI: 10.21037/atm-20-2897] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Endometriosis is a widespread benign gynecological disorder. The signal transducer and activator of transcription 3 (STAT3) signaling pathway plays an important role in the pathogenesis of endometriosis through regulating proliferation and invasion of endometrial stromal cells. Furthermore, the protein tyrosine phosphatase (PTP), SH2 domain-containing phosphatase 1 (SHP-1), negatively regulates STAT3 activation. However, regulation of the SHP-1-STAT3 pathway in the pathogenesis of endometriosis remains unclear. Methods Cell proliferation and invasion were assessed by Cell Counting Kit-8 (CCK-8) assay and Transwell analysis, respectively, to investigate the role and regulation of the SHP-1-STAT3 pathway in the proliferation and invasion of endometrial stromal cells. Expression of Smad ubiquitin regulatory factor 1 (SMURF1), SHP-1, matrix metalloproteinase 2 (MMP2), MMP9, STAT3, and phospho-STAT3 (p-STAT3) level in patients with endometriosis were measured by Western blotting and/or immunohistochemical staining. The interaction between SMURF1 and SHP-1 was investigated by co-immunoprecipitation and ubiquitylation analysis. Results The present study demonstrated that downregulation of SHP-1 expression in patients with endometriosis was negatively correlated with SMURF1 expression. SMURF1, an E3 ubiquitin ligase, activated the STAT3 pathway via ubiquitylation and degradation of SHP-1. Furthermore, SMURF1 promoted cell proliferation and invasion of endometrial stromal cells by activating STAT3 signaling and expression of its downstream targets, MMP2 and MMP9, whereas SHP-1 demonstrated an inverse effect. Additionally, SHP-1 inhibited SMURF1-mediated cell invasion and proliferation of endometrial stromal cells. Conclusions Our findings indicate that SMURF1-mediated ubiquitylation of SHP-1 regulates endometrial stromal cell proliferation and invasion during endometriosis.
Collapse
Affiliation(s)
- Yunmeng Bian
- Department of Gynaecology and Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
| | - Li Yuan
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xiaoqian Yang
- Department of Gynaecology and Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
| | - Lichun Weng
- Department of Gynaecology and Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
| | - Yanli Zhang
- Department of Gynaecology and Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
| | - He Bai
- Department of Gynaecology and Obstetrics, Kaiyuan People's Hospital, Kaiyuan, China
| | - Jinhong Chen
- Department of Gynaecology and Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
| |
Collapse
|
13
|
Gregoire-Mitha S, Gray DA. What deubiquitinating enzymes, oncogenes, and tumor suppressors actually do: Are current assumptions supported by patient outcomes? Bioessays 2021; 43:e2000269. [PMID: 33415735 DOI: 10.1002/bies.202000269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/30/2020] [Accepted: 12/17/2020] [Indexed: 12/22/2022]
Abstract
Context can determine whether a given gene acts as an oncogene or a tumor suppressor. Deubiquitinating enzymes (DUBs) regulate the stability of many components of the pathways dictating cell fate so it would be expected that alterations in the levels or activity of these enzymes may have oncogenic or tumor suppressive consequences. In the current review we survey publications reporting that genes encoding DUBs are oncogenes or tumor suppressors. For many DUBs both claims have been made. For such "double agents," the effects of gain or loss of function will depend on the overall status of a complex of molecular signaling networks subject to extensive crosstalk. As the TGF-β paradox makes clear context is critical in cell fate decisions, and the disconnect between experimental findings and patient survival outcomes can in part be attributed to disparities between culture conditions and the microenvironment in vivo. Convincing claims for oncogene or tumor suppressor roles require the documentation of gene alterations in patient samples; survival curves are alone inadequate.
Collapse
Affiliation(s)
- Sophie Gregoire-Mitha
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Douglas A Gray
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| |
Collapse
|
14
|
Zhou C, Zhang Z, Zhu X, Qian G, Zhou Y, Sun Y, Yu W, Wang J, Lu H, Lin F, Shen Z, Zheng S. N6-Methyladenosine modification of the TRIM7 positively regulates tumorigenesis and chemoresistance in osteosarcoma through ubiquitination of BRMS1. EBioMedicine 2020; 59:102955. [PMID: 32853985 PMCID: PMC7452680 DOI: 10.1016/j.ebiom.2020.102955] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Metastasis is the leading cause of death in patients with osteosarcoma. Some of these patients fail to respond to chemotherapy and die of metastasis within a short period. Therefore, it is important to identify novel biomarkers to improve the diagnosis and treatment of osteosarcoma. TRIM7 is a member of the tripartite motif (TRIM) family protein that is involved in various pathological conditions including cancer; however, its role in osteosarcoma remains elusive. METHODS Cell proliferation, invasion and migration were measured by CCK-8 and Transwell. Immunoprecipitation and mass spectrometry analysis were used to identify candidate proteins associated with TRIM7. Immunoprecipitation, immunofluorescence, pull down and ubiquitination assay were performed to examine the regulation between TRIM7 and its candidate protein. m6A modification of TRIM7 was measured by RNA immunoprecipitation. FINDINGS TRIM7 expression was upregulated in osteosarcoma tissues and was an independent risk factor in predicting poor prognosis. TRIM7 regulates osteosarcoma cell migration and invasion through ubiquitination of breast cancer metastasis suppressor 1 (BRMS1). Moreover, chemoresistance was readily observed in osteosarcoma cells and in patient-derived xenograft (PDX) mice with higher TRIM7 levels. Loss of TRIM7 m6A modification was observed in osteosarcoma tissues. METTL3 and YTHDF2 were the main factors involved in the aberrant m6A modification of TRIM7. INTERPRETATION Overall, our findings show that TRIM7 plays a key role in regulating metastasis and chemoresistance in osteosarcoma through ubiquitination of BRMS1. FUNDING This work was financially supported by grants of NSFC (81001192, 81672658 and 81972521) and National Key Research Project of Science and Technology Ministry (2016YFC0106204).
Collapse
Affiliation(s)
- Chenliang Zhou
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai 200233, China
| | - Zhichang Zhang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xiaoshi Zhu
- Pediatric Intensive Care Unit, Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Guowei Qian
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai 200233, China
| | - Yan Zhou
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai 200233, China
| | - Yong Sun
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai 200233, China
| | - Wenxi Yu
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai 200233, China
| | - Jiahui Wang
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai 200233, China
| | - Haiyang Lu
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai 200233, China
| | - Feng Lin
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai 200233, China
| | - Zan Shen
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai 200233, China.
| | - Shuier Zheng
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai 200233, China.
| |
Collapse
|
15
|
Ding X, Gu Y, Jin M, Guo X, Xue S, Tan C, Huang J, Yang W, Xue M, Zhou Q, Wang W, Zhang Y. The deubiquitinating enzyme UCHL1 promotes resistance to pemetrexed in non-small cell lung cancer by upregulating thymidylate synthase. Theranostics 2020; 10:6048-6060. [PMID: 32483437 PMCID: PMC7255002 DOI: 10.7150/thno.42096] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/29/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: Resistance to pemetrexed (PEM)-based chemotherapy is a major cause of progression in non-small cell lung cancer (NSCLC) patients. The deubiquitinating enzyme UCHL1 was recently found to play important roles in chemoresistance and tumor progression. However, the potential roles and mechanisms of UCHL1 in PEM resistance remain unclear. Methods: Bioinformatics analyses and immunohistochemistry were used to evaluate UCHL1 expression in NSCLC specimens. Kaplan-Meier analysis with the log-rank test was used for survival analyses. We established PEM-resistant NSCLC cell lines by exposing them to step-wise increases in PEM concentrations, and in vitro and in vivo assays were used to explore the roles and mechanisms of UCHL1 in PEM resistance using the NSCLC cells. Results: In chemoresistant tumors from NSCLC patients, UCHL1 was highly expressed and elevated UCHL1 expression was strongly associated with poor outcomes. Furthermore, UCHL1 expression was significantly upregulated in PEM-resistant NSCLC cells, while genetic silencing or inhibiting UCHL1 suppressed resistance to PEM and other drugs in NSCLC cells. Mechanistically, UCHL1 promoted PEM resistance in NSCLC by upregulating the expression of thymidylate synthase (TS), based on reduced TS expression after UCHL1 inhibition and re-emergence of PEM resistance upon TS restoration. Furthermore, UCHL1 upregulated TS expression, which mitigated PEM-induced DNA damage and cell cycle arrest in NSCLC cells, and also conferred resistance to PEM and other drugs. Conclusions: It appears that UCHL1 promotes PEM resistance by upregulating TS in NSCLC cells, which mitigated DNA damage and cell cycle arrest. Thus, UCHL1 may be a therapeutic target for overcoming PEM resistance in NSCLC patients.
Collapse
|
16
|
Matuszczak E, Tylicka M, Komarowska MD, Debek W, Hermanowicz A. Ubiquitin carboxy-terminal hydrolase L1 - physiology and pathology. Cell Biochem Funct 2020; 38:533-540. [PMID: 32207552 DOI: 10.1002/cbf.3527] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/20/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022]
Abstract
Ubiquitin C-terminal hydrolase 1 (UCHL1) is an enzyme unique for its multiple activity - both ligase and hydrolase. UCHL1 was first identified as an abundant protein found in the brain and testes, however its expression is not limited to the neuronal compartment. UCHL1 is also highly expressed in carcinomas of various tissue origins, including those from brain, lung, breast, kidney, colon, prostate, pancreas and mesenchymal tissues. Loss-of-function studies and an inhibitor for UCHL1 confirmed the importance of UCHL1 for cancer therapy. So far biological significance of UCHL1 was described in the following processes: spermatogenesis, oncogenesis, angiogenesis, cell proliferation and differentiation in skeletal muscle, inflammation, tissue injury, neuronal injury and neurodegeneration.
Collapse
Affiliation(s)
- Ewa Matuszczak
- Pediatric Surgery Department, Medical University of Bialystok, Bialystok, Poland
| | - Marzena Tylicka
- Biophysics Department, Medical University of Bialystok, Bialystok, Poland
| | | | - Wojciech Debek
- Pediatric Surgery Department, Medical University of Bialystok, Bialystok, Poland
| | - Adam Hermanowicz
- Pediatric Surgery Department, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
17
|
Functional analysis of deubiquitylating enzymes in tumorigenesis and development. Biochim Biophys Acta Rev Cancer 2019; 1872:188312. [DOI: 10.1016/j.bbcan.2019.188312] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
|
18
|
Inhibition of UCH-L1 Deubiquitinating Activity with Two Forms of LDN-57444 Has Anti-Invasive Effects in Metastatic Carcinoma Cells. Int J Mol Sci 2019; 20:ijms20153733. [PMID: 31370144 PMCID: PMC6696221 DOI: 10.3390/ijms20153733] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 01/28/2023] Open
Abstract
Normally ubiquitin C-terminal hydrolase L1 (UCH-L1) is expressed in the central nervous and reproductive systems of adults, but its de novo expression has been detected in many human cancers. There is a growing body of evidence that UCH-L1 de-ubiquitinating (DUB) activity plays a major pro-metastatic role in certain carcinomas. Here we tested anti-metastatic effects of the small-molecule inhibitor of UCH-L1 DUB activity, LDN-57444, in cell lines from advanced oral squamous cell carcinoma (OSCC) as well as invasive nasopharyngeal (NP) cell lines expressing the major pro-metastatic gene product of Epstein–Barr virus (EBV) tumor virus, LMP1. To overcome the limited aqueous solubility of LDN-57444 we developed a nanoparticle formulation of LDN-57444 by incorporation of the compound in polyoxazoline micellear nanoparticles (LDN-POx). LDN-POx nanoparticles were equal in effects as the native compound in vitro. Our results demonstrate that inhibition of UCH-L1 DUB activity with LDN or LDN-POx inhibits secretion of exosomes and reduces levels of the pro-metastatic factor in exosomal fractions. Both forms of UCH-L1 DUB inhibitor suppress motility of metastatic squamous carcinoma cells as well as nasopharyngeal cells expressing EBV pro-metastatic Latent membrane protein 1 (LMP1) in physiological assays. Moreover, treatment with LDN and LDN-POx resulted in reduced levels of pro-metastatic markers, a decrease of carcinoma cell adhesion, as well as inhibition of extra-cellular vesicle (ECV)-mediated transfer of viral invasive factor LMP1. We suggest that soluble inhibitors of UCH-L1 such as LDN-POx offer potential forms of treatment for invasive carcinomas including EBV-positive malignancies.
Collapse
|
19
|
Fang Y, Shen X. Ubiquitin carboxyl-terminal hydrolases: involvement in cancer progression and clinical implications. Cancer Metastasis Rev 2018; 36:669-682. [PMID: 29080080 DOI: 10.1007/s10555-017-9702-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein ubiquitination and deubiquitination participate in a number of biological processes, including cell growth, differentiation, transcriptional regulation, and oncogenesis. Ubiquitin C-terminal hydrolases (UCHs), a subfamily of deubiquitinating enzymes (DUBs), includes four members: UCH-L1/PGP9.5 (protein gene product 9.5), UCH-L3, UCHL5/UCH37, and BRCA1-associated protein-1 (BAP1). Recently, more attention has been paid to the relationship between the UCH family and malignancies, which play different roles in the progression of different tumors. It remains controversial whether UCHL1 is a tumor promoter or suppressor. UCHL3 and UCH37 are considered to be tumor promoters, while BAP1 is considered to be a tumor suppressor. Studies have showed that UCH enzymes influence several signaling pathways that play crucial roles in oncogenesis, tumor invasion, and migration. In addition, UCH families are associated with tumor cell sensitivity to therapeutic modalities. Here, we reviewed the roles of UCH enzymes in the development of tumors, highlighting the potential consideration of UCH enzymes as new interesting targets for the development of anticancer drugs.
Collapse
Affiliation(s)
- Ying Fang
- The Department of Gastroenterology of Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, People's Republic of China
| | - Xizhong Shen
- The Department of Gastroenterology of Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, People's Republic of China. .,Key Laboratory of Medical Molecule Virology, Ministry of Education and Health, Shanghai Institute of Liver Diseases Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
20
|
Namani A, Matiur Rahaman M, Chen M, Tang X. Gene-expression signature regulated by the KEAP1-NRF2-CUL3 axis is associated with a poor prognosis in head and neck squamous cell cancer. BMC Cancer 2018; 18:46. [PMID: 29306329 PMCID: PMC5756380 DOI: 10.1186/s12885-017-3907-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 12/12/2017] [Indexed: 12/31/2022] Open
Abstract
Background NRF2 is the key regulator of oxidative stress in normal cells and aberrant expression of the NRF2 pathway due to genetic alterations in the KEAP1 (Kelch-like ECH-associated protein 1)-NRF2 (nuclear factor erythroid 2 like 2)-CUL3 (cullin 3) axis leads to tumorigenesis and drug resistance in many cancers including head and neck squamous cell cancer (HNSCC). The main goal of this study was to identify specific genes regulated by the KEAP1-NRF2-CUL3 axis in HNSCC patients, to assess the prognostic value of this gene signature in different cohorts, and to reveal potential biomarkers. Methods RNA-Seq V2 level 3 data from 279 tumor samples along with 37 adjacent normal samples from patients enrolled in the The Cancer Genome Atlas (TCGA)-HNSCC study were used to identify upregulated genes using two methods (altered KEAP1-NRF2-CUL3 versus normal, and altered KEAP1-NRF2-CUL3 versus wild-type). We then used a new approach to identify the combined gene signature by integrating both datasets and subsequently tested this signature in 4 independent HNSCC datasets to assess its prognostic value. In addition, functional annotation using the DAVID v6.8 database and protein-protein interaction (PPI) analysis using the STRING v10 database were performed on the signature. Results A signature composed of a subset of 17 genes regulated by the KEAP1-NRF2-CUL3 axis was identified by overlapping both the upregulated genes of altered versus normal (251 genes) and altered versus wild-type (25 genes) datasets. We showed that increased expression was significantly associated with poor survival in 4 independent HNSCC datasets, including the TCGA-HNSCC dataset. Furthermore, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and PPI analysis revealed that most of the genes in this signature are associated with drug metabolism and glutathione metabolic pathways. Conclusions Altogether, our study emphasizes the discovery of a gene signature regulated by the KEAP1-NRF2-CUL3 axis which is strongly associated with tumorigenesis and drug resistance in HNSCC. This 17-gene signature provides potential biomarkers and therapeutic targets for HNSCC cases in which the NRF2 pathway is activated. Electronic supplementary material The online version of this article (10.1186/s12885-017-3907-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Akhileshwar Namani
- Department of Biochemistry, University School of Medicine, Hangzhou, 310058, People's Republic of China
| | - Md Matiur Rahaman
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Xiuwen Tang
- Department of Biochemistry, University School of Medicine, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
21
|
Abstract
More than a decade after a Nobel Prize was awarded for the discovery of the ubiquitin-proteasome system and clinical approval of proteasome and ubiquitin E3 ligase inhibitors, first-generation deubiquitylating enzyme (DUB) inhibitors are now approaching clinical trials. However, although our knowledge of the physiological and pathophysiological roles of DUBs has evolved tremendously, the clinical development of selective DUB inhibitors has been challenging. In this Review, we discuss these issues and highlight recent advances in our understanding of DUB enzymology and biology as well as technological improvements that have contributed to the current interest in DUBs as therapeutic targets in diseases ranging from oncology to neurodegeneration.
Collapse
Affiliation(s)
- Jeanine A. Harrigan
- Mission Therapeutics Ltd, Moneta, Babraham Research Campus, Cambridge, CB22 3AT UK
| | - Xavier Jacq
- Mission Therapeutics Ltd, Moneta, Babraham Research Campus, Cambridge, CB22 3AT UK
| | - Niall M. Martin
- Mission Therapeutics Ltd, Moneta, Babraham Research Campus, Cambridge, CB22 3AT UK
- Present Address: and Department of Biochemistry, The Wellcome Trust and Cancer Research UK Gurdon Institute, Tennis Court Road, University of Cambridge, Cambridge, CB2 1QN UK
- Present address: Artios Pharmaceuticals Ltd, Maia, Babraham Research Campus, Cambridge CB22 3AT, UK,
| | - Stephen P. Jackson
- Mission Therapeutics Ltd, Moneta, Babraham Research Campus, Cambridge, CB22 3AT UK
- Present Address: and Department of Biochemistry, The Wellcome Trust and Cancer Research UK Gurdon Institute, Tennis Court Road, University of Cambridge, Cambridge, CB2 1QN UK
- Present address: Artios Pharmaceuticals Ltd, Maia, Babraham Research Campus, Cambridge CB22 3AT, UK,
| |
Collapse
|
22
|
Cheng JC, Tseng CP, Liao MH, Peng CY, Yu JS, Chuang PH, Huang JT, Chen JJW. Activation of hepatic stellate cells by the ubiquitin C-terminal hydrolase 1 protein secreted from hepatitis C virus-infected hepatocytes. Sci Rep 2017; 7:4448. [PMID: 28667290 PMCID: PMC5493679 DOI: 10.1038/s41598-017-04259-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/11/2017] [Indexed: 12/17/2022] Open
Abstract
Hepatitis C virus (HCV) infection of hepatocytes promotes liver fibrosis by activation of hepatic stellate cells (HSCs) and excessive deposition of extracellular matrix in liver tissue. Whether or not host factors released from the HCV-infected hepatocytes play role in HSCs activation is unclear. In this study, HSCs were activated by the conditioned medium derived from HCV replicon cells. Secretomic profiling of HCV replicon cells and the parental Huh7 cells revealed ubiquitin carboxy-terminal hydrolase L1 (UCHL1) as a novel secreted protein from HCV-infected hepatocytes. UCHL1 expression in hepatocytes was induced by HCV infection. UCHL1 was expressed in the liver and found in the plasma of patients with chronic hepatitis C. Molecular analysis by use of the anti-UCHL1 neutralization antibody and purified UCHL1 protein showed that secreted UCHL1 protein was bound to the cell surface of HSCs and activated JNK signaling leading to overexpression of alpha-smooth muscle actin and the activation of HSCs. These results provide further for understanding the underlying mechanism in HCV-mediated hepatic fibrogenesis.
Collapse
Affiliation(s)
- Ju-Chien Cheng
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, 40402, Taiwan.
| | - Ching-Ping Tseng
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, 33302, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, 33302, Taiwan.,Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, 33302, Taiwan
| | - Mei-Huei Liao
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, 40402, Taiwan.,Institute of Biomedical Sciences, National Chung Hsing University, Taichung, 40402, Taiwan
| | - Cheng-Yuan Peng
- Department of Internal Medicine, China Medical University Hospital, Taichung, 40402, Taiwan
| | - Jau-Song Yu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, 33302, Taiwan.,Liver Research Center, Chang Gung Memorial Hospital, Linkou, 33302, Taiwan
| | - Po-Heng Chuang
- Department of Internal Medicine, China Medical University Hospital, Taichung, 40402, Taiwan
| | - Jing-Tang Huang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, 40402, Taiwan
| | - Jeremy J W Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, 40402, Taiwan
| |
Collapse
|
23
|
Matuszczak E, Tylicka M, Dębek W, Sankiewicz A, Gorodkiewicz E, Hermanowicz A. Overexpression of ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) in serum of children after thermal injury. Adv Med Sci 2017; 62:83-86. [PMID: 28193576 DOI: 10.1016/j.advms.2016.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 06/21/2016] [Accepted: 07/26/2016] [Indexed: 02/04/2023]
Abstract
PURPOSE The study aims to determinate concentrations of ubiquitin C-terminal hydrolase 1 (UCHL1), which hydrolyzes amino acids from ubiquitin and cleave di-ubiquitins, in serum of children after thermal injury. PATIENTS/METHODS 42 children scalded by hot water, managed at the Department of Pediatric Surgery, with burns in 4-20% TBSA were included into the study (age 9 months up to 14 years, mean age 2.5±1 years). Blood plasma UCHL1 concentration was assessed in 2-6h, 12-16h, 3d, 5d, and 7d after injury using surface plasmon resonance imaging biosensor. 18 healthy subjects admitted for planned surgeries served as controls. RESULTS The UCHL1 concentration in the blood plasma of patients with thermal injuries reached its peak 12-16h after thermal injury and slowly decreased over time, and still did not reach the normal range on the 7th day after thermal injury. Mean concentrations of UCHL1 after thermal injury were above the range measured in controls (0.12ng/ml): 2-6h after injury - 5.59ng/dl, 12-16h after injury - 9.16ng/dl, 3 days after injury - 6.94ng/dl, 5 days after 5.41ng/dl, 7 days after injury - 4.09ng/dl. CONCLUSIONS We observed sudden increase in the concentration of UCHL1 2-16h after thermal injury with the slow decrease in the UCHL1 concentration over the time. UCHL1 concentration was proportional to the severity of the burn. Further studies are needed to determine the mechanisms by which UCHL1 contributes to metabolic response following thermal injury.
Collapse
Affiliation(s)
- Ewa Matuszczak
- Department of Pediatric Surgery, Medical University of Bialystok, Bialystok, Poland.
| | - Marzena Tylicka
- Department of Biophysics, Medical University of Bialystok, Bialystok, Poland
| | - Wojciech Dębek
- Department of Pediatric Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Anna Sankiewicz
- Department of Electrochemistry, Institute of Chemistry, University of Bialystok, Bialystok, Poland
| | - Ewa Gorodkiewicz
- Department of Electrochemistry, Institute of Chemistry, University of Bialystok, Bialystok, Poland
| | - Adam Hermanowicz
- Department of Pediatric Surgery, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
24
|
Matuszczak E, Tylicka M, Dębek W, Tokarzewicz A, Gorodkiewicz E, Hermanowicz A. Concentration of UHCL1 in the Serum of Children with Acute Appendicitis, Before and After Surgery, and Its Correlation with CRP and Prealbumin. J INVEST SURG 2017. [PMID: 28635516 DOI: 10.1080/08941939.2017.1282559] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ewa Matuszczak
- Pediatric Surgery Department, Medical University of Bialystok, Poland
| | - Marzena Tylicka
- Biophysics Department, Medical University of Bialystok, Poland
| | - Wojciech Dębek
- Pediatric Surgery Department, Medical University of Bialystok, Poland
| | | | | | - Adam Hermanowicz
- Pediatric Surgery Department, Medical University of Bialystok, Poland
| |
Collapse
|
25
|
Nasheri N, Ning Z, Figeys D, Yao S, Goto NK, Pezacki JP. Activity-based profiling of the proteasome pathway during hepatitis C virus infection. Proteomics 2015; 15:3815-25. [PMID: 26314548 DOI: 10.1002/pmic.201500169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/28/2015] [Accepted: 08/24/2015] [Indexed: 12/30/2022]
Abstract
Hepatitis C virus (HCV) infection often leads to chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. The stability of the HCV proteins is controlled by ubiquitin-dependent and ubiquitin-independent proteasome pathways. Many viruses modulate proteasome function for their propagation. To examine the interrelationship between HCV and the proteasome pathways we employed a quantitative activity-based protein profiling method. Using this approach we were able to quantify the changes in the activity of several proteasome subunits and found that proteasome activity is drastically reduced by HCV replication. The results imply a link between the direct downregulation of the activity of this pathway and chronic HCV infection.
Collapse
Affiliation(s)
- Neda Nasheri
- Life Sciences Division, National Research Council of Canada, Ottawa, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Zhibin Ning
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.,Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - Shao Yao
- Department of Chemistry, National University of Singapore, Singapore
| | - Natalie K Goto
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.,Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - John Paul Pezacki
- Life Sciences Division, National Research Council of Canada, Ottawa, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.,Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| |
Collapse
|
26
|
The de-ubiquitinase UCHL1 promotes gastric cancer metastasis via the Akt and Erk1/2 pathways. Tumour Biol 2015; 36:8379-87. [DOI: 10.1007/s13277-015-3566-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/13/2015] [Indexed: 02/02/2023] Open
|