1
|
Yao K, Zheng H, Tong L. Expression of cancer susceptibility candidate 11 in ovarian cancer tissues and its role in doxorubicin resistance. J Mol Histol 2024:10.1007/s10735-024-10254-w. [PMID: 39249548 DOI: 10.1007/s10735-024-10254-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024]
Abstract
We aimed to investigate the expression of cancer susceptibility candidate 11 (CASC11) in ovarian cancer (OC) tissues and its role in doxorubicin (Dox) resistance. A total of 98 patients were included as subjects. Reverse transcription-polymerase chain reaction was employed to determine the expressions of CASC11 in OC and para-OC tissues, and in OC cells (A2780, SKOV3, OVCAR3 and A547) and human normal ovarian epithelial cells (IOSE-80) from these patients. OC SKOV3/R cell line with Dox resistance was established and transfected with small interfering (si)-CASC11 to down-regulate CASC11 expression. Based on the constructed nude mouse model of orthotopic transplanted tumor, the growth curves were plotted, and the changes in tumor volume and apoptosis were observed by hematoxylin-eosin staining. OC tissues had a significantly higher mRNA expression of CASC11 than that of para-OC tissues (P < 0.05). A547, OVCAR3, A2780 and SKOV3 cells had significantly higher mRNA expressions of CASC11 than that of IOSE-80 cells (P < 0.05). The transplanted tumor was significantly smaller in volume in the si-CASC11 group than that in the si-normal control (NC) group from the 8th days after transplanted tumor inoculation (P < 0.05). The tumor growth inhibition rate significantly rose in the si-CASC11 group in comparison with that in the si-NC group (P < 0.05). CASC11 has high expression in OC tissues. Knockout of CASC11 weakens the proliferative, invasive and migratory potentials and enhances the apoptotic potential of Dox-resistant OC cells, thereby reversing their Dox resistance.
Collapse
Affiliation(s)
- Kui Yao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Sichuan, China
| | - Heng Zheng
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Sichuan, China
| | - Longxia Tong
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Sichuan, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China.
| |
Collapse
|
2
|
Cao C, Li A, Xu C, Wu B, Yao L, Liu Y. Engineering artificial non-coding RNAs for targeted protein degradation. Nat Chem Biol 2024:10.1038/s41589-024-01719-w. [PMID: 39215101 DOI: 10.1038/s41589-024-01719-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Targeted protein degradation has become a notable drug development strategy, but its application has been limited by the dependence on protein-based chimeras with restricted genetic manipulation capabilities. The use of long non-coding RNAs (lncRNAs) has emerged as a viable alternative, offering interactions with cellular proteins to modulate pathways and enhance degradation capabilities. Here we introduce a strategy employing artificial lncRNAs (alncRNAs) for precise targeted protein degradation. By integrating RNA aptamers and sequences from the lncRNA HOTAIR, our alncRNAs specifically target and facilitate the ubiquitination and degradation of oncogenic transcription factors and tumor-related proteins, such as c-MYC, NF-κB, ETS-1, KRAS and EGFR. These alncRNAs show potential in reducing malignant phenotypes in cells, both in vitro and in vivo, offering advantages in efficiency, adaptability and versatility. This research enhances knowledge of lncRNA-driven protein degradation and presents an effective method for targeted therapies.
Collapse
Affiliation(s)
- Congcong Cao
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Synthetic Biology Research Center, Health Science Center, Shenzhen University, Shenzhen, China
| | - Aolin Li
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Chaojie Xu
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Baorui Wu
- Department of Urology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Lin Yao
- Department of Urology, Peking University First Hospital, Beijing, China.
| | - Yuchen Liu
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Synthetic Biology Research Center, Health Science Center, Shenzhen University, Shenzhen, China.
| |
Collapse
|
3
|
Zhou B, Fan Z, He G, Zhang W, Yang G, Ye L, Xu J, Liu R. SHP2 mutations promote glycolysis and inhibit apoptosis via PKM2/hnRNPK signaling in colorectal cancer. iScience 2024; 27:110462. [PMID: 39104405 PMCID: PMC11298658 DOI: 10.1016/j.isci.2024.110462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/14/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common gastrointestinal tumors. Src homology-2 domain-containing protein tyrosine phosphatase-2 (SHP2) mutations occur in human solid tumors, including CRC. However, the function and underlying mechanism in CRC have not been well characterized. We demonstrated that the SHP2D61Y and SHP2E76K mutations occurred in CRC tissues, and these mutations promoted CRC cell proliferation, migration/invasion, and reduced CDDP-induced cell apoptosis in vitro and in vivo. Mechanistically, SHP2D61Y and SHP2E76K promote glycolysis by accelerating pyruvate kinase M2 (PKM2) nuclear translocation through mechanism beyond ERK activation. PKM2-IN-1 attenuates PKM2-dependent glycolysis and reduce glucose uptake, lactate production, and ATP levels promoted by SHP2D61Y and SHP2E76K in CRC cells. Furthermore, PKM2 upregulates heterogeneous nuclear ribonucleoprotein K (hnRNPK) expression and increases CRC cell proliferation and migration/invasion via regulating hnRNPK ubiquitination. These findings provide evidence that SHP2D61Y and SHP2E76K regulate CDDP-induced apoptosis, glucose metabolism, and CRC migration/invasion through PKM2 nuclear translocation and PKM2/hnRNPK signaling.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Interventional Radiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Zhuoyang Fan
- Department of Interventional Radiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Guodong He
- Department of Colorectal Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive Technology, Shanghai 200032, China
| | - Wei Zhang
- Department of Interventional Radiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Guowei Yang
- Department of Interventional Radiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Lechi Ye
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jianmin Xu
- Department of Colorectal Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive Technology, Shanghai 200032, China
| | - Rong Liu
- Department of Interventional Radiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| |
Collapse
|
4
|
Liu W, Zhang Y, Li Q, Wang X, Wu Y, Shen H, Wang P. Advances of long non-coding RNAs in osteoclast differentiation and osteoporosis. Pathol Res Pract 2024; 260:155413. [PMID: 38981344 DOI: 10.1016/j.prp.2024.155413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024]
Abstract
INTRODUCTION Osteoclasts, which are responsible for bone resorption, are specialized multinucleated cells generated from monocyte/macrophage progenitor cells or hematopoietic stem cells (HSCs). Physiological bone remodeling can become pathological, such as osteoporosis, when osteoclastogenesis is out of balance. Thousands of long noncoding RNAs (lncRNAs) influence important molecular and biological processes. Recent research has revealed gene expression regulation function that numerous lncRNAs regulate nuclear domain organization, genome stability. Furthermore, the research of lncRNAs has substantial clinical implications for the treatment of existing and new diseases. AREAS COVERED In this review, we gather the most recent research on lncRNAs and their potential for basic research and clinical applications in osteoclast and osteoporosis. We also discuss the findings here in order to fully understand the role of lncRNAs in osteoclast differentiation and osteoporosis, as well as to provide a solid basis for future research exploring associated mechanisms and treatments. EXPERT OPINION LncRNA has been considered as an important role in the regulation of osteoclast differentiation and osteoporosis. It is exciting to investigate pathophysiological processes in osteoporosis and the therapeutic potential of lncRNAs. We hope that this review will offer promising prospects for the development of precision and individualized approaches to treatment.
Collapse
Affiliation(s)
- Wenjie Liu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Yunhui Zhang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Quanfeng Li
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Xinglang Wang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Yanfeng Wu
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China.
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China.
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China.
| |
Collapse
|
5
|
Hu S, Han X, Liu G, Wang S. LncRNAs as potential prognosis/diagnosis markers and factors driving drug resistance of osteosarcoma, a review. Front Endocrinol (Lausanne) 2024; 15:1415722. [PMID: 39015175 PMCID: PMC11249743 DOI: 10.3389/fendo.2024.1415722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Osteosarcoma is a common malignancy that often occurs in children, teenagers and young adults. Although the treatment strategy has improved, the results are still poor for most patients with metastatic or recurrent osteosarcomas. Therefore, it is necessary to identify new and effective prognostic biomarkers and therapeutic targets for diseases. Human genomes contain lncRNAs, transcripts with limited or insufficient capacity to encode proteins. They have been implicated in tumorigenesis, particularly regarding the onset, advancement, resistance to treatment, recurrence and remote dissemination of malignancies. Aberrant lncRNA expression in osteosarcomas has been reported by numerous researchers; lncRNAs have the potential to exhibit either oncogenic or tumor-suppressing behaviors and thus, to govern the advancement of this skeletal cancer. They are suspected to influence osteosarcoma cell growth, replication, invasion, migration, remote dissemination and programmed cell death. Additionally, they have been recognized as clinical markers, and may participate in the development of multidrug resistance. Therefore, the study of lncRNAs in the growth, metastasis, treatment and prognosis of osteosarcoma is very important for the active prevention and treatment of osteosarcoma. Consequently, this work reviews the functions of lncRNAs.
Collapse
Affiliation(s)
- Siwang Hu
- The Orthopedic Center, Wenling First People’s Hospital (The Affiliated Wenling Hospital of Wenzhou Medical University), Wenling, China
| | - Xuebing Han
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Gang Liu
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Shuangshuang Wang
- Department of Cardiology, Wenling First People’s Hospital (The Affiliated Wenling Hospital of Wenzhou Medical University), Wenling, China
| |
Collapse
|
6
|
Chen Y, Zhang YH, Li J, Shi L, Xie JC, Han X, Chen YT, Xiang M, Li BW, Xing HR, Wang JY. Novel lncRNA Gm33149 modulates metastatic heterogeneity in melanoma by regulating the miR-5623-3p/Wnt axis via exosomal transfer. Cancer Gene Ther 2024; 31:364-375. [PMID: 38072970 DOI: 10.1038/s41417-023-00707-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 03/16/2024]
Abstract
The high mortality rate associated with melanoma primarily results from metastasis and recurrence. However, the precise mechanisms driving these processes remain poorly understood. Intercellular communication between cancer cells and non-cancer cells significantly influences the tumor microenvironment and plays a crucial role in metastasis. Therefore, our current study aims to investigate the role and mechanism of long non-coding RNAs (lncRNAs) in regulating the interaction between melanoma cancer stem cells (CSCs) and non-CSCs during the metastatic colonization process. This study has characterized a novel lncRNA called Gm33149. Importantly, we provide evidence for the first time that Gm33149, originating from highly metastatic melanoma stem cells (OL-SD), can be packaged into exosomes and transferred to low-metastatic nonstem cells (OL). Once internalized by OL cells, Gm33149 exerts its function through a competitive endogenous RNA mechanism (ceRNA) involving miR-5623-3p. Specifically, Gm33149 competitively binds to miR-5623-3p, thereby activating the Wnt signaling pathway and promoting the acquisition of a more aggressive metastatic phenotype by OL cells. In summary, our findings suggest that targeting lncRNA Gm33149 within extracellular vesicles could potentially serve as a therapeutic strategy for the treatment of metastatic melanoma. Schematic representation of the mechanisms underlying the pro-metastatic activity of lncRNA Gm33149 mediated by exosomal transfer. The figure illustrates the key mechanisms involved in the pro-metastatic activity of lncRNA Gm33149 through exosomal transfer. Melanoma stem cells (OLSD) release exosomes containing lncRNA Gm33149. These exosomes are taken up by non-stem melanoma cells (OL), delivering lncRNA Gm33149 to the recipient cells. Within OL cells, lncRNA Gm33149 functions as a competitive endogenous RNA (ceRNA), sequestering miR-5623-3p. This sequestration prevents miR-5623-3p from binding to its target genes, thereby activating the Wnt signaling pathway. The activated Wnt signaling pathway enhances the migration, invasion, and metastatic colonization capabilities of OL cells. The transfer of lncRNA Gm33149 via exosomes contributes to OL cells acquiring "metastatic competency" while promoting their metastatic colonization. These findings underscore the importance of lncRNA Gm33149 in intercellular communication and the metastatic progression of melanoma.
Collapse
Affiliation(s)
- Yan Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Yu-Han Zhang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Jie Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Lei Shi
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Jia-Cheng Xie
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Xue Han
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Yu-Ting Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Meng Xiang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Bo-Wen Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - H Rosie Xing
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| | - Jian-Yu Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
7
|
Andrabi MQ, Kesavan Y, Ramalingam S. Non-coding RNAs as Biomarkers for Survival in Colorectal Cancer Patients. Curr Aging Sci 2024; 17:5-15. [PMID: 36733201 DOI: 10.2174/1874609816666230202101054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/25/2022] [Accepted: 12/19/2022] [Indexed: 02/04/2023]
Abstract
Colorectal cancer (CRC) has a high incidence and fatality rate worldwide. It ranks second concerning death worldwide. Cancer patients are diagnosed with the disease at a later stage due to the absence of early diagnostic methods, which leads to increased death. With the help of recent advancements in the fields of diagnosis and therapy, the development of novel methods using new targets could be helpful for the long-term survival of CRC patients when CRC is detected early. However, the prognosis for the advanced stage of CRC is abysmal. New biomarkers are emerging as promising alternatives since they can be utilized for early detection of CRC, are simple to use, and non-invasive. Non-coding RNAs (ncRNAs) have been seen to have an aberrant expression in the development of many malignancies, including CRC. In the past two decades, much research has been done on non-coding RNAs, which may be valuable as biomarkers and targets for antitumor therapy. Non-coding RNAs can be employed in detecting and treating CRC. Non-coding RNAs play an essential role in regulating gene expression. This article reviews ncRNAs and their expression levels in CRC patients that could be used as potential biomarkers. Various ncRNAs have been associated with CRC, such as microRNAs, long non-coding RNAs, circular RNAs, etc. The expression of these non-coding RNAs may provide insights into the stages of cancer and the prognosis of cancer patients and therefore proper precautionary measures can be taken to decrease cancer-related deaths.
Collapse
Affiliation(s)
- Mohammad Qasim Andrabi
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Yasodha Kesavan
- Department of Biotechnology, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Satish Ramalingam
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| |
Collapse
|
8
|
Malakar P, Shukla S, Mondal M, Kar RK, Siddiqui JA. The nexus of long noncoding RNAs, splicing factors, alternative splicing and their modulations. RNA Biol 2024; 21:1-20. [PMID: 38017665 PMCID: PMC10761143 DOI: 10.1080/15476286.2023.2286099] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
The process of alternative splicing (AS) is widely deregulated in a variety of cancers. Splicing is dependent upon splicing factors. Recently, several long noncoding RNAs (lncRNAs) have been shown to regulate AS by directly/indirectly interacting with splicing factors. This review focuses on the regulation of AS by lncRNAs through their interaction with splicing factors. AS mis-regulation caused by either mutation in splicing factors or deregulated expression of splicing factors and lncRNAs has been shown to be involved in cancer development and progression, making aberrant splicing, splicing factors and lncRNA suitable targets for cancer therapy. This review also addresses some of the current approaches used to target AS, splicing factors and lncRNAs. Finally, we discuss research challenges, some of the unanswered questions in the field and provide recommendations to advance understanding of the nexus of lncRNAs, AS and splicing factors in cancer.
Collapse
Affiliation(s)
- Pushkar Malakar
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Sudhanshu Shukla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka, India
| | - Meghna Mondal
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Rajesh Kumar Kar
- Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
9
|
Mohammadpour S, Noukabadi FN, Esfahani AT, Kazemi F, Esmaeili S, Zafarjafarzadeh N, Sarpash S, Nazemalhosseini-Mojarad E. Non-coding RNAs in Precursor Lesions of Colorectal Cancer: Their Role in Cancer Initiation and Formation. Curr Mol Med 2024; 24:565-575. [PMID: 37226783 DOI: 10.2174/1566524023666230523155719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 05/26/2023]
Abstract
Colorectal cancer (CRC) is one of the world's most common types of malignancy. The proliferation of precancerous lesions causes this type of cancer. Two distinct pathways for CRC carcinogenesis have been identified: the conventional adenoma-carcinoma pathway and the serrated neoplasia pathway. Recently, evidence has demonstrated the regulatory roles of noncoding RNAs (ncRNAs) in the initiation and progression of precancerous lesions, especially in the adenoma-carcinoma pathway and serrated neoplasia pathway. By expanding the science of molecular genetics and bioinformatics, several studies have identified dysregulated ncRNAs that function as oncogenes or tumor suppressors in cancer initiation and formation by diverse mechanisms via intracellular signaling pathways known to act on tumor cells. However, many of their roles are still unclear. This review summarizes the functions and mechanisms of ncRNAs (such as long non-coding RNAs, microRNAs, long intergenic non-coding RNAs, small interfering RNAs, and circRNAs) in the initiation and formation of precancerous lesions.
Collapse
Affiliation(s)
- Somayeh Mohammadpour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences. Tehran, Iran
| | - Fatemeh Naderi Noukabadi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences. Tehran, Iran
| | - Amir Torshizi Esfahani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences. Tehran, Iran
| | - Fatemeh Kazemi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University Tehran, Tehran, Iran
| | - Sahar Esmaeili
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University Tehran, Tehran, Iran
| | - Nikta Zafarjafarzadeh
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University Tehran, Tehran, Iran
| | - SeyedKasra Sarpash
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University Tehran, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Tang Y, Tian W, Zheng S, Zou Y, Xie J, Zhang J, Li X, Sun Y, Lan J, Li N, Xie X, Tang H. Dissection of FOXO1-Induced LYPLAL1-DT Impeding Triple-Negative Breast Cancer Progression via Mediating hnRNPK/β-Catenin Complex. RESEARCH (WASHINGTON, D.C.) 2023; 6:0289. [PMID: 38111678 PMCID: PMC10726293 DOI: 10.34133/research.0289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/26/2023] [Indexed: 12/20/2023]
Abstract
Triple-negative breast cancer (TNBC) is considered as the most hazardous subtype of breast cancer owing to its accelerated progression, enormous metastatic potential, and refractoriness to standard treatments. Long noncoding RNAs (lncRNAs) are extremely intricate in tumorigenesis and cancerous metastasis. Nonetheless, their roles in the initiation and augmentation of TNBC remain elusive. Here, in silico analysis and validation experiments were utilized to analyze the expression pattern of clinically effective lncRNAs in TNBC, among which a protective lncRNA LYPLAL1-DT was essentially curbed in TNBC samples and indicated a favorable prognosis. Gain- and loss-of-function assays elucidated that LYPLAL1-DT considerably attenuated the proliferative and metastatic properties along with epithelial-mesenchymal transition of TNBC cells. Moreover, forkhead box O1 (FOXO1) was validated to modulate the transcription of LYPLAL1-DT. Mechanistically, LYPLAL1-DT impinged on the malignancy of TNBC mainly by restraining the aberrant reactivation of the Wnt/β-catenin signaling pathway, explicitly destabilizing and diminishing β-catenin protein by interacting with heterogeneous nuclear ribonucleoprotein K (hnRNPK) and constricting the formation of the hnRNPK/β-catenin complex. Conclusively, our present research revealed the anti-oncogenic effects of LYPLAL1-DT in TNBC, unraveling the molecular mechanisms of the FOXO1/LYPLAL1-DT/hnRNPK/β-catenin signaling axis, which shed innovative light on the potential curative medicine of TNBC.
Collapse
Affiliation(s)
- Yuhui Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Wenwen Tian
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, No.78 Hengzhigang Road, Guangzhou 510095, P. R. China
| | - Shaoquan Zheng
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Er Road, Guangzhou 510080, P. R. China
| | - Yutian Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Jindong Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Junsheng Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Xing Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Yuying Sun
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Jing Lan
- Department of General Surgery,
The First Affiliated Hospital of Soochow University, Suzhou 215006, P. R. China
| | - Ning Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Xiaoming Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| |
Collapse
|
11
|
Zhang Y, Shi S, Lin C, Che L, Li Y, Zeng Q, Lin W. Lncrna CASC11 aggravates diabetic nephropathy via targeting FoxO1. J Med Biochem 2023; 42:476-483. [PMID: 37790209 PMCID: PMC10542706 DOI: 10.5937/jomb0-42345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/08/2023] [Indexed: 10/05/2023] Open
Abstract
Background To explore the biological effects of CASC11 on aggravating diabetic nephropathy (DN) by regulating FoxO1 (forkhead transcription factor O1). Methods Serum levels of CASC11 and FoxO1 in DN patients were detected. The possibility of CASC11 in predicting the onset of DN was analyzed by depicting ROC curves. Correlation between CASC11 and FoxO1 was evaluated by Pearson correlation test. After intervening CASC11 and FoxO1 levels, we found that changes in proliferative and migratory abilities in high glucose (HG)induced kidney mesangial cells were determined respectively. Protein levels of TGF-β1 and Smads regulated by both CASC11 and FoxO1 were examined by Western blot.
Collapse
Affiliation(s)
- Yun Zhang
- Second Affiliated Hospital of Fujian Medical University, Department of Renal Medicine, Quanzhou, China
| | - Shuhan Shi
- Second Affiliated Hospital of Fujian Medical University, Department of Renal Medicine, Quanzhou, China
| | - Changda Lin
- Second Affiliated Hospital of Fujian Medical University, Department of Renal Medicine, Quanzhou, China
| | - Lishuang Che
- Second Affiliated Hospital of Fujian Medical University, Department of Renal Medicine, Quanzhou, China
| | - Yuangen Li
- Second Affiliated Hospital of Fujian Medical University, Department of Renal Medicine, Quanzhou, China
| | - Quanzuan Zeng
- Second Affiliated Hospital of Fujian Medical University, Department of Renal Medicine, Quanzhou, China
| | - Weiyuan Lin
- Second Affiliated Hospital of Fujian Medical University, Department of Renal Medicine, Quanzhou, China
| |
Collapse
|
12
|
Li T, Wang H, Jiang Y, Chen S, Huang D, Wu Z, Yin X, Zhou C, Li Y, Zou S. LITTIP/Lgr6/HnRNPK complex regulates cementogenesis via Wnt signaling. Int J Oral Sci 2023; 15:33. [PMID: 37558690 PMCID: PMC10412570 DOI: 10.1038/s41368-023-00237-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 08/11/2023] Open
Abstract
Orthodontically induced tooth root resorption (OIRR) is a serious complication during orthodontic treatment. Stimulating cementum repair is the fundamental approach for the treatment of OIRR. Parathyroid hormone (PTH) might be a potential therapeutic agent for OIRR, but its effects still lack direct evidence, and the underlying mechanisms remain unclear. This study aims to explore the potential involvement of long noncoding RNAs (lncRNAs) in mediating the anabolic effects of intermittent PTH and contributing to cementum repair, as identifying lncRNA-disease associations can provide valuable insights for disease diagnosis and treatment. Here, we showed that intermittent PTH regulates cell proliferation and mineralization in immortalized murine cementoblast OCCM-30 via the regulation of the Wnt pathway. In vivo, daily administration of PTH is sufficient to accelerate root regeneration by locally inhibiting Wnt/β-catenin signaling. Through RNA microarray analysis, lncRNA LITTIP (LGR6 intergenic transcript under intermittent PTH) is identified as a key regulator of cementogenesis under intermittent PTH. Chromatin isolation by RNA purification (ChIRP) and RNA immunoprecipitation (RIP) assays revealed that LITTIP binds to mRNA of leucine-rich repeat-containing G-protein coupled receptor 6 (LGR6) and heterogeneous nuclear ribonucleoprotein K (HnRNPK) protein. Further co-transfection experiments confirmed that LITTIP plays a structural role in the formation of the LITTIP/Lgr6/HnRNPK complex. Moreover, LITTIP is able to promote the expression of LGR6 via the RNA-binding protein HnRNPK. Collectively, our results indicate that the intermittent PTH administration accelerates root regeneration via inhibiting Wnt pathway. The lncRNA LITTIP is identified to negatively regulate cementogenesis, which activates Wnt/β-catenin signaling via high expression of LGR6 promoted by HnRNPK.
Collapse
Affiliation(s)
- Tiancheng Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, China
| | - Han Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yukun Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuo Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Danyuan Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zuping Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xing Yin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuyu Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
13
|
Chen F, Wang L. Long noncoding RNA CASC11 suppresses sorafenib-triggered ferroptosis via stabilizing SLC7A11 mRNA in hepatocellular carcinoma cells. Discov Oncol 2023; 14:145. [PMID: 37552314 PMCID: PMC10409942 DOI: 10.1007/s12672-023-00761-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023] Open
Abstract
As a frontline treatment for patients with advanced hepatocellular carcinoma (HCC), sorafenib is an effective drug approved by the Food and Drug Administration (FDA). Ferroptosis, a newly defined programmed cell death process with the hallmark of the accumulation of iron-dependent lipid peroxides, can be induced by sorafenib treatment. Our previous study identified oncogenic roles of long noncoding RNA (lncRNA) Cancer susceptibility candidate 11 (CASC11) in HCC progression. However, the relationship between CASC11 and sorafenib-induced ferroptosis in HCC remains unclear. In the present study, we aim to investigate the role of CASC11 in sorafenib-induced ferroptosis in HCC cell lines and determine the involved molecular mechanisms. Here, we demonstrated that sorafenib decreased CASCL11 expression. Knockdown of CASC11 enhanced sorafenib-induced ferroptosis, while overexpression of CASC11 exerted the opposite effect in HCC cells. Moreover, CASC11 led to the accumulation of intracellular malondialdehyde (MDA), lipid reactive oxygen species (ROS) and Fe2+ while depleting glutathione (GSH), thereby suppressing sorafenib-induced ferroptosis and cell death. Ferrostatin-1 (Ferr-1), a ferroptosis inhibitor, reversed the enhanced anticancer effect of sorafenib caused by the silence of CASC11 in HCC cells. Mechanistically, CASC11 upregulated the expression of solute carrier family 7 member 11 (SLC7A11) which is critical for ferroptosis inhibition. CASC11 associated with and stabilized SLC7A11 mRNA. In summary, our data revealed, for the first time, that CASC11 inhibits the sorafenib-induced ferroptosis in HCC cells via regulating SLC7A11, providing a new basis for clinical therapeutic strategies for patients with HCC.
Collapse
Affiliation(s)
- Fei Chen
- Department of Ultrasound, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Liang Wang
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, Liaoning Province, China.
| |
Collapse
|
14
|
Macvanin MT, Gluvic ZM, Zaric BL, Essack M, Gao X, Isenovic ER. New biomarkers: prospect for diagnosis and monitoring of thyroid disease. Front Endocrinol (Lausanne) 2023; 14:1218320. [PMID: 37547301 PMCID: PMC10401601 DOI: 10.3389/fendo.2023.1218320] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
After the metabolic syndrome and its components, thyroid disorders represent the most common endocrine disorders, with increasing prevalence in the last two decades. Thyroid dysfunctions are distinguished by hyperthyroidism, hypothyroidism, or inflammation (thyroiditis) of the thyroid gland, in addition to the presence of thyroid nodules that can be benign or malignant. Thyroid cancer is typically detected via an ultrasound (US)-guided fine-needle aspiration biopsy (FNAB) and cytological examination of the specimen. This approach has significant limitations due to the small sample size and inability to characterize follicular lesions adequately. Due to the rapid advancement of high-throughput molecular biology techniques, it is now possible to identify new biomarkers for thyroid neoplasms that can supplement traditional imaging modalities in postoperative surveillance and aid in the preoperative cytology examination of indeterminate or follicular lesions. Here, we review current knowledge regarding biomarkers that have been reliable in detecting thyroid neoplasms, making them valuable tools for assessing the efficacy of surgical procedures or adjunctive treatment after surgery. We are particularly interested in providing an up-to-date and systematic review of emerging biomarkers, such as mRNA and non-coding RNAs, that can potentially detect thyroid neoplasms in clinical settings. We discuss evidence for miRNA, lncRNA and circRNA dysregulation in several thyroid neoplasms and assess their potential for use as diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Mirjana T. Macvanin
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran M. Gluvic
- Clinic for Internal Medicine, Department of Endocrinology and Diabetes, Zemun Clinical Hospital, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Bozidarka L. Zaric
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Magbubah Essack
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Xin Gao
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
15
|
Chu F, Wu P, Mu M, Hu S, Niu C. MGCG regulates glioblastoma tumorigenicity via hnRNPK/ATG2A and promotes autophagy. Cell Death Dis 2023; 14:443. [PMID: 37460467 DOI: 10.1038/s41419-023-05959-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/12/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023]
Abstract
Glioblastoma (GBM) is the most common malignant primary brain cancer in adults and has constantly been a focus of research. Long noncoding RNAs (lncRNAs) play important roles in the development of cancers. To illustrate the role of lncRNAs in the development of glioblastoma, high-throughput RNA sequencing was performed to obtain the transcripts using three freshly isolated tumor tissue samples from GBM patients and three normal brain tissue samples from the traumatic brain of patients. Then, a lncRNA, MGCG (MGC70870 is expressed at a high level in glioblastoma), which has not been reported previously in GBM, was found to be associated with the prognosis of patients. The results of bioinformatic analysis showed that MGCG was correlated with autophagy and positively correlated with the expression of the autophagy-related gene ATG2A. The data of mass spectrometry demonstrated that the hnRNPK protein was a direct target interacting with MGCG, and MGCG/hnRNPK promoted the development of GBM by enhancing the translation of ATG2A and autophagy. In conclusion, the present study showed that MGCG has the potential to promote the development of GBM and may become a candidate for molecular diagnostics and treatment of tumors.
Collapse
Affiliation(s)
- Fang Chu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, P.R. China
| | - Pengfei Wu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, P.R. China
| | - Maolin Mu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, P.R. China
| | - Shanshan Hu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, P.R. China.
- Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, Anhui, 230001, P.R. China.
- Anhui Provincial Clinical Research Center for Neurosurgical Disease, Hefei, Anhui, 230001, P.R. China.
| | - Chaoshi Niu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, P.R. China.
- Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, Anhui, 230001, P.R. China.
- Anhui Provincial Clinical Research Center for Neurosurgical Disease, Hefei, Anhui, 230001, P.R. China.
| |
Collapse
|
16
|
Liu B, Song A, Gui P, Wang J, Pan Y, Li C, Li S, Zhang Y, Jiang T, Xu Y, Pei D, Song J. Long noncoding RNA LINC01594 inhibits the CELF6-mediated splicing of oncogenic CD44 variants to promote colorectal cancer metastasis. Cell Death Dis 2023; 14:427. [PMID: 37452042 PMCID: PMC10349055 DOI: 10.1038/s41419-023-05924-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023]
Abstract
Long noncoding RNAs (lncRNAs) play critical roles in tumorigenesis and tumor metastasis. However, the underlying mechanisms of lncRNAs in colorectal cancer (CRC) need further exploration. By using data from The Cancer Genome Atlas (TCGA) and GEO databases, we identified a novel CRC-related lncRNA, LINC01594, that is significantly upregulated in CRC and associated with poor prognosis. In vitro and in vivo, gain- and loss-of-function experiments demonstrated that LINC01594 promotes metastasis in CRC. LINC01594 functions as a DNMT1 scaffold, increasing the level of CELF6 promoter methylation. LINC01594 also competitively binds the transcription factor p53, decreasing CELF6 expression. This inhibited the exon skipping of CD44 V4-V7 induced by CELF6. In summary, this study highlights a novel CRC biomarker and therapeutic target, LINC01594, and the findings suggest that the LINC01594-CELF6-CD44 axis might serve as a biomarker and therapeutic target in CRC.
Collapse
Affiliation(s)
- Bowen Liu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University. No. 99, Huaihai West Road, Quanshan District, Xuzhou, 221006, China
- Institute of Digestive Diseases, Xuzhou Medical University. No. 84, Huaihai West Road, Quanshan District, Xuzhou, 221002, China
| | - Angxi Song
- Institute of Digestive Diseases, Xuzhou Medical University. No. 84, Huaihai West Road, Quanshan District, Xuzhou, 221002, China
| | - Pengkun Gui
- Institute of Digestive Diseases, Xuzhou Medical University. No. 84, Huaihai West Road, Quanshan District, Xuzhou, 221002, China
| | - Jin Wang
- Department of Pathology, Xuzhou Medical University. No. 209, Tongshan Road, Yunlong District, Xuzhou, 221004, China
| | - Yaojie Pan
- Department of Medical Oncology, Zhejiang Provincial People's Hospital. No. 158, Shangtang Road, Xiacheng District, Zhejiang, 310000, China
| | - Chao Li
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University. No. 99, Huaihai West Road, Quanshan District, Xuzhou, 221006, China
- Institute of Digestive Diseases, Xuzhou Medical University. No. 84, Huaihai West Road, Quanshan District, Xuzhou, 221002, China
| | - Shuai Li
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University. No. 99, Huaihai West Road, Quanshan District, Xuzhou, 221006, China
- Institute of Digestive Diseases, Xuzhou Medical University. No. 84, Huaihai West Road, Quanshan District, Xuzhou, 221002, China
| | - Yi Zhang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University. No. 99, Huaihai West Road, Quanshan District, Xuzhou, 221006, China
- Institute of Digestive Diseases, Xuzhou Medical University. No. 84, Huaihai West Road, Quanshan District, Xuzhou, 221002, China
| | - Tao Jiang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University. No. 99, Huaihai West Road, Quanshan District, Xuzhou, 221006, China
- Institute of Digestive Diseases, Xuzhou Medical University. No. 84, Huaihai West Road, Quanshan District, Xuzhou, 221002, China
| | - Yixin Xu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University. No. 99, Huaihai West Road, Quanshan District, Xuzhou, 221006, China
- Institute of Digestive Diseases, Xuzhou Medical University. No. 84, Huaihai West Road, Quanshan District, Xuzhou, 221002, China
| | - Dongsheng Pei
- Department of Pathology, Xuzhou Medical University. No. 209, Tongshan Road, Yunlong District, Xuzhou, 221004, China.
| | - Jun Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University. No. 99, Huaihai West Road, Quanshan District, Xuzhou, 221006, China.
- Institute of Digestive Diseases, Xuzhou Medical University. No. 84, Huaihai West Road, Quanshan District, Xuzhou, 221002, China.
| |
Collapse
|
17
|
Ghafouri-Fard S, Harsij A, Hussen BM, Taheri M, Sharifi G. A review on the role of CASC11 in cancers. Front Cell Dev Biol 2023; 11:1131199. [PMID: 37427385 PMCID: PMC10326515 DOI: 10.3389/fcell.2023.1131199] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 06/16/2023] [Indexed: 07/11/2023] Open
Abstract
The long non-coding RNA (lncRNA) cancer susceptibility 11 (CASC11) is a newly identified lncRNA located on chromosome 8q24.21. The expression of lncRNA CASC11 has been found to be elevated in different cancer types and the prognosis of the tumor is inversely correlated with the high CASC11 expression. Moreover, lncRNA CASC11 has an oncogenic function in cancers. The biological characteristics of the tumors, such as proliferation, migration, invasion, autophagy, and apoptosis can be controlled by this lncRNA. In addition to interacting with miRNAs, proteins, transcription factors, and other molecules, the lncRNA CASC11 modulates signaling pathways including Wnt/β-catenin and epithelial-mesenchymal transition. In this review, we have summarized studies on the role of lncRNA CASC11 in the carcinogenesis from cell lines, in vivo, and clinical perspectives.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefeh Harsij
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Guive Sharifi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Mokhtari K, Peymani M, Rashidi M, Hushmandi K, Ghaedi K, Taheriazam A, Hashemi M. Colon cancer transcriptome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:49-82. [PMID: 37059270 DOI: 10.1016/j.pbiomolbio.2023.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Over the last four decades, methodological innovations have continuously changed transcriptome profiling. It is now feasible to sequence and quantify the transcriptional outputs of individual cells or thousands of samples using RNA sequencing (RNA-seq). These transcriptomes serve as a connection between cellular behaviors and their underlying molecular mechanisms, such as mutations. This relationship, in the context of cancer, provides a chance to unravel tumor complexity and heterogeneity and uncover novel biomarkers or treatment options. Since colon cancer is one of the most frequent malignancies, its prognosis and diagnosis seem to be critical. The transcriptome technology is developing for an earlier and more accurate diagnosis of cancer which can provide better protectivity and prognostic utility to medical teams and patients. A transcriptome is a whole set of expressed coding and non-coding RNAs in an individual or cell population. The cancer transcriptome includes RNA-based changes. The combined genome and transcriptome of a patient may provide a comprehensive picture of their cancer, and this information is beginning to affect treatment decision-making in real-time. A full assessment of the transcriptome of colon (colorectal) cancer has been assessed in this review paper based on risk factors such as age, obesity, gender, alcohol use, race, and also different stages of cancer, as well as non-coding RNAs like circRNAs, miRNAs, lncRNAs, and siRNAs. Similarly, they have been examined independently in the transcriptome study of colon cancer.
Collapse
Affiliation(s)
- Khatere Mokhtari
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
19
|
Bozgeyik E. Variations in genomic regions encoding long non-coding RNA genes associated with increased prostate cancer risk. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 791:108456. [PMID: 36948485 DOI: 10.1016/j.mrrev.2023.108456] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/24/2023]
Abstract
From a single restriction fragment length polymorphism analysis to next generation sequencing analysis that screens the entire human genome, testing for genomic variations provides a great and robust approach to cancer testing. Non-coding RNAs have been shown to have a major impact on the development and progression of human cancers, including prostate cancer. However, the low stability of these molecules under laboratory conditions has made their clinical utility challenging, as in the case of PCA3 long non-coding RNA. Since testing for variations in genomic regions encoding non-coding RNAs offers a promising approach for cancer testing, identification and interpretation of single nucleotide polymorphisms associated with prostate cancer susceptibility is of great interest. Accordingly, here, for the first time, we review and discuss current available knowledge about genomic variation of long non-coding RNA molecules in prostate cancer.
Collapse
Affiliation(s)
- Esra Bozgeyik
- Department of Medical Services and Techniques, Vocational School of Health Services, Adiyaman University, Adiyaman, Turkey.
| |
Collapse
|
20
|
Role of Heterogeneous Nuclear Ribonucleoproteins in the Cancer-Immune Landscape. Int J Mol Sci 2023; 24:ijms24065086. [PMID: 36982162 PMCID: PMC10049280 DOI: 10.3390/ijms24065086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Cancer remains the second leading cause of death, accounting for approximately 20% of all fatalities. Evolving cancer cells and a dysregulated immune system create complex tumor environments that fuel tumor growth, metastasis, and resistance. Over the past decades, significant progress in deciphering cancer cell behavior and recognizing the immune system as a hallmark of tumorigenesis has been achieved. However, the underlying mechanisms controlling the evolving cancer-immune landscape remain mostly unexplored. Heterogeneous nuclear ribonuclear proteins (hnRNP), a highly conserved family of RNA-binding proteins, have vital roles in critical cellular processes, including transcription, post-transcriptional modifications, and translation. Dysregulation of hnRNP is a critical contributor to cancer development and resistance. HnRNP contribute to the diversity of tumor and immune-associated aberrant proteomes by controlling alternative splicing and translation. They can also promote cancer-associated gene expression by regulating transcription factors, binding to DNA directly, or promoting chromatin remodeling. HnRNP are emerging as newly recognized mRNA readers. Here, we review the roles of hnRNP as regulators of the cancer-immune landscape. Dissecting the molecular functions of hnRNP will provide a better understanding of cancer-immune biology and will impact the development of new approaches to control and treat cancer.
Collapse
|
21
|
He J, Wu W. A glimpse of research cores and frontiers on the relationship between long noncoding RNAs (lncRNAs) and colorectal cancer (CRC) using the VOSviewer tool. Scand J Gastroenterol 2023; 58:254-263. [PMID: 36121831 DOI: 10.1080/00365521.2022.2124537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
As lncRNAs are essential participants in colorectal carcinogenesis. This study aimed to use the VOSviewer tool to access the research cores and frontiers on the relationship between lncRNAs and CRC. Our findings showed that the mechanism of lncRNA in the occurrence and development of CRC was the core theme of the field. (1) Immunotherapy and immune microenvironment of CRC and lncRNAs, (2) CRC and lncRNAs in exosomes and (3) CRC and lncRNA-targeted therapy might represent three research frontiers. A comprehensive understanding of their existing mechanisms and the search for new regulatory paradigms are the core topics of future research. This knowledge will also help us select appropriate targeting methods and select appropriate preclinical models to promote clinical translation and ultimately achieve precise treatment of CRC.
Collapse
Affiliation(s)
- Jia He
- Faculty Affairs and Human Resources Management Department, Southwest Medical University, Luzhou, PR China
| | - Wenhan Wu
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| |
Collapse
|
22
|
A Prognostic Cuproptosis-Related LncRNA Signature for Colon Adenocarcinoma. JOURNAL OF ONCOLOGY 2023; 2023:5925935. [PMID: 36844874 PMCID: PMC9957631 DOI: 10.1155/2023/5925935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/13/2022] [Accepted: 11/24/2022] [Indexed: 02/19/2023]
Abstract
Background Cuproptosis, a recently discovered form of cell death, is caused by copper levels exceeding homeostasis thresholds. Although Cu has a potential role in colon adenocarcinoma (COAD), its role in the development of COAD remains unclear. Methods In this study, 426 patients with COAD were extracted from the Cancer Genome Atlas (TCGA) database. The Pearson correlation algorithm was used to identify cuproptosis-related lncRNAs. Using the univariate Cox regression analysis, the least absolute shrinkage and selection operator (LASSO) was used to select cuproptosis-related lncRNAs associated with COAD overall survival (OS). A risk model was established based on the multivariate Cox regression analysis. A nomogram model was used to evaluate the prognostic signature based on the risk model. Finally, mutational burden and sensitivity analyses of chemotherapy drugs were performed for COAD patients in the low- and high-risk groups. Result Ten cuproptosis-related lncRNAs were identified and a novel risk model was constructed. A signature based on ten cuproptosis-related lncRNAs was an independent prognostic predictor for COAD. Mutational burden analysis suggested that patients with high-risk scores had higher mutation frequency and shorter survival. Conclusion Constructing a risk model based on the ten cuproptosis-related lncRNAs could accurately predict the prognosis of COAD patients, providing a fresh perspective for future research on COAD.
Collapse
|
23
|
Wu Y, Xu X. Long non-coding RNA signature in colorectal cancer: research progression and clinical application. Cancer Cell Int 2023; 23:28. [PMID: 36797749 PMCID: PMC9936661 DOI: 10.1186/s12935-023-02867-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/05/2023] [Indexed: 02/18/2023] Open
Abstract
Colorectal cancer is one of the top-ranked human malignancies. The development and progression of colorectal cancer are associated with aberrant expression of multiple coding and non-coding genes. Long non-coding RNAs (lncRNAs) have an important role in regulating gene stability as well as gene expression. Numerous current studies have shown that lncRNAs are promising biomarkers and therapeutic targets for colorectal cancer. In this review, we have searched the available literature to list lncRNAs involved in the pathogenesis and regulation of colorectal cancer. We focus on the role of lncRNAs in cancer promotion or suppression, their value in tumor diagnosis, and their role in treatment response and prognosis prediction. In addition, we will discuss the signaling pathways that these lncRNAs are mainly associated with in colorectal cancer. We also summarize the role of lncRNAs in colorectal precancerous lesions and colorectal cancer consensus molecular subgroups. We hope this review article will bring you the latest research progress and outlook on lncRNAs in colorectal cancer.
Collapse
Affiliation(s)
- Yudi Wu
- grid.33199.310000 0004 0368 7223GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, People’s Republic of China ,grid.33199.310000 0004 0368 7223Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Xiangshang Xu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, People's Republic of China. .,Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
24
|
Sung WJ, Hong J. Targeting lncRNAs of colorectal cancers with natural products. Front Pharmacol 2023; 13:1050032. [PMID: 36699052 PMCID: PMC9868597 DOI: 10.3389/fphar.2022.1050032] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Non-coding RNA (ncRNA) is one of the functional classes of RNA that has a regulatory role in various cellular processes, such as modulation of disease onset, progression, and prognosis. ncRNAs, such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have been actively studied in recent years. The change in ncRNA levels is being actively studied in numerous human diseases, especially auto-immune disorders and cancers; however, targeting and regulating ncRNA with natural products to cure cancer has not been fully established. Recently many groups reported the relationship between ncRNA and natural products showing promising effects to serve as additional therapeutic approaches to cure cancers. This mini-review summarizes the aspects of lncRNAs related to cancer biology focusing on colorectal cancers that natural products can target.
Collapse
Affiliation(s)
- Woo Jung Sung
- Department of Pathology, Daegu Catholic University School of Medicine, Daegu, South Korea
| | - Jaewoo Hong
- Department of Physiology, Daegu Catholic University School of Medicine, Daegu, South Korea,*Correspondence: Jaewoo Hong,
| |
Collapse
|
25
|
Saadi W, Fatmi A, Pallardó FV, García-Giménez JL, Mena-Molla S. Long Non-Coding RNAs as Epigenetic Regulators of Immune Checkpoints in Cancer Immunity. Cancers (Basel) 2022; 15:cancers15010184. [PMID: 36612180 PMCID: PMC9819025 DOI: 10.3390/cancers15010184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022] Open
Abstract
In recent years, cancer treatment has undergone significant changes, predominantly in the shift towards immunotherapeutic strategies using immune checkpoint inhibitors. Despite the clinical efficacy of many of these inhibitors, the overall response rate remains modest, and immunotherapies for many cancers have proved ineffective, highlighting the importance of knowing the tumor microenvironment and heterogeneity of each malignancy in patients. Long non-coding RNAs (lncRNAs) have attracted increasing attention for their ability to control various biological processes by targeting different molecular pathways. Some lncRNAs have a regulatory role in immune checkpoints, suggesting they might be utilized as a target for immune checkpoint treatment. The focus of this review is to describe relevant lncRNAs and their targets and functions to understand key regulatory mechanisms that may contribute in regulating immune checkpoints. We also provide the state of the art on super-enhancers lncRNAs (selncRNAs) and circular RNAs (circRNAs), which have recently been reported as modulators of immune checkpoint molecules within the framework of human cancer. Other feasible mechanisms of interaction between lncRNAs and immune checkpoints are also reported, along with the use of miRNAs and circRNAs, in generating new tumor immune microenvironments, which can further help avoid tumor evasion.
Collapse
Affiliation(s)
- Wiam Saadi
- Department of Biology, Faculty of Nature, Life and Earth Sciences, University of Djillali Bounaama, Khemis Miliana 44225, Algeria
- Correspondence: (W.S.); (S.M.-M.)
| | - Ahlam Fatmi
- INCLIVA Health Research Institute, INCLIVA, 46010 Valencia, Spain
| | - Federico V. Pallardó
- INCLIVA Health Research Institute, INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - José Luis García-Giménez
- INCLIVA Health Research Institute, INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - Salvador Mena-Molla
- INCLIVA Health Research Institute, INCLIVA, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Correspondence: (W.S.); (S.M.-M.)
| |
Collapse
|
26
|
FMR1 promotes the progression of colorectal cancer cell by stabilizing EGFR mRNA in an m 6A-dependent manner. Cell Death Dis 2022; 13:941. [PMID: 36347844 PMCID: PMC9643526 DOI: 10.1038/s41419-022-05391-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022]
Abstract
FMR1, a new m6A reader, is known to be involved in the regulation of cancer progression. However, its role, regulatory mechanism, and clinical significance in colorectal cancer (CRC) are elusive. Here, we showed that FMR1 was upregulated in CRC, and it promoted proliferation and metastasis of CRC cells in vitro and in vivo. Mechanically, FMR1 recognized the m6A-modification site in EGFR mRNA, a key molecule in cancer occurrence and targeted therapy, sustained its stability and maintained its expression in an m6A-dependent manner, thereby promoting the tumorigenesis and metastasis of CRC. And the effect of FMR1 knockdown in CRC cells could be abolished by METTL3. Furthermore, FMR1 shRNA plasmid carried by attenuated Salmonella has an effective anti-tumor effect in vivo. Collectively, we identified the METTL3/FMR1/EGFR axis in the progression of CRC. This novel mechanism indicated that the METTL3/FMR1/EGFR axis is a potential target for early therapeutic intervention in CRC progression.
Collapse
|
27
|
Han S, Cao Y, Guo T, Lin Q, Luo F. Targeting lncRNA/Wnt axis by flavonoids: A promising therapeutic approach for colorectal cancer. Phytother Res 2022; 36:4024-4040. [PMID: 36227024 DOI: 10.1002/ptr.7550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/09/2022]
Abstract
Despite the dramatic advances in our understanding of the etiology of colorectal cancer (CRC) in recent decades, effective therapeutic strategies are still urgently needed. Oncogenic mutations in the Wnt/β-Catenin pathway are hallmarks of CRC. Moreover, long non-coding RNAs (lncRNAs) as molecular managers are involved in the initiation, progression, and metastasis of CRC. Therefore, it is important to further explore the interaction between lncRNAs and Wnt/β-Catenin signaling pathway for targeted therapy of CRC. Natural phytochemicals have not toxicity and can target carcinogenesis-related pathways. Growing evidences suggest that flavonoids are inversely associated with CRC risk. These bioactive compounds could target carcinogenesis pathways of CRC and reduced the side effects of anti-cancer drugs. The review systematically summarized the progress of flavonoids targeting lncRNA/Wnt axis in the investigations of CRC, which will provide a promising therapeutic approach for CRC and develop nutrition-oriented preventive strategies for CRC based on epigenetic mechanisms. In the field, more epidemiological and clinical trials are required in the future to verify feasibility of targeting lncRNA/Wnt axis by flavonoids in the therapy and prevention of CRC.
Collapse
Affiliation(s)
- Shuai Han
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Yunyun Cao
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Tianyi Guo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Qinlu Lin
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| |
Collapse
|
28
|
He J, Wu W. Comprehensive landscape and future perspectives of long noncoding RNAs (lncRNAs) in colorectal cancer (CRC): Based on a bibliometric analysis. Noncoding RNA Res 2022; 8:33-52. [PMID: 36311994 PMCID: PMC9582894 DOI: 10.1016/j.ncrna.2022.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
This review aimed to use bibliometric analysis to sort out, analyze and summarize the knowledge foundation and hot topics in the field of long noncoding RNAs (lncRNAs) in colorectal cancer (CRC), and point out future trends to inspire related research and innovation. We used CiteSpace to analyze publication outputs, countries, institutions, authors, journals, references, and keywords. Knowledge foundations, hotspots, and future trends were then depicted. The overall research showed the trend of biomedical-oriented multidisciplinary. Much evidence indicates that lncRNA plays the role of oncogene or tumor suppressor in the occurrence and development of CRC. Besides, many lncRNAs have multiple mechanisms. lncRNAs and metastasis of CRC, lncRNAs and drug resistance of CRC, and the clinical application of lncRNAs in CRC are current research hotspots. Through insight into the development trend of lncRNAs in CRC, this study will help researchers extract hidden valuable information for further research.
Collapse
Affiliation(s)
- Jia He
- Faculty Affairs and Human Resources Management Department, Southwest Medical University, Luzhou, China
| | - Wenhan Wu
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China,Corresponding author.
| |
Collapse
|
29
|
Sun X, Xin S, Zhang Y, Jin L, Liu X, Zhang J, Mei W, Zhang B, Ma W, Ye L. Long non‑coding RNA CASC11 interacts with YBX1 to promote prostate cancer progression by suppressing the p53 pathway. Int J Oncol 2022; 61:110. [PMID: 35904175 PMCID: PMC9374466 DOI: 10.3892/ijo.2022.5400] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/16/2022] [Indexed: 12/03/2022] Open
Abstract
Prostate cancer (PCa) is one of the principal causes of cancer‑related death worldwide. The roles and mechanisms of long non‑coding RNA (lncRNA) involved in the development of PCa remain incompletely understood. The present study aimed to investigate the role and mechanism of lncRNA in PCa tumorigenesis. In the present study, lncRNA cancer susceptibility candidate 11 (CASC11) was revealed to be a crucial regulator of PCa progression. The expression profiles of CASC11 in PCa were identified through analysis of The Cancer Genome Atlas and Gene Expression Omnibus datasets, and validated in human PCa specimens and cell lines. Gain‑ and loss‑of‑function assays were utilized to explore the biological role of CASC11 in PCa initiation and progression. RNA‑sequencing, RNA pull‑down and RNA immunoprecipitation analyses were used to explore potential mechanisms with which CASC11 may be associated. Rescue experiments were further conducted to confirm this association. The present results revealed that CASC11 was dominantly distributed in the nuclei of PCa cells, and was highly expressed in PCa tissues and cells. Overexpression of CASC11 was markedly associated with increased tumor proliferation and migratory ability. Functionally, decreased proliferation and migration, as well as inhibited xenograft tumor growth, were observed in CASC11‑silenced PCa cells, whereas the opposite effects were detected in CASC11‑overexpressing cells. Mechanistically, CASC11 promoted progression of the cell cycle and competitively interacted with Y‑box binding protein 1 (YBX1) to block the p53 pathway. Given this, poly (β‑amino ester) (PBAE)/small interfering RNA‑CASC11 (si‑CASC11) nanoparticles were applied to inhibit CASC11 expression and enhance the antitumor effect in vivo. The results revealed that PBAE/si‑CASC11 nanoparticles augmented the antitumor efficacy of CASC11 knockdown in vivo. In conclusion, the present study suggested that CASC11 may regulate PCa progression and elucidated a novel CASC11/YBX1/p53 signaling axis, providing a potential lncRNA‑directed therapeutic strategy particularly for the treatment of patients with PCa.
Collapse
Affiliation(s)
- Xianchao Sun
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, P.R. China
| | - Shiyong Xin
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, P.R. China
| | - Ying Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Liang Jin
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, P.R. China
| | - Xiang Liu
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, P.R. China
| | - Jiaxin Zhang
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, P.R. China
| | - Wangli Mei
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, P.R. China
| | - Bihui Zhang
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, P.R. China
| | - Weiguo Ma
- Department of Urology, Tongxin People's Hospital, Tongxin, Ningxia 751300, P.R. China
| | - Lin Ye
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, P.R. China
| |
Collapse
|
30
|
Peng Y, Wu G, Qiu X, Luo Y, Zou Y, Wei X, Li A. Construction and validation of a necroptosis-related lncRNAs prognosis signature of hepatocellular carcinoma. Front Genet 2022; 13:916024. [PMID: 36110223 PMCID: PMC9468751 DOI: 10.3389/fgene.2022.916024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Immunotherapy has achieved remarkable success in treating advanced liver cancer. Current evidence shows that most of the available immune checkpoint inhibitor (ICB) treatments are suboptimal, and specific markers are needed for patients regarded as good candidates for immunotherapy. Necroptosis, a type of programmed cell death, plays an important role in hepatocellular carcinoma (HCC) progression and outcome. However, studies on the necroptosis-related lncRNA in HCC are scarce. In this view, the present study investigates the link among necroptosis-related lncRNA, prognosis, immune microenvironment, and immunotherapy response.Methods: Gene transcriptome and clinical data were retrieved from The Cancer Genome Atlas database. Pearson correlation analysis of necroptosis-related genes was performed to identify necroptosis-related lncRNAs. The Wilcoxon method was used to detect differentially expressed genes, and prognostic relevant lncRNAs were obtained by univariate Cox regression analysis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis were utilized to perform functional enrichment analysis. Lasso–Cox stepwise regression analysis was employed to calculate risk score, which was involved in analyzing immune cells infiltration, immune checkpoints expression, and predicting immunotherapeutic efficacy. Quantitative RT-PCR (qRT-PCR) was performed to detect the expression pattern of lncRNA in cell lines.Results: The 10 lncRNAs generated in this study were used to create a prognostic risk model for HCC and group patients into groups based on risk. High-risk patients with HCC have a significantly lower OS rate than low-risk patients. Multivariate Cox regression analysis showed that risk score is an independent risk factor for HCC with high accuracy. Patients in the high-risk group exhibited a weaker immune surveillance and higher expression level of immune checkpoint molecules. In terms of drug resistance, patients in the low-risk group were more sensitive to sorafenib. The OS-related nomogram was constructed to verify the accuracy of our model. Finally, quantitative RT-PCR experiments were used to verify the expression patterns of candidate genes.Conclusion: The lncRNA signature established herein, encompassing 10 necroptosis-related lncRNAs, is valuable for survival prediction and holds promise as prognostic markers for HCC.
Collapse
Affiliation(s)
- YunZhen Peng
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - GuoJing Wu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xin Qiu
- Department of Urology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yue Luo
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - YiShu Zou
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - XueYan Wei
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Aimin Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- *Correspondence: Aimin Li, mailto:
| |
Collapse
|
31
|
The Role of RNA-Binding Proteins in Hematological Malignancies. Int J Mol Sci 2022; 23:ijms23179552. [PMID: 36076951 PMCID: PMC9455611 DOI: 10.3390/ijms23179552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022] Open
Abstract
Hematological malignancies comprise a plethora of different neoplasms, such as leukemia, lymphoma, and myeloma, plus a myriad of dysplasia, such as myelodysplastic syndromes or anemias. Despite all the advances in patient care and the development of new therapies, some of these malignancies remain incurable, mainly due to resistance and refractoriness to treatment. Therefore, there is an unmet clinical need to identify new biomarkers and potential therapeutic targets that play a role in treatment resistance and contribute to the poor outcomes of these tumors. RNA-binding proteins (RBPs) are a diverse class of proteins that interact with transcripts and noncoding RNAs and are involved in every step of the post-transcriptional processing of transcripts. Dysregulation of RBPs has been associated with the development of hematological malignancies, making them potential valuable biomarkers and potential therapeutic targets. Although a number of dysregulated RBPs have been identified in hematological malignancies, there is a critical need to understand the biology underlying their contribution to pathology, such as the spatiotemporal context and molecular mechanisms involved. In this review, we emphasize the importance of deciphering the regulatory mechanisms of RBPs to pinpoint novel therapeutic targets that could drive or contribute to hematological malignancy biology.
Collapse
|
32
|
A DCS-related lncRNA signature predicts the prognosis and chemotherapeutic response of patients with gastric cancer. Biosci Rep 2022; 42:231674. [PMID: 35993308 PMCID: PMC9446389 DOI: 10.1042/bsr20220989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 11/21/2022] Open
Abstract
The combination of docetaxel, cisplatin, and S-1 (DCS) is a common chemotherapy regimen for patients with gastric cancer (GC). However, studies on long noncoding RNAs (lncRNAs) associated with the chemotherapeutic response to and prognosis after DCS remain lacking. The aim of the present study was to identify DCS mRNAs-lncRNAs associated with chemotherapy response and prognosis in GC patients. In the present study, we identified 548 lncRNAs associated with these 16 mRNAs in the TCGA and GSE31811 datasets. Eleven lncRNAs were used to construct a prognostic signature by least absolute shrinkage and selection operator (LASSO) regression. A model including the 11 lncRNAs (LINC02532, AC007277.1, AC005324.4, AL512506.1, AC068790.7, AC022509.2, AC113139.1, LINC00106, AC005165.1, MIR100HG, and UBE2R2-AS1) associated with the prognosis of GC was constructed. The signature was validated in the TCGA database, model comparison, and qRT-PCR experiments. The results showed that the risk signature was a more effective prognostic factor for GC patients. Furthermore, the results showed that this model can well predicting chemotherapy drug response and immune infiltration of GC patients. In addition, our experimental results indicated that lower expression levels of LINC00106 and UBE2R2-AS1 predicted worse drug resistance in AGS/DDP cells. The experimental results agreed with the predictions. Furthermore, knockdown of LINC00106 or UBE2R2-AS1 can significantly enhanced the proliferation and migration of GC AGS cells in vitro. In conclusion, a novel DCS therapy-related lncRNA signature may become a new strategy to predict chemotherapy response and prognosis in GC patients. LINC00106 and UBE2R2-AS1 may exhibit a tumor suppressive function in GC.
Collapse
|
33
|
Zamani M, Foroughmand AM, Hajjari MR, Bakhshinejad B, Johnson R, Galehdari H. CASC11 and PVT1 spliced transcripts play an oncogenic role in colorectal carcinogenesis. Front Oncol 2022; 12:954634. [PMID: 36052265 PMCID: PMC9424822 DOI: 10.3389/fonc.2022.954634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer is fundamentally a genetic disorder that alters cellular information flow toward aberrant growth. The coding part accounts for less than 2% of the human genome, and it has become apparent that aberrations within the noncoding genome drive important cancer phenotypes. The numerous carcinogenesis-related genomic variations in the 8q24 region include single nucleotide variations (SNVs), copy number variations (CNVs), and viral integrations occur in the neighboring areas of the MYC locus. It seems that MYC is not the only target of these alterations. The MYC-proximal mutations may act via regulatory noncoding RNAs (ncRNAs). In this study, gene expression analyses indicated that the expression of some PVT1 spliced linear transcripts, CircPVT1, CASC11, and MYC is increased in colorectal cancer (CRC). Moreover, the expression of these genes is associated with some clinicopathological characteristics of CRC. Also, in vitro studies in CRC cell lines demonstrated that CASC11 is mostly detected in the nucleus, and different transcripts of PVT1 have different preferences for nuclear and cytoplasmic parts. Furthermore, perturbation of PVT1 expression and concomitant perturbation in PVT1 and CASC11 expression caused MYC overexpression. It seems that transcription of MYC is under regulatory control at the transcriptional level, i.e., initiation and elongation of transcription by its neighboring genes. Altogether, the current data provide evidence for the notion that these noncoding transcripts can significantly participate in the MYC regulation network and in the carcinogenesis of colorectal cells.
Collapse
Affiliation(s)
- Mina Zamani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Mohammad-Reza Hajjari
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Babak Bakhshinejad
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Rory Johnson
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Hamid Galehdari
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- *Correspondence: Hamid Galehdari,
| |
Collapse
|
34
|
Wong LS, Wei L, Wang G, Law CT, Tsang FHC, Chin WC, Ng IOL, Wong CM. In Vivo Genome-Wide CRISPR Activation Screening Identifies Functionally Important Long Noncoding RNAs in Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol 2022; 14:1053-1076. [PMID: 35944892 PMCID: PMC9490101 DOI: 10.1016/j.jcmgh.2022.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS Long noncoding RNAs (lncRNAs) are found to have profound impacts on diverse cellular processes. Although high-throughput sequencing studies have shown the differential lncRNA expression profiles between hepatocellular carcinoma (HCC) and nontumor livers, the functional impacts of lncRNAs on HCC development await further investigation. Herein, we sought to address the functional roles of lncRNAs in HCC pathogenesis by in vivo functional screening. METHODS We performed genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)/dead CRISPR-associated protein 9 (dCas9) lncRNA activation screening in HCC xenografts. We characterized the clinical relevance of positively selected lncRNAs using transcriptomic data sets. We used CRISPR-based gene activation and knockdown approaches to show the functional roles of positively selected lncRNAs including Cancer Susceptibility 11 (CASC11) in HCC. RNA sequencing and chromatin isolation by RNA purification sequencing were used to investigate the molecular mechanisms of CASC11 in HCC progression. RESULTS The in vivo functional screening identified 1603 positively selected lncRNAs, 538 of which were overexpressed in HCC patients. Systematic transcriptomic data analysis and clinical investigation showed that patients with high expression of these lncRNA candidates correlated with aggressive tumor behaviors. Overexpression of these lncRNAs aggravated HCC cell growth. Detailed characterization of a lncRNA candidate, CASC11, showed its pivotal role in cell proliferation and tumor growth. Mechanistically, chromatin isolation by RNA purification sequencing showed that CASC11 was bound to the CASC11/MYC proto-oncogene shared promoter region on chromosome 8q24. CASC11 modulated the transcriptional activity of MYC in a cis-regulatory manner, which affected the expression of MYC downstream target genes, consequently promoting G1/S progression. CONCLUSIONS Our study showed the power of in vivo CRISPR screening, which comprehensively investigated the functionality of lncRNAs in HCC progression, providing a rationale for targeting these lncRNAs clinically.
Collapse
Affiliation(s)
- Lok-Sze Wong
- The State Key Laboratory of Liver Research, Department of Pathology, Li-Ka Shing Faculty of Medicine, The University of Hong Kong
| | - Lai Wei
- The State Key Laboratory of Liver Research, Department of Pathology, Li-Ka Shing Faculty of Medicine, The University of Hong Kong
| | - Gengchao Wang
- The State Key Laboratory of Liver Research, Department of Pathology, Li-Ka Shing Faculty of Medicine, The University of Hong Kong
| | - Cheuk-Ting Law
- The State Key Laboratory of Liver Research, Department of Pathology, Li-Ka Shing Faculty of Medicine, The University of Hong Kong
| | - Felice Ho-Ching Tsang
- The State Key Laboratory of Liver Research, Department of Pathology, Li-Ka Shing Faculty of Medicine, The University of Hong Kong
| | - Wai-Ching Chin
- The State Key Laboratory of Liver Research, Department of Pathology, Li-Ka Shing Faculty of Medicine, The University of Hong Kong
| | - Irene Oi-Lin Ng
- The State Key Laboratory of Liver Research, Department of Pathology, Li-Ka Shing Faculty of Medicine, The University of Hong Kong
| | - Chun-Ming Wong
- The State Key Laboratory of Liver Research, Department of Pathology, Li-Ka Shing Faculty of Medicine, The University of Hong Kong.
| |
Collapse
|
35
|
Bai L, Dong K, Tong D, Shi X, Wei S, Cai Y. lncRNA HIT000218960 enhances resistance to 5‑fluorouracil by promoting HMGA2 and activating the AKT/mTOR/P70S6K pathway in gastric cancer cells. Exp Ther Med 2022; 24:527. [PMID: 35837027 DOI: 10.3892/etm.2022.11454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/28/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Li Bai
- Department of Gastroenterology, The 970th Hospital of The PLA Joint Logistics Support Force, Yantai, Shandong 264001, P.R. China
| | - Kunbo Dong
- Department of Gastroenterology, The 970th Hospital of The PLA Joint Logistics Support Force, Yantai, Shandong 264001, P.R. China
| | - Deyong Tong
- Department of Oncology, The 970th Hospital of The PLA Joint Logistics Support Force, Yantai, Shandong 264001, P.R. China
| | - Xiuna Shi
- Department of Gastroenterology, The 970th Hospital of The PLA Joint Logistics Support Force, Yantai, Shandong 264001, P.R. China
| | - Sirong Wei
- Department of Intervention, The 970th Hospital of The PLA Joint Logistics Support Force, Yantai, Shandong 264001, P.R. China
| | - Yongguo Cai
- Department of Gastroenterology, The 970th Hospital of The PLA Joint Logistics Support Force, Yantai, Shandong 264001, P.R. China
| |
Collapse
|
36
|
Jia Z, An J, Liu Z, Zhang F. Non-Coding RNAs in Colorectal Cancer: Their Functions and Mechanisms. Front Oncol 2022; 12:783079. [PMID: 35186731 PMCID: PMC8847166 DOI: 10.3389/fonc.2022.783079] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a common malignancy with high mortality. However, the molecular mechanisms underlying CRC remain unclear. Controversies over the exact functions of non-coding RNAs (ncRNAs) in the progression of CRC have been prevailing for multiple years. Recently, accumulating evidence has demonstrated the regulatory roles of ncRNAs in various human cancers, including CRC. The intracellular signaling pathways by which ncRNAs act on tumor cells have been explored, and in CRC, various studies have identified numerous dysregulated ncRNAs that serve as oncogenes or tumor suppressors in the process of tumorigenesis through diverse mechanisms. In this review, we have summarized the functions and mechanisms of ncRNAs (mainly lncRNAs, miRNAs, and circRNAs) in the tumorigenesis of CRC. We also discuss the potential applications of ncRNAs as diagnostic and prognostic tools, as well as therapeutic targets in CRC. This review details strategies that trigger the recognition of CRC-related ncRNAs, as well as the methodologies and challenges of studying these molecules, and the forthcoming clinical applications of these findings.
Collapse
Affiliation(s)
- Zimo Jia
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Jiaqi An
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Ziyuan Liu
- School of Medicine, Shihezi University, Shihezi, China
| | - Fan Zhang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
| |
Collapse
|
37
|
LCDR regulates the integrity of lysosomal membrane by hnRNP K-stabilized LAPTM5 transcript and promotes cell survival. Proc Natl Acad Sci U S A 2022; 119:2110428119. [PMID: 35091468 PMCID: PMC8812561 DOI: 10.1073/pnas.2110428119] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Here, we report that the long noncoding RNA lysosome cell death regulator (LCDR) mediates the survival of cancer cells, counteracting the effects of apoptosis triggered by lysosomal cell death pathways. Mechanistically, LCDR, as a cofactor for heterogenous nuclear ribonucleoprotein K (hnRNP K) to potentiate the stabilization of lysosomal membrane protein lysosomal-associated protein transmembrane 5 (LAPTM5), prevents lysosomal membrane permeabilization and promotes cancer cell survival. Clinically, LCDR, hnRNP K, and LAPTM5 are significantly up-regulated in lung adenocarcinoma (LUAD) patients. Targeting LCDR via nanoparticles-mediated RNA interference technology increases cell death in vitro and inhibits the growth of patient-derived xenografts of LUAD in vivo. Our study demonstrates that LCDR contributes to cancer pathology by regulating LCDR-mediated apoptosis. Lysosome plays important roles in cellular homeostasis, and its dysregulation contributes to tumor growth and survival. However, the understanding of regulation and the underlying mechanism of lysosome in cancer survival is incomplete. Here, we reveal a role for a histone acetylation–regulated long noncoding RNA termed lysosome cell death regulator (LCDR) in lung cancer cell survival, in which its knockdown promotes apoptosis. Mechanistically, LCDR binds to heterogenous nuclear ribonucleoprotein K (hnRNP K) to regulate the stability of the lysosomal-associated protein transmembrane 5 (LAPTM5) transcript that maintains the integrity of the lysosomal membrane. Knockdown of LCDR, hnRNP K, or LAPTM5 promotes lysosomal membrane permeabilization and lysosomal cell death, thus consequently resulting in apoptosis. LAPTM5 overexpression or cathepsin B inhibitor partially restores the effects of this axis on lysosomal cell death in vitro and in vivo. Similarly, targeting LCDR significantly decreased tumor growth of patient-derived xenografts of lung adenocarcinoma (LUAD) and had significant cell death using nanoparticles (NPs)-mediated systematic short interfering RNA delivery. Moreover, LCDR/hnRNP K/LAPTM5 are up-regulated in LUAD tissues, and coexpression of this axis shows the increased diagnostic value for LUAD. Collectively, we identified a long noncoding RNA that regulates lysosome function at the posttranscriptional level. These findings shed light on LCDR/hnRNP K/LAPTM5 as potential therapeutic targets, and targeting lysosome is a promising strategy in cancer treatment.
Collapse
|
38
|
Liu J, Li Z, Zhang T, Wang C, Chen W, Zhang D, Wang J. Long Noncoding RNA LINC00941 Promotes Cell Proliferation and Invasion by Interacting with hnRNPK in Oral Squamous Cell Carcinoma. Nutr Cancer 2022; 74:2983-2995. [PMID: 35037538 DOI: 10.1080/01635581.2022.2027473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is a prevalent carcinoma of the head, neck and mouth. Recently studies involving the role of long noncoding RNAs (lncRNAs) that play key regulatory roles in altering gene expression has been reported in the context of promoting tumorigenesis. However, the functions of lncRNAs in the context of oral squamous cell carcinoma have not been extensively described. In this study, we report a never identified before lncRNA, LINC00941, which was highly expressed in OSCC tissues and cells. Expression of LINC00941 promoted cell proliferation, migration, invasion, and metastasis of OSCC cells In Vitro by inducing epithelial-mesenchymal transition (EMT) and activating the Wnt/β-catenin signaling cascade. In silico analyses revealed heterogeneous nuclear ribonucleoprotein K (hnRNPK) to be a strong positive regulator of LINC00941 activity. Experimental verification of this association revealed a direct interaction of LINC00941 and hnRNPK to induce cell growth and invasion by activating EMT in OSCC cells. Therefore, our study reports that LINC00941 promotes progression of OSCC by its interaction with hnRNPK, and it may present a promising strategy for diagnosis and treatment of OSCC.
Collapse
Affiliation(s)
- Jie Liu
- Department of Oral Surgery, Liaocheng People's Hospital, LiaoCheng, Shandong, China.,Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhenxing Li
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ting Zhang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Chunhui Wang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wen Chen
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Danfeng Zhang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Junyu Wang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
39
|
Wu X, Qiu L, Feng H, Zhang H, Yu H, Du Y, Wu H, Zhu S, Ruan Y, Jiang H. KHDRBS3 promotes paclitaxel resistance and induces glycolysis through modulated MIR17HG/CLDN6 signaling in epithelial ovarian cancer. Life Sci 2022; 293:120328. [PMID: 35051418 DOI: 10.1016/j.lfs.2022.120328] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 02/03/2023]
Abstract
Paclitaxel (PTX) resistance contributes to mortality in epithelial ovarian cancer (EOC). Aerobic glycolysis is elevated in the tumor environment and may influence resistance to PTX in EOC. KH domain-containing, RNA-binding signal transduction-associated protein 3 (KHDRBS3) is an RNA binding protein that is up-regulated in EOC, but its underlying mechanism in EOC is unclear. Here, we investigate the role of KHDRBS3 in glycolysis and increased resistance to PTX. Expression of KHDRBS3 and Claudin (CLDN6) were measured in EOC tissue and cells by quantitative real-time PCR, western blotting and immunohistochemistry. The biological functions of KHDRBS3, MIR17HG and CLDN6 were examined using MTT, colony formation, apoptosis and seahorse assays in vitro. For in vivo experiments, a xenograft model was used to investigate the effects of KHDRBS3 and MIR17HG in EOC. Here, we investigate the role of KHDRBS3 in glycolysis and increased resistance to PTX. The expression of KHDRBS3 was up-regulated in PTX-resistant cells. KHDRBS3 knockdown restrained the IC50 of PTX, cell proliferation, colony formation and glycolysis in SKOV3-R and A2780-R cells in vitro and enhanced PTX sensitivity in a xenograft mouse model in vivo. KHDRBS3 interacts with lncRNA MIR17HG, which is down-regulated in EOC tissue and cells. The effect of KHDRBS3 overexpression on PTX resistance and glycolysis was rescued by MIR17HG overexpression. Additionally, MIR17HG interacts with the 3'UTR of CLDN6 and negatively regulates CLDN6 expression. MIR17HG overexpression suppressed the IC50 of PTX and glycolysis by targeting CLDN6. Our results reveal a KHDRBS3-MIR17HG-CLDN6 regulatory axis that contributes to enhanced glycolysis in EOC and represents a potential target for therapy.
Collapse
Affiliation(s)
- Xin Wu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.
| | - Ling Qiu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Hao Feng
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Hao Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Hailin Yu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yan Du
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Hao Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shurong Zhu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yuanyuan Ruan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Hua Jiang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
40
|
Rizk NI, Abulsoud AI, Kamal MM, Kassem DH, Hamdy NM. Exosomal-long non-coding RNAs journey in colorectal cancer: Evil and goodness faces of key players. Life Sci 2022; 292:120325. [PMID: 35031258 DOI: 10.1016/j.lfs.2022.120325] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 02/07/2023]
Abstract
Exosomes are nano-vesicles (NVs) secreted by cells and take part in cell-cell communications. Lately, these exosomes were proved to have dual faces in cancer. Actually, they can contribute to carcinogenesis through epithelial-mesenchymal transition (EMT), angiogenesis, metastasis and tumor microenvironment (TME) of various cancers, including colorectal cancer (CRC). On the other hand, they can be potential targets for cancer treatment. CRC is one of the most frequent tumors worldwide, with incidence rates rising in the recent decades. In its early stage, CRC is asymptomatic with poor treatment outcomes. Therefore, finding a non-invasive, early diagnostic biomarker tool and/or suitable defender to combat CRC is mandatory. Exosomes provide enrichment and safe setting for their cargos non-coding RNAs (ncRNAs) and proteins, whose expression levels can be upregulated ordown-regulated in cancer. Hence, exosomes can be used as diagnostic and/or prognostic tools for cancer. Moreover, exosomes can provide a novel potential therapeutic modality for tumors via loading with specific chemotherapeutic agents, with the advantage of possible tumor targeting. In this review, we will try to collect and address recent studies concerned with exosomes and their cargos' implications for CRC diagnosis and/or hopefully, treatment.
Collapse
Affiliation(s)
- Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy (Boys Branch), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohamed M Kamal
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt; The Centre for Drug Research and Development, Faculty of Pharmacy, BUE, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Dina H Kassem
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
41
|
Ji Y, Lv J, Sun D, Huang Y. Therapeutic strategies targeting Wnt/β‑catenin signaling for colorectal cancer (Review). Int J Mol Med 2022; 49:1. [PMID: 34713301 PMCID: PMC8589460 DOI: 10.3892/ijmm.2021.5056] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common carcinomas. Although great progress has been made in recent years, CRC survival remains unsatisfactory due to high metastasis and recurrence. Understanding the underlying molecular mechanisms of CRC tumorigenesis and metastasis has become increasingly important. Recently, aberrant Wnt/β‑catenin signaling has been reported to be strongly associated with CRC tumorigenesis, metastasis and recurrence. Therefore, the Wnt/β‑catenin signaling pathway has potential value as a therapeutic target for CRC. In the present review, the dysregulation of this pathway in CRC and the promoting or suppressing function of therapeutic targets on CRC were explored. In addition, the interaction between this pathway and epithelial‑mesenchymal transition (EMT), cell stemness, mutations, metastasis‑related genes and tumor angiogenesis in CRC cells were also investigated. Numerous studies on this pathway may help identify the potential diagnostic and prognostic markers and therapeutic targets for CRC.
Collapse
Affiliation(s)
- Yong Ji
- Department of General Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Jian Lv
- Department of General Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Di Sun
- Department of General Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Yufeng Huang
- Department of Oncology, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| |
Collapse
|
42
|
Lu S, Ding X, Wang Y, Hu X, Sun T, Wei M, Wang X, Wu H. The Relationship Between the Network of Non-coding RNAs-Molecular Targets and N6-Methyladenosine Modification in Colorectal Cancer. Front Cell Dev Biol 2021; 9:772542. [PMID: 34938735 PMCID: PMC8685436 DOI: 10.3389/fcell.2021.772542] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/11/2021] [Indexed: 12/11/2022] Open
Abstract
Recent accumulating researches implicate that non-coding RNAs (ncRNAs) including microRNA (miRNA), circular RNA (circRNA), and long non-coding RNA (lncRNAs) play crucial roles in colorectal cancer (CRC) initiation and development. Notably, N6-methyladenosine (m6A) methylation, the critical posttranscriptional modulators, exerts various functions in ncRNA metabolism such as stability and degradation. However, the interaction regulation network among ncRNAs and the interplay with m6A-related regulators has not been well documented, particularly in CRC. Here, we summarize the interaction networks and sub-networks of ncRNAs in CRC based on a data-driven approach from the publications (IF > 6) in the last quinquennium (2016–2021). Further, we extend the regulatory pattern between the core m6A regulators and m6A-related ncRNAs in the context of CRC metastasis and progression. Thus, our review will highlight the clinical potential of ncRNAs and m6A modifiers as promising biomarkers and therapeutic targets for improving the diagnostic precision and treatment of CRC.
Collapse
Affiliation(s)
- Senxu Lu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Xiangyu Ding
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Yuanhe Wang
- Department of Medical Oncology, Cancer Hospital of China Medical University, Shenyang, China
| | - Xiaoyun Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Tong Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China.,Shenyang Kangwei Medical Laboratory Analysis Co. Ltd., Liaoning, China
| | - Xiaobin Wang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
43
|
Chen F, Li M, Wang L. LncRNA CASC11 Promotes Hepatocellular Carcinoma Progression via Upregulation of UBE2T in a m 6A-Dependent Manner. Front Oncol 2021; 11:772671. [PMID: 34900723 PMCID: PMC8652064 DOI: 10.3389/fonc.2021.772671] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent malignancies and the third leading cause of cancer-related deaths worldwide. Besides, it has been revealed that long non-coding RNA (LncRNA) cancer susceptibility candidate 11 (CASC11) is involved in cancer progression. However, the functional role and underlying mechanism of CASC11 in HCC remains largely unknown. In this context, here, it was found that CASC11 was upregulated in HCC tissues and associated with tumor grades, metastasis, and prognosis of HCC patients. Functionally, CASC11 facilitated HCC cell proliferation, migration, and invasion in vitro, and enhanced tumor growth and metastasis in vivo. Mechanistically, CASC11 associated with and stabilized Ubiquitin-conjugating enzyme E2T (UBE2T) mRNA. To be specific, it decreased UBE2T N6-methyladenosine (m6A) level via recruiting ALKBH5. Moreover, CASC11 inhibited the association between UBE2T mRNA and m6A reader protein YTHDF2. Taken together, our findings demonstrate the epigenetic mechanism of CASC11 in the regulation of UBE2T expression and possibly provide a novel therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Fei Chen
- Department of Ultrasound, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Meijun Li
- Department of Hematology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Liang Wang
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
44
|
Shafabakhsh R, Arianfar F, Vosough M, Mirzaei HR, Mahjoubin-Tehran M, Khanbabaei H, Kowsari H, Shojaie L, Azar MEF, Hamblin MR, Mirzaei H. Autophagy and gastrointestinal cancers: the behind the scenes role of long non-coding RNAs in initiation, progression, and treatment resistance. Cancer Gene Ther 2021; 28:1229-1255. [PMID: 33432087 DOI: 10.1038/s41417-020-00272-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/06/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Gastrointestinal (GI) cancers comprise a heterogeneous group of complex disorders that affect different organs, including esophagus, stomach, gallbladder, liver, biliary tract, pancreas, small intestine, colon, rectum, and anus. Recently, an explosion in nucleic acid-based technologies has led to the discovery of long non-coding RNAs (lncRNAs) that have been found to possess unique regulatory functions. This class of RNAs is >200 nucleotides in length, and is characterized by their lack of protein coding. LncRNAs exert regulatory effects in GI cancer development by affecting different functions such as the proliferation and metastasis of cancer cells, apoptosis, glycolysis and angiogenesis. Over the past few decades, considerable evidence has revealed the important role of autophagy in both GI cancer progression and suppression. In addition, recent studies have confirmed a significant correlation between lncRNAs and the regulation of autophagy. In this review, we summarize how lncRNAs play a behind the scenes role in the pathogenesis of GI cancers through regulation of autophagy.
Collapse
Affiliation(s)
- Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Farzaneh Arianfar
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hashem Khanbabaei
- Medical Physics Department, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamed Kowsari
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Layla Shojaie
- Research Center for Liver Diseases, Keck School of Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
45
|
Huang Y, Li Z, Lin E, He P, Ru G. Oxidative damage-induced hyperactive ribosome biogenesis participates in tumorigenesis of offspring by cross-interacting with the Wnt and TGF-β1 pathways in IVF embryos. Exp Mol Med 2021; 53:1792-1806. [PMID: 34848840 PMCID: PMC8640061 DOI: 10.1038/s12276-021-00700-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/12/2021] [Accepted: 08/02/2021] [Indexed: 02/05/2023] Open
Abstract
In vitro fertilization (IVF) increases the risk of tumorigenesis in offspring. The increased oxidative damage during IVF may be involved in tumor formation. However, the molecular mechanisms underlying this phenomenon remain largely unclear. Using a well-established model of oxidatively damaged IVF mouse embryos, we applied the iTRAQ method to identify proteins differentially expressed between control and oxidatively damaged zygotes and explored the possible tumorigenic mechanisms, especially with regard to the effects of oxidative damage on ribosome biogenesis closely related to tumorigenesis. The iTRAQ results revealed that ribosomal proteins were upregulated by oxidative stress through the Nucleolin/β-Catenin/n-Myc pathway, which stimulated ribosomes to synthesize an abundance of repair proteins to correct the damaged DNA/chromosomes in IVF-derived embryos. However, the increased percentages of γH2AX-positive cells and apoptotic cells in the blastocyst suggested that DNA repair was insufficient, resulting in aberrant ribosome biogenesis. Overexpression of ribosomal proteins, particularly Rpl15, which gradually increased from the 1-cell to 8-cell stages, indicated persistent hyperactivation of ribosome biogenesis, which promoted tumorigenesis in offspring derived from oxidatively damaged IVF embryos by selectively enhancing the translation of β-Catenin and TGF-β1. The antioxidant epigallocatechin-3-gallate (EGCG) was added to the in vitro culture medium to protect embryos from oxidative damage, and the expression of ribosome-/tumor-related proteins returned to normal after EGCG treatment. This study suggests that regulation of ribosome biogenesis by EGCG may be a means of preventing tumor formation in human IVF-derived offspring, providing a scientific basis for optimizing in vitro culture conditions and improving human-assisted reproductive technology.
Collapse
Affiliation(s)
- Yue Huang
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, 515000, Shantou, Guangdong, China
| | - Zhiling Li
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, 515000, Shantou, Guangdong, China.
| | - En Lin
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, 515000, Shantou, Guangdong, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, 518000, Shenzhen, Guangdong, China
| | - Pei He
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, 515000, Shantou, Guangdong, China
| | - Gaizhen Ru
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, 515000, Shantou, Guangdong, China
| |
Collapse
|
46
|
Liu X, Lin J, Wu H, Wang Y, Xie L, Wu J, Qin H, Xu J. A Novel Long Noncoding RNA lincRNA00892 Activates CD4 + T Cells in Systemic Lupus Erythematosus by Regulating CD40L. Front Pharmacol 2021; 12:733902. [PMID: 34707498 PMCID: PMC8543062 DOI: 10.3389/fphar.2021.733902] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: The mechanism of CD4+ T-cell dysfunction in systemic lupus erythematosus (SLE) has not been fully understood. Increasing evidence show that long noncoding RNAs (lncRNAs) can regulate immune responses and take part in some autoimmune diseases, while little is known about the lncRNA expression and function in CD4+ T of SLE. Here, we aimed to detect the expression profile of lncRNAs in lupus CD4+ T cells and explore the mechanism that how lincRNA00892 in CD4+ T cells is involved in the pathogenesis of SLE. Methods: The expression profiles of lncRNAs and mRNAs in CD4+ T cells from SLE patients and healthy controls were detected by microarray. LincRNA00892 and CD40L were chosen for validation by quantitative real-time PCR (qRT-PCR). Coexpression network was conducted to predict the potential target genes of lincRNA00892. Then lincRNA00892 was overexpressed in normal CD4+ T cells via lentivirus transfection. The expression of lincRNA00892 was detected by qRT-PCR. The expression of CD40L was detected by qRT-PCR, western blotting, and flow cytometry, respectively. The expression of CD69 and CD23 was measured by flow cytometry. The secretion of IgG was determined by enzyme-linked immunosorbent assay (ELISA). The proteins targeted by lincRNA00892 were measured by RNA pulldown and subsequent mass spectrometry (MS). The interaction between heterogeneous nuclear ribonucleoprotein K (hnRNP K) and lincRNA00892 or CD40L was detected by RNA immunoprecipitation (RIP) assay. Results: A total of 1887 lncRNAs and 3375 mRNAs were found to be aberrantly expressed in CD4+ T cells of SLE patients compared to healthy controls. LincRNA00892 and CD40L were confirmed to be upregulated in CD4+ T cells of SLE patients by qRT-PCR. The lncRNA-mRNA coexpression network analysis indicated that CD40L was a potential target of lincRNA00892. Overexpression of lincRNA00892 enhanced CD40L protein levels while exerting little influence on CD40L mRNA levels in CD4+ T cells. In addition, lincRNA00892 could induce the activation of CD4+ T cells. Furthermore, lincRNA00892 led to the activation of B cells and subsequent secretion of IgG in a CD4+ T-cell-dependent manner. Finally, hnRNP K was found to be among the proteins pulled down by lincRNA00892, and hnRNP K could bind to lincRNA00892 or CD40L directly. Conclusion: Our results showed that the lncRNA expression profile was altered in CD4+ T cells of SLE. LincRNA00892 possibly contributed to the pathogenesis of SLE by targeting hnRNP K and subsequently upregulating CD40L expression to activate CD4+ T and B cells. These provided us a potential target for further mechanistic studies of SLE pathogenesis.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinran Lin
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hao Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yilun Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Lin Xie
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinfeng Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Haihong Qin
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
47
|
Zhang H, Fang Z, Guo Y, Wang D. Long noncoding RNA SNHG10 promotes colorectal cancer cells malignant progression by targeting miR-3690. Bioengineered 2021; 12:6010-6020. [PMID: 34477483 PMCID: PMC8806477 DOI: 10.1080/21655979.2021.1972199] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Long noncoding RNA small nucleolar RNA host gene 10 (SNHG10) has been suggested to function as tumor promoter in various human cancer types. Herein, the role of SNHG10 in colorectal cancer (CRC) was explored. Expression levels of genes in colorectal cancer tissues and cell lines were detected by Starbase and reverse transcription quantitative PCR (RT-qPCR) Cell Counting Kit-8 (CCK-8), the BrdU incorporation assay and Transwell assays were explored to study the function of SNHG10 in HCT116 and DXH-1 cells. In addition, the interaction of SNHG10 and miR-3690 was analyzed by dual-luciferase reporter assays. SNHG10 had a high expression level in CRC tissues and cell lines. Meanwhile, knockdown of SNHG10 reduced cell viability, inhibited cell proliferation and decreased cell migration and invasion. Moreover, bioinformatics analysis revealed that one potential target gene of SNHG10 was miR-3690. Dual-luciferase reporter assay confirmed that miR-3690 directly targeted SNHG10. Importantly, SNHG10 could decrease the expression of miR-3690 in HCT116 and DXH-1 cells. More importantly, the silencing of miR-3690 reversed the effect of the SNHG10 knockdown on the cell viability, proliferation, migration and invasion of HCT116 and DXH-1 cells. The present results demonstrated that SNHG10 promotes colorectal cancer cells the malignant progression by targeting miR-3690.Abbreviations: CRC: Colorectal cancer; Lnc RNA: Long noncoding RNA; microRNAs: miRNAs/miRs; RT-qPCR: reverse transcription quantitative polymerase chain reaction; CCK-8: Cell Counting Kit-8.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Radiotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenghua Fang
- Department of Oncology, Anqing Second People's Hospital, Anqing, China
| | - Yesong Guo
- Department of Radiotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Dejun Wang
- Department of Radiotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
48
|
Capik O, Sanli F, Kurt A, Ceylan O, Suer I, Kaya M, Ittmann M, Karatas OF. CASC11 promotes aggressiveness of prostate cancer cells through miR-145/IGF1R axis. Prostate Cancer Prostatic Dis 2021; 24:891-902. [PMID: 33753875 DOI: 10.1038/s41391-021-00353-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/24/2021] [Accepted: 03/11/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Prostate cancer (PCa) is the most common malignancy diagnosed among men after lung cancer in developed countries. Investigation of the underlying molecular mechanisms of PCa is urgently needed in order to develop better therapeutic strategies and to reveal more effective therapeutic targets. In this study, we aimed at exploring the potential functions of CASC11 in association with miR-145 and IGF1R during the malignant progression of PCa cells. METHODS We initially investigated the oncogenic potential of noncoding members of CASC gene family and analyzed the effects of CASC11 overexpression on proliferation, migration, and colony formation ability of DU145, LNCaP, and PC3 PCa cells. We, then, exprlored the association of CASC11, miR-145, and IGF1R expression and their impacts on PI3K/AKT/mTOR signaling pathway in in vitro models. RESULTS In silico analysis revealed that of the CASC family only CASC11 showed consistent results considering its differential expression as well as its association with the overall survival of patients. We demonstrated that ectopic overexpression of CASC11 significantly increased the proliferation, colony formation, and migration capacity in all three cell lines. CASC11 overexpression caused suppression of miR-145 and overexpression of IGF1R, leading to activation of PI3K/AKT/mTOR signaling pathway. CONCLUSION In summary, we found that CASC11 is upregulated in PCa cells and clinical tumor samples in comparison to corresponding controls and revealed that ectopic CASC11 overexpression promotes cellular phenotypes associated with PCa progression through CASC11/miR-145/IGF1R axis.
Collapse
Affiliation(s)
- Ozel Capik
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey.,Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Fatma Sanli
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey.,Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Ali Kurt
- Department of Pathology, Erzurum Faculty of Medicine, Health Sciences University, Erzurum, Turkey
| | - Onur Ceylan
- Department of Pathology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Ilknur Suer
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Murat Kaya
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Michael Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.,Michael E. DeBakey VAMC, Houston, TX, USA
| | - Omer Faruk Karatas
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey. .,Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey.
| |
Collapse
|
49
|
Wei W, Zhao X, Liu J, Zhang Z. Downregulation of LINC00665 suppresses the progression of lung adenocarcinoma via regulating miR-181c-5p/ZIC2 axis. Aging (Albany NY) 2021; 13:17499-17515. [PMID: 34232917 PMCID: PMC8312465 DOI: 10.18632/aging.203240] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022]
Abstract
Long non-coding RNA (lncRNA) LINC00665 was demonstrated to be upregulated in lung adenocarcinoma (LUAD) and target miR-181c-5p. ZIC2, which is upregulated in LUAD, serves as a putative target of miR-181c-5p. In this study, we aimed to reveal whether LINC00665 regulates miR-181c-5p/ZIC2 axis to promote LUAD progression. The results showed that LINC00665, HOXA1, ZIC2, and HOXA11 levels were increased in LUAD tissues, while miR-181c-5p level was decreased when compared to the adjacent normal tissues. High expression levels of LINC00665, ZIC2, HOXA1 and HOXA11, and low expression of miR-181c-5p were closely linked to poor prognosis of LUAD patients. Knockdown of LINC00665 induced obvious inhibitions in cell viability, clone formation, invasion and tumorigenesis in LUAD cells, whereas miR-181c-5p downregulation significantly neutralized these effects. In addition, downregulation of ZIC2 obviously reversed the enhancements of cell viability, clone formation, invasion and tumorigenesis induced by miR-181c-5p knockdown. In summary, the present study reveals that silencing of LINC00665 suppresses LUAD progression through targeting miR-181c-5p/ZIC2 axis.
Collapse
Affiliation(s)
- Wei Wei
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin 300060, China
| | - Xiaoliang Zhao
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin 300060, China
| | - Jiang Liu
- Department of Molecule Imaging and Nuclear Medicine in Diagnosis and Treatment, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin 300060, China
| | - Zhenfa Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin 300060, China
| |
Collapse
|
50
|
Ahadi A. Functional roles of lncRNAs in the pathogenesis and progression of cancer. Genes Dis 2021; 8:424-437. [PMID: 34179307 PMCID: PMC8209321 DOI: 10.1016/j.gendis.2020.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/02/2020] [Accepted: 04/13/2020] [Indexed: 12/18/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) act as regulators of gene expression and pivotal transcriptional regulators in cancer cells via diverse mechanisms. lncRNAs involves a variety of pathological and biological activities, such as apoptosis, cell proliferation, metastasis, and invasion. By using microarray and RNA sequencing, it was identified that dysregulation of lncRNAs affects the tumorigenesis process. Taken together, these lncRNAs are putative biomarker and therapeutic target in human malignancies. In this review, I discuss the latest finding regarding the dysregulation of some important lncRNAs and their diverse mechanisms of these lncRNAs in the pathogenesis and progression of certain cancers; also, I summarize the possible roles of lncRNAs in clinical application for diagnosis and prognosis of cancer.
Collapse
Affiliation(s)
- Alireza Ahadi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 198396-3113, Iran
| |
Collapse
|