1
|
Di Francesco V, Chua AJ, Huang D, D'Souza A, Yang A, Bleier BS, Amiji MM. RNA therapies for CNS diseases. Adv Drug Deliv Rev 2024; 208:115283. [PMID: 38494152 DOI: 10.1016/j.addr.2024.115283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
Neurological disorders are a diverse group of conditions that pose an increasing health burden worldwide. There is a general lack of effective therapies due to multiple reasons, of which a key obstacle is the presence of the blood-brain barrier, which limits drug delivery to the central nervous system, and generally restricts the pool of candidate drugs to small, lipophilic molecules. However, in many cases, these are unable to target key pathways in the pathogenesis of neurological disorders. As a group, RNA therapies have shown tremendous promise in treating various conditions because they offer unique opportunities for specific targeting by leveraging Watson-Crick base pairing systems, opening up possibilities to modulate pathological mechanisms that previously could not be addressed by small molecules or antibody-protein interactions. This potential paradigm shift in disease management has been enabled by recent advances in synthesizing, purifying, and delivering RNA. This review explores the use of RNA-based therapies specifically for central nervous system disorders, where we highlight the inherent limitations of RNA therapy and present strategies to augment the effectiveness of RNA therapeutics, including physical, chemical, and biological methods. We then describe translational challenges to the widespread use of RNA therapies and close with a consideration of future prospects in this field.
Collapse
Affiliation(s)
- Valentina Di Francesco
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, 140 The Fenway Building, Boston, MA 02115, USA; Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Andy J Chua
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, 140 The Fenway Building, Boston, MA 02115, USA; Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA; Department of Otorhinolaryngology - Head and Neck Surgery, Sengkang General Hospital, 110 Sengkang E Way, 544886, Singapore
| | - Di Huang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, 140 The Fenway Building, Boston, MA 02115, USA; Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Anisha D'Souza
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, 140 The Fenway Building, Boston, MA 02115, USA; Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Alicia Yang
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benjamin S Bleier
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, 140 The Fenway Building, Boston, MA 02115, USA; Department of Chemical Engineering, College of Engineering, Northeastern University, 360 Huntington Avenue, 140 The Fenway Building, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Pratt J, Haidara K, Annabi B. MT1-MMP Expression Levels and Catalytic Functions Dictate LDL Receptor-Related Protein-1 Ligand Internalization Capacity in U87 Glioblastoma Cells. Int J Mol Sci 2022; 23:ijms232214214. [PMID: 36430705 PMCID: PMC9692856 DOI: 10.3390/ijms232214214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Modulations in cell surface receptor ectodomain proteolytic shedding impact on receptor function and cancer biomarker expression. As such, heavily pursued therapeutic avenues have exploited LDL receptor-related protein-1 (LRP-1)-mediated capacity in internalizing Angiopep-2 (An2), a brain-penetrating peptide that allows An2-drug conjugates to cross the blood-brain tumor barrier (BBTB). Given that LRP-1 is proteolytically shed from the cell surface through matrix metalloproteinase (MMP) activity, the balance between MMP expression/function and LRP-1-mediated An2 internalization is unknown. In this study, we found that membrane type-1 (MT1)-MMP expression increased from grade 1 to 4 brain tumors, while that of LRP-1 decreased inversely. MMP pharmacological inhibitors such as Ilomastat, Doxycycline and Actinonin increased in vitro An2 internalization by up to 2.5 fold within a human grade IV-derived U87 glioblastoma cell model. Transient siRNA-mediated MT1-MMP gene silencing resulted in increased basal An2 cell surface binding and intracellular uptake, while recombinant MT1-MMP overexpression reduced both cell surface LRP-1 expression as well as An2 internalization. The addition of Ilomastat to cells overexpressing recombinant MT1-MMP restored LRP-1 expression at the cell surface and An2 uptake to levels comparable to those observed in control cells. Collectively, our data suggest that MT1-MMP expression status dictates An2-mediated internalization processes in part by regulating cell surface LRP-1 functions. Such evidence prompts preclinical evaluations of combined MMP inhibitors/An2-drug conjugate administration to potentially increase the treatment of high-MT1-MMP-expressing brain tumors.
Collapse
|
3
|
Ma YS, Liu JB, Wu TM, Fu D. New Therapeutic Options for Advanced Hepatocellular Carcinoma. Cancer Control 2021; 27:1073274820945975. [PMID: 32799550 PMCID: PMC7791453 DOI: 10.1177/1073274820945975] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC), one of the most common lethal diseases in the world, has a 5-year survival rate of only 7%. Hepatocellular carcinoma has no symptoms in the early stage but obvious symptoms in the late stage, leading to delayed diagnosis and reduced treatment efficacy. In recent years, as the scope of HCC research has increased in depth, the clinical development and application of molecular targeted drugs and immunotherapy drugs have brought new breakthroughs in HCC treatment. Targeted therapy drugs for HCC have high specificity, allowing them to selectively kill tumor cells and minimize damage to normal tissues. At present, these targeted drugs are mainly classified into 3 categories: small molecule targeted drugs, HCC antigen-specific targeted drugs, and immune checkpoint targeted drugs. This article reviews the latest research progress on the targeted drugs for HCC.
Collapse
Affiliation(s)
- Yu-Shui Ma
- Cancer Institute, 377323Nantong Tumor Hospital, Nantong, China.,Department of Radiology, 12485The Forth Affiliated Hospital of Anhui Medical University, Hefei, China.,Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, 12476Tongji University School of Medicine, Shanghai, China
| | - Ji-Bin Liu
- Cancer Institute, 377323Nantong Tumor Hospital, Nantong, China
| | - Ting-Miao Wu
- Department of Radiology, 12485The Forth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Da Fu
- Cancer Institute, 377323Nantong Tumor Hospital, Nantong, China.,Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, 12476Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Everts A, Bergeman M, McFadden G, Kemp V. Simultaneous Tumor and Stroma Targeting by Oncolytic Viruses. Biomedicines 2020; 8:E474. [PMID: 33167307 PMCID: PMC7694393 DOI: 10.3390/biomedicines8110474] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
Current cancer therapeutics often insufficiently eradicate malignant cells due to the surrounding dense tumor stroma. This multi-componential tissue consists of mainly cancer-associated fibroblasts, the (compact) extracellular matrix, tumor vasculature, and tumor-associated macrophages, which all exert crucial roles in maintaining a pro-tumoral niche. Their continuous complex interactions with tumor cells promote tumor progression and metastasis, emphasizing the challenges in tumor therapy development. Over the last decade, advances in oncolytic virotherapy have shown that oncolytic viruses (OVs) are a promising multi-faceted therapeutic platform for simultaneous tumor and stroma targeting. In addition to promoting tumor cell oncolysis and systemic anti-tumor immunity, accumulating data suggest that OVs can also directly target stromal components, facilitating OV replication and spread, as well as promoting anti-tumor activity. This review provides a comprehensive overview of the interactions between native and genetically modified OVs and the different targetable tumor stromal components, and outlines strategies to improve stroma targeting by OVs.
Collapse
Affiliation(s)
- Anne Everts
- Research Program Infection and Immunity, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Melissa Bergeman
- Center for Immunotherapy, Vaccines and Virotherapy (CIVV), The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (M.B.); (G.M.)
| | - Grant McFadden
- Center for Immunotherapy, Vaccines and Virotherapy (CIVV), The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (M.B.); (G.M.)
| | - Vera Kemp
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands;
| |
Collapse
|
5
|
Ulasov IV, Mijanovic O, Savchuk S, Gonzalez-Buendia E, Sonabend A, Xiao T, Timashev P, Lesniak MS. TMZ regulates GBM stemness via MMP14-DLL4-Notch3 pathway. Int J Cancer 2019; 146:2218-2228. [PMID: 31443114 DOI: 10.1002/ijc.32636] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/17/2019] [Accepted: 07/30/2019] [Indexed: 12/16/2022]
Abstract
Glioblastoma (GBM) is one of the most aggressive primary brain tumors with frequent recurrences following the standard methods of treatment-temozolomide (TMZ), ionizing radiation and surgical resection. The objective of our study was to investigate GBM resistance mediated via MMP14 (matrix metalloproteinase 14). We used multiple PDX GBM models and established glioma cell lines to characterize expression and subcellular localization of MMP14 after TMZ treatment. We performed a Kiloplex ELISA-based array to evaluate changes in cellular proteins induced by MMP14 expression and translocation. Lastly, we conducted functional and mechanistic studies to elucidate the role of DLL4 (delta-like canonical notch ligand 4) in regulation of glioma stemness, particularly in the context of its relationship to MMP14. We detected that TMZ treatment promotes nuclear translocation of MMP14 followed by extracellular release of DLL4. DLL4 in turn stimulates cleavage of Notch3, its nuclear translocation and induction of sphering capacity and stemness.
Collapse
Affiliation(s)
- Ilya V Ulasov
- Institute of Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Olja Mijanovic
- Institute of Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | | | | | - Adam Sonabend
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | - Ting Xiao
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | - Petr Timashev
- Institute of Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maciej S Lesniak
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| |
Collapse
|
6
|
Yoshida M, Yokota E, Sakuma T, Yamatsuji T, Takigawa N, Ushijima T, Yamamoto T, Fukazawa T, Naomoto Y. Development of an integrated CRISPRi targeting ΔNp63 for treatment of squamous cell carcinoma. Oncotarget 2018; 9:29220-29232. [PMID: 30018747 PMCID: PMC6044376 DOI: 10.18632/oncotarget.25678] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/23/2018] [Indexed: 12/11/2022] Open
Abstract
TP63 encodes TAp63, which is functionally similar to the tumor suppressor TP53, and ΔNp63, which lacks the transcription-activating domain of TAp63 and appears potently oncogenic in squamous cell carcinomas (SCCs). In this study, we developed an integrated CRISPR interference (CRISPRi) system to selectively suppress ΔNp63 (CRISPRiΔNp63). We engineered this CRISPRi using tandemized guide RNA expression cassettes that targeted the 50 to 100 bp downstream of the transcription start site of ΔNp63 in combination with inactivated Cas9 linked to the transcription repression module Krüppel-associated box repressor domain. The plasmid vector harboring CRISPRiΔNp63 repressed ΔNp63 transcription in lung and esophageal SCC cells. Likewise, Ad-CRISPRiΔNp63, an all-in-one adenoviral vector containing the tandemized gRNAs and dCas9/KRAB expression cassette suppressed ΔNp63 expression in SCC cells. Ad-CRISPRiΔNp63 also effectively decreased cell proliferation and colony formation and induced apoptosis in lung and esophageal SCC cells in vitro and significantly inhibited tumor growth in a mouse lung SCC xenograft model in vivo. These results indicate that ΔNp63 suppression using CRISPRiΔNp63 may be an effective strategy for treating lung and esophageal SCC.
Collapse
Affiliation(s)
- Masakazu Yoshida
- Department of General Surgery, Kawasaki Medical School, Okayama, 700-8505 Japan
| | - Etsuko Yokota
- Department of General Surgery, Kawasaki Medical School, Okayama, 700-8505 Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, 739-8526 Japan
| | - Tomoki Yamatsuji
- Department of General Surgery, Kawasaki Medical School, Okayama, 700-8505 Japan
| | - Nagio Takigawa
- Department of General Internal Medicine 4, Kawasaki Medical School, Okayama, 700-8505 Japan
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, 739-8526 Japan
| | - Takuya Fukazawa
- Department of General Surgery, Kawasaki Medical School, Okayama, 700-8505 Japan
| | - Yoshio Naomoto
- Department of General Surgery, Kawasaki Medical School, Okayama, 700-8505 Japan
| |
Collapse
|
7
|
Liu F, Xu K, Yang H, Li Y, Liu J, Wang J, Guan Z. A novel approach to glioma therapy using an oncolytic adenovirus with two specific promoters. Oncol Lett 2017; 15:3362-3368. [PMID: 29435080 DOI: 10.3892/ol.2017.7684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 11/07/2017] [Indexed: 11/06/2022] Open
Abstract
Gliomas are the most common type of primary brain tumor in adults, where more than half of the cases are malignant, and the prognosis is poor. The early viral 1A (E1A) protein has been widely recognized to be essential for adenoviral replication and production of progeny virions in human cells, a process that is regulated by human telomerase reverse transcriptase. The p53 gene, as a tumor suppressor, regulates diverse cellular processes, including cell cycle arrest, cell autophagy, senescence and apoptosis. Dysfunction of the p53 pathways is common in malignant gliomas. Exogenous expression of p53 during adenovirus replication in human cancer cells may accelerate cell death and improve the release of early virus progeny. In the present study, a conditionally replicative adenovirus (CRAd) Ad-Tp-E1A-Gp-p53, which expressed functional p53 protein when replicating in cancer cells, was constructed. Next, the level of p53 expression in U251 cells was determined by western blot analysis, and the inhibitory effect of Ad-Tp-E1A-Gp-p53 on U251 cells was detected via an MTT assay. The results indicated that p53 expression was upregulated with an increase in the multiplicity of infection (MOI) of Ad-Tp-E1A-Gp-p53. Additionally, the inhibitory effects of Ad-Tp-E1A-Gp-p53 in different groups were significantly different (P<0.05), with the inhibition ratio of the experimental groups being higher, compared with the control group (P<0.05). Furthermore, the inhibition ratio increased with increases in the MOI of Ad-Tp-E1A-Gp-p53. Therefore, the expression of functional p53 and that of E1A may increase the potency of CRAd, and overexpression of p53 through CRAd is a promising approach to more effective treatments in a number of human cancer types.
Collapse
Affiliation(s)
- Feng Liu
- Department of Neurosurgery, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| | - Kaya Xu
- Department of Neurosurgery, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| | - Hua Yang
- Department of Neurosurgery, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| | - Yuming Li
- Department of Neurosurgery, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| | - Jian Liu
- Department of Neurosurgery, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| | - Jixiang Wang
- Department of Neurosurgery, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| | - Zhizhong Guan
- Department of Molecular Biology, The Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| |
Collapse
|
8
|
Platonov ME, Borovjagin AV, Kaverina N, Xiao T, Kadagidze Z, Lesniak M, Baryshnikova M, Ulasov IV. KISS1 tumor suppressor restricts angiogenesis of breast cancer brain metastases and sensitizes them to oncolytic virotherapy in vitro. Cancer Lett 2017; 417:75-88. [PMID: 29269086 DOI: 10.1016/j.canlet.2017.12.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/12/2022]
Abstract
KISS1 tumor suppressor protein regulates cancer cell invasion via MMP9 metalloproteinase. Downregulation of KISS1 gene expression promotes progression of breast cancer and melanoma, resulting in the development of distant metastases. In the current study, we investigated whether restoration of KISS1 expression in KISS1-deficient human metastatic breast cancer cells holds potential as an advanced anticancer strategy. To this end we engineered an infectivity-enhanced conditionally-replicative human adenovirus type 5 encoding KISS1 as an "arming" transgene in the Ad5 E3 region for an ectopic KISS1 expression in transduced cancer cells. The oncolytic potential of the vector was examined using brain-invading metastatic clones of CN34 and MDA-MB-231 breast cancer cells, which supported high levels of AdKISS1 replication, correlating with a robust CRAd-mediated cytotoxicity. Secretion of cellular factors responsible for tumor angiogenesis, cell-to-cell communication and anti-tumoral immune responses upon KISS1 expression in breast cancer cells was analyzed by a RayBiotech Kiloplex Quantibody array. Overall, our results indicate that KISS1 transgene expression provides an important benefit for CRAd-mediated cytotoxicity in breast cancer cells and holds potential as an anticancer treatment in conjunction with oncolytic virotherapy of breast and other metastatic cancers.
Collapse
Affiliation(s)
- Mikhail E Platonov
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Anton V Borovjagin
- Institute of Oral Health Research, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Natalya Kaverina
- N.N. Blokhin Cancer Research Center, RAMN, Kashirskoe Shosse 23, Moscow, 115478, Russia
| | - Ting Xiao
- Department of Neurological Surgery, Northwestern University, Chicago, 60611, USA
| | - Zaira Kadagidze
- N.N. Blokhin Cancer Research Center, RAMN, Kashirskoe Shosse 23, Moscow, 115478, Russia
| | - Maciej Lesniak
- Department of Neurological Surgery, Northwestern University, Chicago, 60611, USA
| | - Marya Baryshnikova
- N.N. Blokhin Cancer Research Center, RAMN, Kashirskoe Shosse 23, Moscow, 115478, Russia
| | - Ilya V Ulasov
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia.
| |
Collapse
|
9
|
Kaverina N, Borovjagin AV, Kadagidze Z, Baryshnikov A, Baryshnikova M, Malin D, Ghosh D, Shah N, Welch DR, Gabikian P, Karseladze A, Cobbs C, Ulasov IV. Astrocytes promote progression of breast cancer metastases to the brain via a KISS1-mediated autophagy. Autophagy 2017; 13:1905-1923. [PMID: 28981380 PMCID: PMC5788498 DOI: 10.1080/15548627.2017.1360466] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 07/07/2017] [Accepted: 07/24/2017] [Indexed: 12/14/2022] Open
Abstract
Formation of metastases, also known as cancer dissemination, is an important stage of breast cancer (BrCa) development. KISS1 expression is associated with inhibition of metastases development. Recently we have demonstrated that BrCa metastases to the brain exhibit low levels of KISS1 expression at both mRNA and protein levels. By using multicolor immunofluorescence and coculture techniques here we show that normal adult astrocytes in the brain are capable of promoting metastatic transformation of circulating breast cancer cells localized to the brain through secretion of chemokine CXCL12. The latter was found in this study to downregulate KISS1 expression at the post-transcriptional level via induction of microRNA-345 (MIR345). Furthermore, we demonstrated that ectopic expression of KISS1 downregulates ATG5 and ATG7, 2 key modulators of autophagy, and works concurrently with autophagy inhibitors, thereby implicating autophagy in the mechanism of KISS1-mediated BrCa metastatic transformation. We also found that expression of KISS1 in human breast tumor specimens inversely correlates with that of MMP9 and IL8, implicated in the mechanism of metastatic invasion, thereby supporting the role of KISS1 as a potential regulator of BrCa metastatic invasion in the brain. This conclusion is further supported by the ability of KISS1, ectopically overexpressed from an adenoviral vector in MDA-MB-231Br cells with silenced expression of the endogenous gene, to revert invasive phenotype of those cells. Taken together, our results strongly suggest that human adult astrocytes can promote brain invasion of the brain-localized circulating breast cancer cells by upregulating autophagy signaling pathways via the CXCL12-MIR345- KISS1 axis.
Collapse
Affiliation(s)
- Natalya Kaverina
- Department of Tumor Immunology, Institute of Experimental Diagnostics and Therapy of Tumors, N.N. Blokhin Cancer Research Center, Moscow, Russia
| | - Anton V. Borovjagin
- University of Alabama at Birmingham School of Dentistry, Institute of Oral Health Research, Birmingham, AL, USA
| | - Zaira Kadagidze
- Department of Tumor Immunology, Institute of Experimental Diagnostics and Therapy of Tumors, N.N. Blokhin Cancer Research Center, Moscow, Russia
| | - Anatoly Baryshnikov
- Institute of Experimental Diagnostics and Therapy of Tumors, N.N. Blokhin Cancer Research Center, Moscow, Russia
| | - Maria Baryshnikova
- Institute of Experimental Diagnostics and Therapy of Tumors, N.N. Blokhin Cancer Research Center, Moscow, Russia
| | - Dmitry Malin
- Department of Endocrinology, University of Wisconsin-Madison, Madison, WI, USA
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Dhimankrishhna Ghosh
- Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | - Nameeta Shah
- Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | - Danny R. Welch
- Department of Cancer Biology, Kansas University Medical Center (KUMC), Kansas City, KS, USA
| | - Patrik Gabikian
- Department of Neurosurgery, Kaiser Permanente Los Angeles Medical Center, Los Angeles, CA, USA
| | - Apollon Karseladze
- Pathology, Institute of Experimental Diagnostics and Therapy of Tumors, N.N. Blokhin Cancer Research Center, Moscow, Russia
| | - Charles Cobbs
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ilya V. Ulasov
- Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
10
|
Sheehy S, Annabi B. A Transcriptional Regulatory Role for the Membrane Type-1 Matrix Metalloproteinase in Carcinogen-Induced Inflammasome Gene Expression. GENE REGULATION AND SYSTEMS BIOLOGY 2017. [PMID: 28634425 PMCID: PMC5467917 DOI: 10.1177/1177625017713996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Signal-transducing functions driven by the cytoplasmic domain of membrane type-1 matrix metalloproteinase (MT1-MMP) are believed to regulate many inflammation-associated cancer cell functions including migration, proliferation, and survival. Aside from upregulation of the inflammation biomarker cyclooxygenase-2 (COX-2) expression, MT1-MMP’s role in relaying intracellular signals triggered by extracellular pro-inflammatory cues remains poorly understood. Here, we triggered inflammation in HT1080 fibrosarcoma cells with phorbol-12-myristate-13-acetate (PMA), an inducer of COX-2 and of MT1-MMP. To assess the global transcriptional regulatory role that MT1-MMP may exert on inflammation biomarkers, we combined gene array screens with a transient MT1-MMP gene silencing strategy. Expression of MT1-MMP was found to exert both stimulatory and repressive transcriptional control of several inflammasome-related biomarkers such as interleukin (IL)-1B, IL-6, IL-12A, and IL-33, as well as of transcription factors such as EGR1, ELK1, and ETS1/2 in PMA-treated cells. Among the signal-transducing pathways explored, the silencing of MT1-MMP prevented PMA from phosphorylating extracellular signal–regulated kinase, inhibitor of κB, and p105 nuclear factor κB (NF-κB) intermediates. We also found a signaling axis linking MT1-MMP to MMP-9 transcriptional regulation. Altogether, our data indicate a significant involvement of MT1-MMP in the transcriptional regulation of inflammatory biomarkers consolidating its contribution to signal transduction functions in addition to its classical hydrolytic activity.
Collapse
Affiliation(s)
- Samuel Sheehy
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre de recherche BIOMED, Université du Québec à Montréal, Montréal, QC, Canada
| | - Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre de recherche BIOMED, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
11
|
de Lucas AG, Schuhmacher AJ, Oteo M, Romero E, Cámara JA, de Martino A, Arroyo AG, Morcillo MÁ, Squatrito M, Martinez-Torrecuadrada JL, Mulero F. Targeting MT1-MMP as an ImmunoPET-Based Strategy for Imaging Gliomas. PLoS One 2016; 11:e0158634. [PMID: 27462980 PMCID: PMC4962974 DOI: 10.1371/journal.pone.0158634] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 06/20/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND A critical challenge in the management of Glioblastoma Multiforme (GBM) tumors is the accurate diagnosis and assessment of tumor progression in a noninvasive manner. We have identified Membrane-type 1 matrix metalloproteinase (MT1-MMP) as an attractive biomarker for GBM imaging since this protein is actively involved in tumor growth and progression, correlates with tumor grade and is closely associated with poor prognosis in GBM patients. Here, we report the development of an immunoPET tracer for effective detection of MT1-MMP in GBM models. METHODS An anti-human MT1-MMP monoclonal antibody (mAb), LEM2/15, was conjugated to p-isothiocyanatobenzyl-desferrioxamine (DFO-NCS) for 89Zr labeling. Biodistribution and PET imaging studies were performed in xenograft mice bearing human GBM cells (U251) expressing MT1-MMP and non-expressing breast carcinoma cells (MCF-7) as negative control. Two orthotopic brain GBM models, patient-derived neurospheres (TS543) and U251 cells, with different degrees of blood-brain barrier (BBB) disruption were also used for PET imaging experiments. RESULTS 89Zr labeling of DFO-LEM2/15 was achieved with high yield (>90%) and specific activity (78.5 MBq/mg). Biodistribution experiments indicated that 89Zr-DFO-LEM2/15 showed excellent potential as a radiotracer for detection of MT1-MMP positive GBM tumors. PET imaging also indicated a specific and prominent 89Zr-DFO-LEM2/15 uptake in MT1-MMP+ U251 GBM tumors compared to MT1-MMP- MCF-7 breast tumors. Results obtained in orthotopic brain GBM models revealed a high dependence of a disrupted BBB for tracer penetrance into tumors. 89Zr-DFO-LEM2/15 showed much higher accumulation in TS543 tumors with a highly disrupted BBB than in U251 orthotopic model in which the BBB permeability was only partially increased. Histological analysis confirmed the specificity of the immunoconjugate in all GBM models. CONCLUSION A new anti MT1-MMP-mAb tracer, 89Zr-DFO-LEM2/15, was synthesized efficiently. In vivo validation showed high-specific-contrast imaging of MT1-MMP positive GBM tumors and provided strong evidence for utility of MT1-MMP-targeted immunoPET as an alternate to nonspecific imaging of GBM.
Collapse
Affiliation(s)
- A. G. de Lucas
- Biomedical Application of Radioisotopes Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - A. J. Schuhmacher
- Seve Ballesteros Foundation Brain Tumour Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - M. Oteo
- Biomedical Application of Radioisotopes Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - E. Romero
- Biomedical Application of Radioisotopes Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - J. A. Cámara
- Molecular Imaging Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - A. de Martino
- Histopathology Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - A. G. Arroyo
- Matrix Metalloproteases Lab, Spanish National Center for Cardiovascular Research (CNIC), Madrid Spain
| | - M. Á. Morcillo
- Biomedical Application of Radioisotopes Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - M. Squatrito
- Seve Ballesteros Foundation Brain Tumour Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- * E-mail: (FM); (JLMT); (MS)
| | | | - F. Mulero
- Molecular Imaging Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- * E-mail: (FM); (JLMT); (MS)
| |
Collapse
|
12
|
Toro Bejarano M, Merchan JR. Targeting tumor vasculature through oncolytic virotherapy: recent advances. Oncolytic Virother 2015; 4:169-81. [PMID: 27512680 PMCID: PMC4918394 DOI: 10.2147/ov.s66045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The oncolytic virotherapy field has made significant advances in the last decade, with a rapidly increasing number of early- and late-stage clinical trials, some of them showing safety and promising therapeutic efficacy. Targeting tumor vasculature by oncolytic viruses (OVs) is an attractive strategy that offers several advantages over nontargeted viruses, including improved tumor viral entry, direct antivascular effects, and enhanced antitumor efficacy. Current understanding of the biological mechanisms of tumor neovascularization, novel vascular targets, and mechanisms of resistance has allowed the development of oncolytic viral vectors designed to target tumor neovessels. While some OVs (such as vaccinia and vesicular stomatitis virus) can intrinsically target tumor vasculature and induce vascular disruption, the majority of reported vascular-targeted viruses are the result of genetic manipulation of their viral genomes. Such strategies include transcriptional or transductional endothelial targeting, "armed" viruses able to downregulate angiogenic factors, or to express antiangiogenic molecules. The above strategies have shown preclinical safety and improved antitumor efficacy, either alone, or in combination with standard or targeted agents. This review focuses on the recent efforts toward the development of vascular-targeted OVs for cancer treatment and provides a translational/clinical perspective into the future development of new generation biological agents for human cancers.
Collapse
Affiliation(s)
- Marcela Toro Bejarano
- Division of Hematology-Oncology, Department of Medicine, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Jaime R Merchan
- Division of Hematology-Oncology, Department of Medicine, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| |
Collapse
|