1
|
Song J, Fang Y, Rao X, Wu L, Zhang C, Ying J, Hua F, Lin Y, Wei G. Beyond conventional treatment: ASGR1 Leading the new era of hypercholesterolemia management. Biomed Pharmacother 2024; 180:117488. [PMID: 39316974 DOI: 10.1016/j.biopha.2024.117488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/01/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024] Open
Abstract
Cardiovascular disease (CVD) remains a leading cause of mortality worldwide, with hypercholesterolemia being a major risk factor. Although various lipid-lowering therapies exist, many patients fail to achieve optimal cholesterol control, highlighting the need for novel therapeutic approaches. ASGR1 (asialoglycoprotein receptor 1), predominantly expressed on hepatocytes, has emerged as a key regulator of cholesterol metabolism and low-density lipoprotein (LDL) clearance. This receptor's ability to regulate lipid homeostasis positions it as a promising target for therapeutic intervention in hypercholesterolemia and related cardiovascular diseases. This review critically examines the biological functions and regulatory mechanisms of ASGR1 in cholesterol metabolism, with a focus on its potential as a therapeutic target for hypercholesterolemia and related cardiovascular diseases. By analyzing recent advances in ASGR1 research, this article explores its role in liver-specific pathways, the implications of ASGR1 variants in CVD risk, and the prospects for developing ASGR1-targeted therapies. This review aims to provide a foundation for future research and clinical applications in hypercholesterolemia management.
Collapse
Affiliation(s)
- Jiali Song
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, Jiangxi 330006, PR China
| | - Yang Fang
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, Jiangxi 330006, PR China
| | - Xiuqin Rao
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, Jiangxi 330006, PR China
| | - Luojia Wu
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, Jiangxi 330006, PR China
| | - Chenxi Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, Jiangxi 330006, PR China
| | - Jun Ying
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, Jiangxi 330006, PR China
| | - Fuzhou Hua
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, Jiangxi 330006, PR China
| | - Yue Lin
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, Jiangxi 330006, PR China.
| | - Gen Wei
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
2
|
Ye YX, Pan JC, Wang HC, Zhang XT, Zhu HL, Liu XH. Advances in small-molecule fluorescent probes for the study of apoptosis. Chem Soc Rev 2024; 53:9133-9189. [PMID: 39129564 DOI: 10.1039/d4cs00502c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Apoptosis, as type I cell death, is an active death process strictly controlled by multiple genes, and plays a significant role in regulating various activities. Mounting research indicates that the unique modality of cell apoptosis is directly or indirectly related to different diseases including cancer, autoimmune diseases, viral diseases, neurodegenerative diseases, etc. However, the underlying mechanisms of cell apoptosis are complicated and not fully clarified yet, possibly due to the lack of effective chemical tools for the nondestructive and real-time visualization of apoptosis in complex biological systems. In the past 15 years, various small-molecule fluorescent probes (SMFPs) for imaging apoptosis in vitro and in vivo have attracted broad interest in related disease diagnostics and therapeutics. In this review, we aim to highlight the recent developments of SMFPs based on enzyme activity, plasma membranes, reactive oxygen species, reactive sulfur species, microenvironments and others during cell apoptosis. In particular, we generalize the mechanisms commonly used to design SMFPs for studying apoptosis. In addition, we discuss the limitations of reported probes, and emphasize the potential challenges and prospects in the future. We believe that this review will provide a comprehensive summary and challenging direction for the development of SMFPs in apoptosis related fields.
Collapse
Affiliation(s)
- Ya-Xi Ye
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
| | - Jian-Cheng Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, P. R. China.
| | - Hai-Chao Wang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
| | - Xing-Tao Zhang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, P. R. China.
| | - Xin-Hua Liu
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, P. R. China
| |
Collapse
|
3
|
Aragoneses-Cazorla G, Alvarez-Fernandez Garcia R, Martinez-Lopez A, Gomez Gomez M, Vallet-Regí M, Castillo-Lluva S, González B, Luque-Garcia JL. Mechanistic insights into the antitumoral potential and in vivo antiproliferative efficacy of a silver-based core@shell nanosystem. Int J Pharm 2024; 655:124023. [PMID: 38513815 DOI: 10.1016/j.ijpharm.2024.124023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
This study delves into the biomolecular mechanisms underlying the antitumoral efficacy of a hybrid nanosystem, comprised of a silver core@shell (Ag@MSNs) functionalized with transferrin (Tf). Employing a SILAC proteomics strategy, we identified over 150 de-regulated proteins following exposure to the nanosystem. These proteins play pivotal roles in diverse cellular processes, including mitochondrial fission, calcium homeostasis, endoplasmic reticulum (ER) stress, oxidative stress response, migration, invasion, protein synthesis, RNA maturation, chemoresistance, and cellular proliferation. Rigorous validation of key findings substantiates that the nanosystem elicits its antitumoral effects by activating mitochondrial fission, leading to disruptions in calcium homeostasis, as corroborated by RT-qPCR and flow cytometry analyses. Additionally, induction of ER stress was validated through western blotting of ER stress markers. The cytotoxic action of the nanosystem was further affirmed through the generation of cytosolic and mitochondrial reactive oxygen species (ROS). Finally, in vivo experiments using a chicken embryo model not only confirmed the antitumoral capacity of the nanosystem, but also demonstrated its efficacy in reducing cellular proliferation. These comprehensive findings endorse the potential of the designed Ag@MSNs-Tf nanosystem as a groundbreaking chemotherapeutic agent, shedding light on its multifaceted mechanisms and in vivo applicability.
Collapse
Affiliation(s)
- Guillermo Aragoneses-Cazorla
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | | | - Angelica Martinez-Lopez
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Milagros Gomez Gomez
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Maria Vallet-Regí
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Sonia Castillo-Lluva
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Blanca González
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Jose L Luque-Garcia
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
4
|
Zhang X, Yu W, Li Y, Wang A, Cao H, Fu Y. Drug development advances in human genetics-based targets. MedComm (Beijing) 2024; 5:e481. [PMID: 38344397 PMCID: PMC10857782 DOI: 10.1002/mco2.481] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 10/28/2024] Open
Abstract
Drug development is a long and costly process, with a high degree of uncertainty from the identification of a drug target to its market launch. Targeted drugs supported by human genetic evidence are expected to enter phase II/III clinical trials or be approved for marketing more quickly, speeding up the drug development process. Currently, genetic data and technologies such as genome-wide association studies (GWAS), whole-exome sequencing (WES), and whole-genome sequencing (WGS) have identified and validated many potential molecular targets associated with diseases. This review describes the structure, molecular biology, and drug development of human genetics-based validated beneficial loss-of-function (LOF) mutation targets (target mutations that reduce disease incidence) over the past decade. The feasibility of eight beneficial LOF mutation targets (PCSK9, ANGPTL3, ASGR1, HSD17B13, KHK, CIDEB, GPR75, and INHBE) as targets for drug discovery is mainly emphasized, and their research prospects and challenges are discussed. In conclusion, we expect that this review will inspire more researchers to use human genetics and genomics to support the discovery of novel therapeutic drugs and the direction of clinical development, which will contribute to the development of new drug discovery and drug repurposing.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiShandongChina
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia MedicaYantaiShandongChina
| | - Wenjun Yu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
| | - Yan Li
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia MedicaYantaiShandongChina
| | - Aiping Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiShandongChina
| | - Haiqiang Cao
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Yuanlei Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiShandongChina
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia MedicaYantaiShandongChina
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
| |
Collapse
|
5
|
Shi H, Tan Z, Duan B, Guo C, Li C, Luan T, Li N, Huang Y, Chen S, Gao J, Feng W, Xu H, Wang J, Fu S, Wang H. LASS2 enhances chemosensitivity to cisplatin by inhibiting PP2A-mediated β-catenin dephosphorylation in a subset of stem-like bladder cancer cells. BMC Med 2024; 22:19. [PMID: 38191448 PMCID: PMC10775422 DOI: 10.1186/s12916-023-03243-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 11/01/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND The benefits of first-line, cisplatin-based chemotherapy for muscle-invasive bladder cancer are limited due to intrinsic or acquired resistance to cisplatin. Increasing evidence has revealed the implication of cancer stem cells in the development of chemoresistance. However, the underlying molecular mechanisms remain to be elucidated. This study investigates the role of LASS2, a ceramide synthase, in regulating Wnt/β-catenin signaling in a subset of stem-like bladder cancer cells and explores strategies to sensitize bladder cancer to cisplatin treatment. METHODS Data from cohorts of our center and published datasets were used to evaluate the clinical characteristics of LASS2. Flow cytometry was used to sort and analyze bladder cancer stem cells (BCSCs). Tumor sphere formation, soft agar colony formation assay, EdU assay, apoptosis analysis, cell viability, and cisplatin sensitivity assay were used to investigate the functional roles of LASS2. Immunofluorescence, immunoblotting, coimmunoprecipitation, LC-MS, PCR array, luciferase reporter assays, pathway reporter array, chromatin immunoprecipitation, gain-of-function, and loss-of-function approaches were used to investigate the underlying mechanisms. Cell- and patient-derived xenograft models were used to investigate the effect of LASS2 overexpression and a combination of XAV939 on cisplatin sensitization and tumor growth. RESULTS Patients with low expression of LASS2 have a poorer response to cisplatin-based chemotherapy. Loss of LASS2 confers a stem-like phenotype and contributes to cisplatin resistance. Overexpression of LASS2 results in inhibition of self-renewal ability of BCSCs and increased their sensitivity to cisplatin. Mechanistically, LASS2 inhibits PP2A activity and dissociates PP2A from β-catenin, preventing the dephosphorylation of β-catenin and leading to the accumulation of cytosolic phospho-β-catenin, which decreases the transcription of the downstream genes ABCC2 and CD44 in BCSCs. Overexpression of LASS2 combined with a tankyrase inhibitor (XAV939) synergistically inhibits tumor growth and restores cisplatin sensitivity. CONCLUSIONS Targeting the LASS2 and β-catenin pathways may be an effective strategy to overcome cisplatin resistance and inhibit tumor growth in bladder cancer patients.
Collapse
Affiliation(s)
- Hongjin Shi
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
- Kunming Medical University, Kunming, China
| | - Zhiyong Tan
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
- Kunming Medical University, Kunming, China
| | - Bowen Duan
- Kunming Medical University, Kunming, China
| | - Chunming Guo
- School for Life Science, Yunnan University, Kunming, China
| | - Chong Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ting Luan
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
| | - Ning Li
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
| | - Yinglong Huang
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
| | - Shi Chen
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
- Kunming Medical University, Kunming, China
| | - Jixian Gao
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
- Kunming Medical University, Kunming, China
| | - Wei Feng
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
- Kunming Medical University, Kunming, China
| | - Haole Xu
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
- Kunming Medical University, Kunming, China
| | - Jiansong Wang
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
| | - Shi Fu
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China.
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China.
| | - Haifeng Wang
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China.
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China.
| |
Collapse
|
6
|
Zhao Q, He W, Liu Z, Huang L, Yang X, Liu Y, Chen R, Min X, Yang Y. LASS2 enhances p53 protein stability and nuclear import to suppress liver cancer progression through interaction with MDM2/MDMX. Cell Death Discov 2023; 9:414. [PMID: 37963859 PMCID: PMC10646090 DOI: 10.1038/s41420-023-01709-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023] Open
Abstract
LASS2 functions as a tumor suppressor in hepatocellular carcinoma (HCC), the most common type of primary liver cancer, but the underlying mechanism of its action remains largely unknown. Moreover, details on its role and the downstream mechanisms in Cholangiocarcinoma (CCA) and hepatoblastoma (HB), are rarely reported. Herein, LASS2 overexpression was found to significantly inhibit proliferation, migration, invasion and induce apoptosis in hepatoma cells with wild-type (HB cell line HepG2) and mutated p53 (HCC cell line HCCLM3 and CCA cell line HuCCT1). Gene set enrichment analysis determined the enrichment of the differentially expressed genes caused by LASS2 in the p53 signaling pathway. Moreover, the low expression of LASS2 in HCC and CCA tumor tissues was correlated with the advanced tumor-node-metastasis (TNM) stage, and the protein expression of LASS2 positively correlated with acetylated p53 (Lys373) protein levels. At least to some extent, LASS2 exerts its tumor-suppressive effects in a p53-dependent manner, in which LASS2 interacts with MDM2/MDMX and causes dual inhibition to disrupt p53 degradation by MDM2/MDMX. In addition, LASS2 induces p53 phosphorylation at ser15 and acetylation at lys373 to promote translocation from cytoplasm to nucleus. These findings provide new insights into the LASS2-induced tumor suppression mechanism in liver cancer and suggest LASS2 could serve as a potential therapeutic target for liver cancer.
Collapse
Affiliation(s)
- Qingqing Zhao
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Wei He
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhouheng Liu
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Liangliang Huang
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai, China
| | - Xiaoli Yang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yong Liu
- School of Forensic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Center of Forensic Expertise, Affiliated hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Rui Chen
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xun Min
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China.
| | - Yan Yang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China.
- School of Forensic Medicine, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
7
|
Wu F, Lin C, Han Y, Zhou D, Chen K, Yang M, Xiao Q, Zhang H, Li W. Multi-omic analysis characterizes molecular susceptibility of receptors to SARS-CoV-2 spike protein. Comput Struct Biotechnol J 2023; 21:5583-5600. [PMID: 38034398 PMCID: PMC10681948 DOI: 10.1016/j.csbj.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/05/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
In the post COVID-19 era, new SARS-CoV-2 variant strains may continue emerging and long COVID is poised to be another public health challenge. Deciphering the molecular susceptibility of receptors to SARS-CoV-2 spike protein is critical for understanding the immune responses in COVID-19 and the rationale of multi-organ injuries. Currently, such systematic exploration remains limited. Here, we conduct multi-omic analysis of protein binding affinities, transcriptomic expressions, and single-cell atlases to characterize the molecular susceptibility of receptors to SARS-CoV-2 spike protein. Initial affinity analysis explains the domination of delta and omicron variants and demonstrates the strongest affinities between BSG (CD147) receptor and most variants. Further transcriptomic data analysis on 4100 experimental samples and single-cell atlases of 1.4 million cells suggest the potential involvement of BSG in multi-organ injuries and long COVID, and explain the high prevalence of COVID-19 in elders as well as the different risks for patients with underlying diseases. Correlation analysis validated moderate associations between BSG and viral RNA abundance in multiple cell types. Moreover, similar patterns were observed in primates and validated in proteomic expressions. Overall, our findings implicate important therapeutic targets for the development of receptor-specific vaccines and drugs for COVID-19.
Collapse
Affiliation(s)
- Fanjie Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Chenghao Lin
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yutong Han
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Dingli Zhou
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Kang Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Minglei Yang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Qinyuan Xiao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Haiyue Zhang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Weizhong Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
- Center for Precision Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
8
|
Zhang M, Li Z, Liu Y, Ding X, Wang Y, Fan S. The ceramide synthase (CERS/LASS) family: Functions involved in cancer progression. Cell Oncol (Dordr) 2023; 46:825-845. [PMID: 36947340 DOI: 10.1007/s13402-023-00798-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
INTRODUCTION Ceramide synthases (CERSes) are also known longevity assurance (LASS) genes. CERSes play important roles in the regulation of cancer progression. The CERS family is expressed in a variety of human tumours and is involved in tumorigenesis. They are closely associated with the progression of liver, breast, cervical, ovarian, colorectal, head and neck squamous cell, gastric, lung, prostate, oesophageal, pancreatic and blood cancers. CERSes play diverse and important roles in the regulation of cell survival, proliferation, apoptosis, migration, invasion, and drug resistance. The differential expression of CERSes in tumour and nontumour cells and survival analysis of cancer patients suggest that some CERSes could be used as potential prognostic markers. They are also important potential targets for cancer therapy. METHODS In this review, we summarize the available evidence on the inhibitory or promotive roles of CERSes in the progression of many cancers. Furthermore, we summarize the identified upstream and downstream molecular mechanisms that may regulate the function of CERSes in cancer settings.
Collapse
Affiliation(s)
- Mengmeng Zhang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Zhangyun Li
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Yuwei Liu
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Xiao Ding
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Yanyan Wang
- Department of Ultrasonic Medicine, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China.
| | - Shaohua Fan
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| |
Collapse
|
9
|
Roa-Colomo A, López Garrido MÁ, Molina-Vallejo P, Rojas A, Sanchez MG, Aranda-García V, Salmeron J, Romero-Gomez M, Muntane J, Padillo J, Alamo JM, Lorente JA, Serrano MJ, Garrido-Navas MC. Hepatocellular carcinoma risk-stratification based on ASGR1 in circulating epithelial cells for cancer interception. Front Mol Biosci 2022; 9:1074277. [PMID: 36518850 PMCID: PMC9742249 DOI: 10.3389/fmolb.2022.1074277] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/16/2022] [Indexed: 09/24/2023] Open
Abstract
Purpose: Lack of diagnostic and prognostic biomarkers in hepatocellular carcinoma impedes stratifying patients based on their risk of developing cancer. The aim of this study was to evaluate phenotypic and genetic heterogeneity of circulating epithelial cells (CECs) based on asialoglycoprotein receptor 1 (ASGR1) and miR-122-5p expression as potential diagnostic and prognostic tools in patients with hepatocellular carcinoma (HCC) and liver cirrhosis (LC). Methods: Peripheral blood samples were extracted from LC and HCC patients at different disease stages. CECs were isolated using positive immunomagnetic selection. Genetic and phenotypic characterization was validated by double immunocytochemistry for cytokeratin (CK) and ASGR1 or by in situ hybridization with miR-122-5p and CECs were visualized by confocal microscopy. Results: The presence of CECs increased HCC risk by 2.58-fold, however, this was only significant for patients with previous LC (p = 0.028) and not for those without prior LC (p = 0.23). Furthermore, the number of CECs lacking ASGR1 expression correlated significantly with HCC incidence and absence of miR-122-5p expression (p = 0.014; r = 0.23). Finally, overall survival was significantly greater for patients at earlier cancer stages (p = 0.018), but this difference was only maintained in the group with the presence of CECs (p = 0.021) whereas progression-free survival was influenced by the absence of ASGR1 expression. Conclusion: Identification and characterization of CECs by ASGR1 and/or miR-122-5p expression may be used as a risk-stratification tool in LC patients, as it was shown to be an independent prognostic and risk-stratification marker in LC and early disease stage HCC patients.
Collapse
Affiliation(s)
- Amparo Roa-Colomo
- Clinical Medicine and Public Health Doctoral Program, University of Granada, Granada, Spain
- Gastroenterology and Hepatology Department, San Cecilio University Hospital, Granada, Spain
| | | | - Pilar Molina-Vallejo
- Genyo-Centro Pfizer-Universidad De Granada-Junta De Andalucía De Genómica e Investigación Oncológica, Granada, Spain
| | - Angela Rojas
- Seliver Group, Institute of Biomedicine of Seville (IBiS)/ Hospital Universitario Virgen Del Rocío/CSIC/Universidad De Sevilla, Seville, Spain
- Spanish Network for Biomedical Research in Hepatic and Digestive Diseases (CIBERehd), Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Mercedes González Sanchez
- Gastroenterology and Hepatology Department, Virgen De Las Nieves University Hospital, Granada, Spain
| | - Violeta Aranda-García
- Statistician at Fundación para la Investigación Biosanitaria Andalucía Oriental Alejandro Otero (FIBAO), Hospital Virgen de las Nieves, Granada, Spain
| | - Javier Salmeron
- Gastroenterology and Hepatology Department, San Cecilio University Hospital, Granada, Spain
| | - Manuel Romero-Gomez
- Seliver Group, Institute of Biomedicine of Seville (IBiS)/ Hospital Universitario Virgen Del Rocío/CSIC/Universidad De Sevilla, Seville, Spain
- Spanish Network for Biomedical Research in Hepatic and Digestive Diseases (CIBERehd), Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Jordi Muntane
- Spanish Network for Biomedical Research in Hepatic and Digestive Diseases (CIBERehd), Carlos III Health Institute (ISCIII), Madrid, Spain
- Institute of Biomedicine of Seville (IBiS), Hospital University Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain
| | - Javier Padillo
- General and Gastrointestinal Surgery Division, Virgen del Rocío University Hospital, Sevilla, Spain
| | - Jose María Alamo
- General and Gastrointestinal Surgery Division, Virgen del Rocío University Hospital, Sevilla, Spain
| | - Jose A. Lorente
- Genyo-Centro Pfizer-Universidad De Granada-Junta De Andalucía De Genómica e Investigación Oncológica, Granada, Spain
- Legal Medicine Department, Medicine School, University of Granada, Granada, Spain
| | - María José Serrano
- Genyo-Centro Pfizer-Universidad De Granada-Junta De Andalucía De Genómica e Investigación Oncológica, Granada, Spain
- Comprehensive Oncology Division, Clinical University Hospital, Virgen de las Nieves-IBS, Granada, Spain
- Department of Pathological Anatomy, Faculty of Medicine, University of Granada, Granada, Spain
| | - M. Carmen Garrido-Navas
- Genyo-Centro Pfizer-Universidad De Granada-Junta De Andalucía De Genómica e Investigación Oncológica, Granada, Spain
| |
Collapse
|
10
|
Gao R, Yan J, Li P, Chen L. Detecting the critical states during disease development based on temporal network flow entropy. Brief Bioinform 2022; 23:6587172. [PMID: 35580862 DOI: 10.1093/bib/bbac164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/23/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Complex diseases progression can be generally divided into three states, which are normal state, predisease/critical state and disease state. The sudden deterioration of diseases can be viewed as a bifurcation or a critical transition. Therefore, hunting for the tipping point or critical state is of great importance to prevent the disease deterioration. However, it is still a challenging task to detect the critical states of complex diseases with high-dimensional data, especially based on an individual. In this study, we develop a new method based on network fluctuation of molecules, temporal network flow entropy (TNFE) or temporal differential network flow entropy, to detect the critical states of complex diseases on the basis of each individual. By applying this method to a simulated dataset and six real diseases, including respiratory viral infections and tumors with four time-course and two stage-course high-dimensional omics datasets, the critical states before deterioration were detected and their dynamic network biomarkers were identified successfully. The results on the simulated dataset indicate that the TNFE method is robust under different noise strengths, and is also superior to the existing methods on detecting the critical states. Moreover, the analysis on the real datasets demonstrated the effectiveness of TNFE for providing early-warning signals on various diseases. In addition, we also predicted disease deterioration risk and identified drug targets for cancers based on stage-wise data.
Collapse
Affiliation(s)
- Rong Gao
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471023, China
| | - Jinling Yan
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471023, China
| | - Peiluan Li
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471023, China
| | - Luonan Chen
- Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.,Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong 519031, China.,International Research Center for Neurointelligence, The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
11
|
Haque E, Teeli AS, Winiarczyk D, Taguchi M, Sakuraba S, Kono H, Leszczyński P, Pierzchała M, Taniguchi H. HNF1A POU Domain Mutations Found in Japanese Liver Cancer Patients Cause Downregulation of HNF4A Promoter Activity with Possible Disruption in Transcription Networks. Genes (Basel) 2022; 13:genes13030413. [PMID: 35327967 PMCID: PMC8949677 DOI: 10.3390/genes13030413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 11/25/2022] Open
Abstract
Hepatocyte nuclear factor 1A (HNF1A) is the master regulator of liver homeostasis and organogenesis and regulates many aspects of hepatocyte functions. It acts as a tumor suppressor in the liver, evidenced by the increased proliferation in HNF1A knockout (KO) hepatocytes. Hence, we postulated that any loss-of-function variation in the gene structure or composition (mutation) could trigger dysfunction, including disrupted transcriptional networks in liver cells. From the International Cancer Genome Consortium (ICGC) database of cancer genomes, we identified several HNF1A mutations located in the functional Pit-Oct-Unc (POU) domain. In our biochemical analysis, we found that the HNF1A POU-domain mutations Y122C, R229Q and V259F suppressed HNF4A promoter activity and disrupted the binding of HNF1A to its target HNF4A promoter without any effect on the nuclear localization. Our results suggest that the decreased transcriptional activity of HNF1A mutants is due to impaired DNA binding. Through structural simulation analysis, we found that a V259F mutation was likely to affect DNA interaction by inducing large conformational changes in the N-terminal region of HNF1A. The results suggest that POU-domain mutations of HNF1A downregulate HNF4A gene expression. Therefore, to mimic the HNF1A mutation phenotype in transcription networks, we performed siRNA-mediated knockdown (KD) of HNF4A. Through RNA-Seq data analysis for the HNF4A KD, we found 748 differentially expressed genes (DEGs), of which 311 genes were downregulated (e.g., HNF1A, ApoB and SOAT2) and 437 genes were upregulated. Kyoto Encyclopedia of Genes and Genomes (KEGG) mapping revealed that the DEGs were involved in several signaling pathways (e.g., lipid and cholesterol metabolic pathways). Protein–protein network analysis suggested that the downregulated genes were related to lipid and cholesterol metabolism pathways, which are implicated in hepatocellular carcinoma (HCC) development. Our study demonstrates that mutations of HNF1A in the POU domain result in the downregulation of HNF1A target genes, including HNF4A, and this may trigger HCC development through the disruption of HNF4A–HNF1A transcriptional networks.
Collapse
Affiliation(s)
- Effi Haque
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (E.H.); (A.S.T.); (D.W.); (P.L.); (M.P.)
| | - Aamir Salam Teeli
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (E.H.); (A.S.T.); (D.W.); (P.L.); (M.P.)
| | - Dawid Winiarczyk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (E.H.); (A.S.T.); (D.W.); (P.L.); (M.P.)
| | - Masahiko Taguchi
- Molecular Modeling and Simulation Group, National Institutes for Quantum Science and Technology, Kizugawa 619-0215, Japan; (M.T.); (S.S.); (H.K.)
| | - Shun Sakuraba
- Molecular Modeling and Simulation Group, National Institutes for Quantum Science and Technology, Kizugawa 619-0215, Japan; (M.T.); (S.S.); (H.K.)
| | - Hidetoshi Kono
- Molecular Modeling and Simulation Group, National Institutes for Quantum Science and Technology, Kizugawa 619-0215, Japan; (M.T.); (S.S.); (H.K.)
| | - Paweł Leszczyński
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (E.H.); (A.S.T.); (D.W.); (P.L.); (M.P.)
| | - Mariusz Pierzchała
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (E.H.); (A.S.T.); (D.W.); (P.L.); (M.P.)
| | - Hiroaki Taniguchi
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (E.H.); (A.S.T.); (D.W.); (P.L.); (M.P.)
- Correspondence: ; Tel.: +48-22-736-70-95
| |
Collapse
|
12
|
Patten DA, Wilkinson AL, O'Keeffe A, Shetty S. Scavenger Receptors: Novel Roles in the Pathogenesis of Liver Inflammation and Cancer. Semin Liver Dis 2022; 42:61-76. [PMID: 34553345 PMCID: PMC8893982 DOI: 10.1055/s-0041-1733876] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The scavenger receptor superfamily represents a highly diverse collection of evolutionarily-conserved receptors which are known to play key roles in host homeostasis, the most prominent of which is the clearance of unwanted endogenous macromolecules, such as oxidized low-density lipoproteins, from the systemic circulation. Members of this family have also been well characterized in their binding and internalization of a vast range of exogenous antigens and, consequently, are generally considered to be pattern recognition receptors, thus contributing to innate immunity. Several studies have implicated scavenger receptors in the pathophysiology of several inflammatory diseases, such as Alzheimer's and atherosclerosis. Hepatic resident cellular populations express a diverse complement of scavenger receptors in keeping with the liver's homeostatic functions, but there is gathering interest in the contribution of these receptors to hepatic inflammation and its complications. Here, we review the expression of scavenger receptors in the liver, their functionality in liver homeostasis, and their role in inflammatory liver disease and cancer.
Collapse
Affiliation(s)
- Daniel A. Patten
- National Institute for Health Research Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Alex L. Wilkinson
- National Institute for Health Research Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ayla O'Keeffe
- National Institute for Health Research Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Shishir Shetty
- National Institute for Health Research Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
13
|
Chen F, Kang R, Liu J, Tang D. The V-ATPases in cancer and cell death. Cancer Gene Ther 2022; 29:1529-1541. [PMID: 35504950 PMCID: PMC9063253 DOI: 10.1038/s41417-022-00477-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/07/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023]
Abstract
Transmembrane ATPases are membrane-bound enzyme complexes and ion transporters that can be divided into F-, V-, and A-ATPases according to their structure. The V-ATPases, also known as H+-ATPases, are large multi-subunit protein complexes composed of a peripheral domain (V1) responsible for the hydrolysis of ATP and a membrane-integrated domain (V0) that transports protons across plasma membrane or organelle membrane. V-ATPases play a fundamental role in maintaining pH homeostasis through lysosomal acidification and are involved in modulating various physiological and pathological processes, such as macropinocytosis, autophagy, cell invasion, and cell death (e.g., apoptosis, anoikis, alkaliptosis, ferroptosis, and lysosome-dependent cell death). In addition to participating in embryonic development, V-ATPase pathways, when dysfunctional, are implicated in human diseases, such as neurodegenerative diseases, osteopetrosis, distal renal tubular acidosis, and cancer. In this review, we summarize the structure and regulation of isoforms of V-ATPase subunits and discuss their context-dependent roles in cancer biology and cell death. Updated knowledge about V-ATPases may enable us to design new anticancer drugs or strategies.
Collapse
Affiliation(s)
- Fangquan Chen
- grid.417009.b0000 0004 1758 4591DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120 China
| | - Rui Kang
- grid.267313.20000 0000 9482 7121Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Jiao Liu
- grid.417009.b0000 0004 1758 4591DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120 China
| | - Daolin Tang
- grid.267313.20000 0000 9482 7121Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| |
Collapse
|
14
|
Xu Y, Tao J, Yu X, Wu Y, Chen Y, You K, Zhang J, Getachew A, Pan T, Zhuang Y, Yuan F, Yang F, Lin X, Li YX. Hypomorphic ASGR1 modulates lipid homeostasis via INSIG1-mediated SREBP signaling suppression. JCI Insight 2021; 6:147038. [PMID: 34622799 PMCID: PMC8525641 DOI: 10.1172/jci.insight.147038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 08/18/2021] [Indexed: 12/20/2022] Open
Abstract
A population genetic study identified that the asialoglycoprotein receptor 1 (ASGR1) mutation carriers had substantially lower non–HDL-cholesterol (non–HDL-c) levels and reduced risks of cardiovascular diseases. However, the mechanism behind this phenomenon remained unclear. Here, we established Asgr1-knockout mice that represented a plasma lipid profile with significantly lower non–HDL-c and triglyceride (TG) caused by decreased secretion and increased uptake of VLDL/LDL. These 2 phenotypes were linked with the decreased expression of microsomal triglyceride transfer protein and proprotein convertase subtilisin/kexin type 9, 2 key targeted genes of sterol regulatory element–binding proteins (SREBPs). Furthermore, there were fewer nuclear SREBPs (nSREBPs) on account of more SREBPs being trapped in endoplasmic reticulum, which was caused by an increased expression of insulin-induced gene 1 (INSIG1), an anchor of SREBPs. Overexpression and gene knockdown interventions, in different models, were conducted to rescue the ASGR1-deficient phenotypes, and we found that INSIG1 knockdown independently reversed the ASGR1-mutated phenotypes with increased serum total cholesterol, LDL-c, TG, and liver cholesterol content accompanied by restored SREBP signaling. ASGR1 rescue experiments reduced INSIG1 and restored the SREBP network defect as manifested by improved apolipoprotein B secretion and reduced LDL uptake. Our observation demonstrated that increased INSIG1 is a critical factor responsible for ASGR1 deficiency–associated lipid profile changes and nSREBP suppression. This finding of an ASGR1/INSIG1/SREBP axis regulating lipid hemostasis may provide multiple potential targets for lipid-lowering drug development.
Collapse
Affiliation(s)
- Yingying Xu
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jiawang Tao
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaorui Yu
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yuhang Wu
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yan Chen
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Kai You
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jiaye Zhang
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Anteneh Getachew
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Tingcai Pan
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yuanqi Zhuang
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Fang Yuan
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Fan Yang
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xianhua Lin
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yin-Xiong Li
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
15
|
Sun Y, Tang X, Ye B, Ding K. DNA and RNA Sequencing Recapitulated Aberrant Tumor Metabolism in Liver Cancer Cell Lines. J Hepatocell Carcinoma 2021; 8:823-836. [PMID: 34350138 PMCID: PMC8327295 DOI: 10.2147/jhc.s318724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022] Open
Abstract
AIM Metabolic reprogramming has recently attracted extensive attention for understanding cancer development. We aimed to demonstrate a genomic and transcriptomic landscape of metabolic reprogramming underlying liver cancer cell lines. METHODS We investigated metabolic aberrant at both the transcriptome and genome levels using transcriptome and whole-exome sequencing data from 12 human liver cancer cell lines (hLCCLs) and one normal liver cell line. RESULTS Three subgroups of hLCCLs characterized from transcriptome sequencing data exhibit significantly different aberrations in various metabolic processes, including amino acid, lipid, energy, and carbohydrate metabolism. Furthermore, whole-exome sequencing revealed distinct mutational signatures among different subgroups of hLCCLs and identified a total of 19 known driver genes implicated in metabolism. CONCLUSION Our findings highlighted differential metabolic mechanisms in the development of liver cancer and provided a resource for further investigating its metabolic mechanisms.
Collapse
Affiliation(s)
- Yihong Sun
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, 410006, People’s Republic of China
| | - Xia Tang
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, 410006, People’s Republic of China
| | - Bo Ye
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, 410006, People’s Republic of China
| | - Keyue Ding
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, 410006, People’s Republic of China
- Medical Genetic Institute of Henan Province, Henan Provincial People’s Hospital, Henan Key Laboratory of Genetic Diseases and Functional Genomics, National Health Commission Key Laboratory of Birth Defect Prevention, Henan Provincial People’s Hospital of Henan University, People’s Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450003, People's Republic of China
| |
Collapse
|
16
|
Kumar V, Rahman M, Gahtori P, Al-Abbasi F, Anwar F, Kim HS. Current status and future directions of hepatocellular carcinoma-targeted nanoparticles and nanomedicine. Expert Opin Drug Deliv 2020; 18:673-694. [PMID: 33295218 DOI: 10.1080/17425247.2021.1860939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is a major health problem worldwide. Conventional therapies covering either chemotherapy or combination therapy still have sub-optimal responses with significant adverse effects and toxicity. Moreover, tumor cells usually acquire resistance quickly for traditional approaches, limiting their use in HCC. Interest in nanomedicine due to minimal systemic toxicity and a high degree of target-specific drug-delivery have pulled the attention of health scientists in this area of therapeutics. AREA COVERED The review covers the incidence and epidemiology of HCC, proposed molecular drug targets, mechanistic approach and emergence of nanomedicines including nanoparticles, lipidic nanoparticles, vesicular-based nanocarrier, virus-like particles with momentous therapeutic aspects including biocompatibility, and toxicity of nanocarriers along with conclusions and future perspective, with an efficient approach to safely cross physiological barriers to reach the target site for treating liver cancer. EXPERT OPINION Remarkable outcomes have recently been observed for the therapeutic efficacy of nanocarriers with respect to a specific drug target against the treatment of HCC by existing under trial drugs.
Collapse
Affiliation(s)
- Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Mahfoozur Rahman
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Prashant Gahtori
- School of Pharmacy, Graphic Era Hill University Dehradun 248002, Uttarakhand, India
| | - Fahad Al-Abbasi
- Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Jangan-gu, Suwon 16419, 2066, Seobu-ro, Korea
| |
Collapse
|
17
|
Patten DA, Wilkinson AL, O'Rourke JM, Shetty S. Prognostic Value and Potential Immunoregulatory Role of SCARF1 in Hepatocellular Carcinoma. Front Oncol 2020; 10:565950. [PMID: 34354939 PMCID: PMC8336907 DOI: 10.3389/fonc.2020.565950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022] Open
Abstract
Scavenger receptor class F member 1 (SCARF1) is thought to play an important role in the selective recruitment of CD4+ T cells to liver sinusoidal endothelial cells during chronic liver disease. However, the contribution of SCARF1 to hepatocellular carcinoma (HCC) is currently unknown. We utilized publically-available RNA-sequencing data from The Cancer Genome Atlas (TGCA) to explore SCARF1 expression in HCC and correlated it with a number of clinicopathological features. Flow adhesion assays were used to determine the role of SCARF1 in CD4+ T cell subset recruitment. SCARF1 expression was downregulated in HCC tumor tissues, compared to non-tumoral tissues, and loss of SCARF1 expression was associated with poorly differentiated/aggressive tumors. Additionally, higher SCARF1 expression in HCC tumor tissues was highly prognostic of better overall, disease-free and progression-free survival. SCARF1 within HCC was largely associated with tumor endothelial cells and adhesion studies suggested that it played a role in the specific recruitment of proinflammatory CD4+ T cells (CD4+CD25−) to HCC tumor tissues. Endothelial SCARF1 expression in tumor biopsies may provide critical prognostic information. Additionally, SCARF1 may also be a novel endothelial target that could help re-programme the microenvironment of HCC by promoting effector T cell tumor infiltration.
Collapse
Affiliation(s)
- Daniel A Patten
- National Institute for Health Research Birmingham Liver Biomedical Research Unit and Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Alex L Wilkinson
- National Institute for Health Research Birmingham Liver Biomedical Research Unit and Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Joanne M O'Rourke
- National Institute for Health Research Birmingham Liver Biomedical Research Unit and Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Shishir Shetty
- National Institute for Health Research Birmingham Liver Biomedical Research Unit and Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
18
|
Burenina OY, Lazarevich NL, Kustova IF, Shavochkina DA, Moroz EA, Kudashkin NE, Patyutko YI, Metelin AV, Kim EF, Skvortsov DA, Zatsepin TS, Rubtsova MP, Dontsova OA. Panel of potential lncRNA biomarkers can distinguish various types of liver malignant and benign tumors. J Cancer Res Clin Oncol 2020; 147:49-59. [PMID: 32918630 DOI: 10.1007/s00432-020-03378-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Liver cancers are among the deadliest malignancies due to a limited efficacy of early diagnostics, the lack of appropriate biomarkers and insufficient discrimination of different types of tumors by classic and molecular methods. In this study, we searched for novel long non-coding RNA (lncRNA) as well as validated several known candidates suitable as probable biomarkers for primary liver tumors of various etiology. METHODS We described a novel lncRNA HELIS (aka "HEalthy LIver Specific") and estimated its expression by RT-qPCR in 82 paired tissue samples from patients with hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), combined HCC-CCA, pediatric hepatoblastoma (HBL) and non-malignant hepatocellular adenoma (HCA) and focal nodular hyperplasia (FNH). Additionally, we examined expression of cancer-associated lncRNAs HULC, MALAT1, UCA1, CYTOR, LINC01093 and H19, which were previously studied mainly in HCC. RESULTS We demonstrated that down-regulation of HELIS strongly correlates with carcinogenesis; whereas in tumors with non-hepatocyte origin (HBL, CCA) or in a number of poorly differentiated HCC, this lncRNA is not expressed. We showed that recently discovered LINC01093 is dramatically down-regulated in all malignant liver cancers; while in benign tumors LINC01093 expression is just twice decreased in comparison to adjacent samples. CONCLUSION Our study revealed that among all measured biomarkers only down-regulated HELIS and LINC01093, up-regulated CYTOR and dysregulated HULC are perspective for differential diagnostics of liver cancers; whereas others demonstrated discordant results and cannot be considered as potential universal biomarkers for this purpose.
Collapse
Affiliation(s)
- Olga Y Burenina
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia, 143026.
| | - Natalia L Lazarevich
- Institute of Carcinogenesis, FSBI "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, Russia, 115478
- Biology Department, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Inna F Kustova
- Institute of Carcinogenesis, FSBI "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, Russia, 115478
| | - Daria A Shavochkina
- Institute of Carcinogenesis, FSBI "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, Russia, 115478
| | - Ekaterina A Moroz
- Institute of Clinical Oncology, FSBI "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, Russia, 115478
| | - Nikolay E Kudashkin
- Institute of Clinical Oncology, FSBI "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, Russia, 115478
| | - Yuriy I Patyutko
- Institute of Clinical Oncology, FSBI "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, Russia, 115478
| | - Alexey V Metelin
- Petrovsky National Research Centre of Surgery, Moscow, Russia, 119991
| | - Eduard F Kim
- Petrovsky National Research Centre of Surgery, Moscow, Russia, 119991
| | - Dmitry A Skvortsov
- Lomonosov Moscow State University, Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, Russia, 119992
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia, 101000
| | - Timofei S Zatsepin
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia, 143026
- Lomonosov Moscow State University, Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, Russia, 119992
| | - Maria P Rubtsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia, 143026
- Lomonosov Moscow State University, Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, Russia, 119992
| | - Olga A Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia, 143026
- Lomonosov Moscow State University, Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, Russia, 119992
| |
Collapse
|
19
|
Association of rs8444 polymorphism in the LASS2 3'-UTR and bladder cancer risk in Chinese population. Eur J Cancer Prev 2019; 29:329-337. [PMID: 31577563 DOI: 10.1097/cej.0000000000000551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The aim of the present study was to explore the correlations between single nucleotide polymorphisms in LASS2 gene 3'-untranslated regions and bladder cancer risk in Chinese population. We first performed PCR and sequence for LASS2-3'-UTR in 105 bladder cancer patients and 100 control subjects. Next, multivariate logistic regression analysis was used to determine the relationship between single nucleotide polymorphisms frequency and susceptibility of bladder cancer, and clinical features in 105 cases. In addition, survival curves and Cox Regression analysis were used to investigate the effect of single nucleotide polymorphisms on clinical outcome in 58 cases. Finally, quantitative reverse-transcription PCR and immunohistochemical were performed to explore the influence of single nucleotide polymorphisms on LASS2 expression. We found that a single nucleotide polymorphism (rs8444 C>T) located in the 3'-UTR of LASS2 was significantly associated with the risk of bladder cancer. We also showed the frequency of rs8444 T genotype was higher in bladder cancer group and correlated with the risk of clinical prognosis. Yet, there were no significant correlations between T/C allele frequencies and the distributions of rs8444 genotype and tumor-node-metastasis stage, histological grade and distant metastasis in bladder cancer. Furthermore, we demonstrated that rs8444 C>T could affect LASS2 expression by single nucleotide polymorphism-related mRNA stability. Our results showed that LASS2-3'-UTR rs8444 C>T polymorphism was significantly associated with the individual risk and the poor overall survival of bladder cancer, suggesting that rs8444 TT genotype maybe act as an independent risk factor of susceptibility and clinical prognosis for bladder cancer in Chinese population.
Collapse
|
20
|
Fu S, Luan T, Jiang C, Huang Y, Li N, Wang H, Wang J. miR-3622a promotes proliferation and invasion of bladder cancer cells by downregulating LASS2. Gene 2019; 701:23-31. [PMID: 30898713 DOI: 10.1016/j.gene.2019.02.083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 02/18/2019] [Accepted: 02/23/2019] [Indexed: 12/27/2022]
Abstract
As a tumor metastasis suppressor gene, LASS2 has been found to be negatively associated with the stage of bladder cancer and overall survival of patients. However, the mechanisms regulating LASS2 in bladder cancer remain poorly understood. Here, we aim to identify a miRNA that targets LASS2 from bladder cancer-associated miRNAs and to reveal its potential functions in bladder cancer cells. Through miRNA microarray and bioinformatics analyses, we identified miR-3622a as a negative regulator of LASS2. The expression levels of miR-3622a in bladder cancer tissues were negatively correlated with the overall survival of patients. Overexpression of miR-3622a significantly increased the proliferation and invasion abilities of bladder cancer cells. In conclusion, our results indicate that miR-3622a promotes the proliferation and invasion of bladder cancer cells by downregulating LASS2.
Collapse
Affiliation(s)
- Shi Fu
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming 650101, China
| | - Ting Luan
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming 650101, China
| | - Changyi Jiang
- Department of Urology, The First People's Hospital of Longquanyi District, Chendu 610000, China
| | - Yinglong Huang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming 650101, China
| | - Ning Li
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming 650101, China
| | - Haifeng Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming 650101, China.
| | - Jiansong Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming 650101, China.
| |
Collapse
|
21
|
Clinical and pathological significance of Homo sapiens ceramide synthase 2 (CerS-2) in diverse human cancers. Biosci Rep 2019; 39:BSR20181743. [PMID: 30988071 PMCID: PMC6504659 DOI: 10.1042/bsr20181743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 02/22/2019] [Accepted: 04/12/2019] [Indexed: 01/10/2023] Open
Abstract
Homo sapiens ceramide synthase 2 (CerS-2) plays an important role in inhibiting invasion and metastasis of tumor cells and has been reported as a tumor metastasis suppressor gene in diverse cancers. Thus, low level of CerS-2 protein might suggest a bad prognosis and up-regulation of CerS-2 protein might act as a promising therapeutic strategy for malignant tumors. In this review, we discussed the expression, as well as the clinical and pathological significance of CerS-2 in diverse human cancers. The pathological processes and molecular pathways regulated by CerS-2 were also summarized.
Collapse
|
22
|
Fan S, Wang Y, Wang C, Jin H, Wu Z, Lu J, Zhang Z, Sun C, Shan Q, Wu D, Zhuang J, Sheng N, Xie Y, Li M, Hu B, Fang J, Zheng Y, Qin W. Hepatocyte-specific deletion of LASS2 protects against diet-induced hepatic steatosis and insulin resistance. Free Radic Biol Med 2018; 120:330-341. [PMID: 29626628 DOI: 10.1016/j.freeradbiomed.2018.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 03/23/2018] [Accepted: 04/03/2018] [Indexed: 02/06/2023]
Abstract
Homo sapienslongevity assurance homolog 2 of yeast LAG1 (LASS2) is expressed mostly in human liver. Here, we explored roles of LASS2 in pathogenesis of hepatic steatosis. Hepatocyte-specific LASS2 knockout (LASS2-/-) mice were generated using Cre-LoxP system. LASS2-/- and wild-type (WT) mice were fed with chow or high-fat diet (HFD). We found LASS2-/- mice were resistant to HFD-induced hepatic steatosis and insulin resistance. In HFD-fed mice, LASS2 deficiency significantly inhibited p38 MAPK and ERK1/ERK2 signaling in mouse liver. This effect was mediated by a significant increase of V-ATPase activity and a decrease of ROS level. We also observed that elevated expression of LASS2 in mouse hepatocyte cell line AML12 obviously decreased V-ATPase activity and increased ROS level by activation of p38 MAPK and ERK1/ERK2 signaling. Our findings indicate that LASS2 plays an important role in the pathogenesis of diet-induced hepatic steatosis and is a potential novel target for prevention and intervention of liver diseases.
Collapse
Affiliation(s)
- Shaohua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Xuzhou, Jiangsu 221116, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Yanyan Wang
- Department of Medical Ultrasonics, The Affiliated First People's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Cun Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Haojie Jin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Zheng Wu
- Department of Radiotherapy, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Xuzhou, Jiangsu 221116, China
| | - Zifeng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Xuzhou, Jiangsu 221116, China
| | - Chunhui Sun
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Xuzhou, Jiangsu 221116, China
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Xuzhou, Jiangsu 221116, China
| | - Dongmei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Xuzhou, Jiangsu 221116, China
| | - Juan Zhuang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Xuzhou, Jiangsu 221116, China
| | - Ning Sheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Xuzhou, Jiangsu 221116, China
| | - Ying Xie
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Xuzhou, Jiangsu 221116, China
| | - Mengqiu Li
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Xuzhou, Jiangsu 221116, China
| | - Bin Hu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Xuzhou, Jiangsu 221116, China
| | - Jingyuan Fang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Yuanlin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Xuzhou, Jiangsu 221116, China.
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China.
| |
Collapse
|
23
|
Huang L, Luan T, Chen Y, Bao X, Huang Y, Fu S, Wang H, Wang J. LASS2 regulates invasion and chemoresistance via ERK/Drp1 modulated mitochondrial dynamics in bladder cancer cells. J Cancer 2018; 9:1017-1024. [PMID: 29581781 PMCID: PMC5868169 DOI: 10.7150/jca.23087] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/28/2018] [Indexed: 12/12/2022] Open
Abstract
Mitochondria coordinated a lot of vital cellular processes of energy production and distribution. Change of mitochondrial functions has been implicated in cancer progression. The present study aims to investigate the involvement of mitochondria dynamics in LASS2 induced invasion and chemoresistance of bladder cancer cells. J82 and BIU87 cell lines were used for LASS2 plasmid transfection while siRNA knockdown was carried out in 5637 cell line. Matrigel invasion assay and Annexin V/PI staining demonstrated that LASS2 negatively regulated cancer cell invasion and chemoresistance. JC-1 staining suggested that LASS2 overexpression downregulated mitochondrial membrane potential. Mitotracker staining showed that LASS2 induced mitochondrial fusion and inhibited mitochondrial fission. In addition, LASS2 overexpression downregulated expression of mitochondrial fission protein p-Drp1 Drp1 and Fis1. While depletion of LASS2 exhibited the opposite effects. Drp1 inhibitor Mdivi abolished invasion and chemoresistance induced by LASS2 siRNA. Furthermore, we found that LASS2 overexpression could inhibit phosphorylation of ERK, which act upstream of Drp1. ERK inhibitor PD98059 suppressed Drp1 phosphorylation and abrogated the effects of LASS2 depletion. In conclusion, the present study demonstrated that LASS2 inhibits bladder cancer invasion and chemoresistance through regulation of ERK-Drp1 induced mitochondrial dynamics.
Collapse
Affiliation(s)
- Lijuan Huang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming 650101, China
| | - Ting Luan
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming 650101, China
| | - Yujin Chen
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming 650101, China
| | - Xin Bao
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming 650101, China
| | - Yinglong Huang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming 650101, China
| | - Shi Fu
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming 650101, China
| | - Haifeng Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming 650101, China
| | - Jiansong Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming 650101, China
| |
Collapse
|
24
|
Jin H, Wang C, Gu D, Zhang Y, Fan S, Xing S, Wang H, Ruan H, Yang C, Lv Y, Feng H, Yao M, Qin W. Liver-specific deletion of LASS2 delayed regeneration of mouse liver after partial hepatectomy. Biochem Biophys Res Commun 2017; 493:1176-1183. [PMID: 28958935 DOI: 10.1016/j.bbrc.2017.09.128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 09/23/2017] [Indexed: 01/17/2023]
Abstract
The capacity of liver regeneration is critical for patients with liver diseases. However, cellular and molecular mechanisms of liver regeneration are still incompletely defined. Here, we assessed roles of LASS2 in liver regeneration following partial hepatectomy (PHx) in mice. Our results showed that protein level of LASS2 remarkably increased during liver regeneration after PHx in wildtype (WT) mice. Comparing to WT mice, liver regeneration index after PHx was significantly decreased from day 1 to day 5 in liver-specific LASS2 knockout (LASS2-LKO) mice. Interestingly, liver mass of LASS2-LKO mice could sufficiently recover at day 14 after PHx. Immunohistochemistry (IHC) and western blot analyses revealed that proliferation markers, such as PCNA and Ki67, were potently reduced during liver regeneration in LASS2-LKO mice. In addition, several cell cycle related molecules, such as cyclin A, CDK2 and p-Rb, were decreased in LASS2-LKO mice after PHx. Co-immunoprecipitation assay further revealed a decreased formation of CDK4/cyclin D1 complex after PHx in LASS2-LKO mice. However, phosphorylation of Akt was significantly activated from day 2 after PHx in LASS2-LKO mice when compared with that in WT mice, which may explain the recovery of liver mass at the late stage of liver regeneration in LASS2-LKO mice. Taken together, we conclude that LASS2 plays an important role in efficient liver regeneration in response to PHx.
Collapse
Affiliation(s)
- Haojie Jin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Cun Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Dishui Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China; Department of Pathophysiology, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yurong Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Shaohua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Shunpeng Xing
- Department of Critical Care Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Haoyu Ruan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Cheng Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China; Shanghai Medical College of Fudan University, Shanghai, China
| | - Yuanyuan Lv
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Hugang Feng
- Department of Life Science, Imperial College, London, UK
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China.
| |
Collapse
|
25
|
Zhang H, Wang Y, Xuan X, Wang G, Guo H, Fan J. A dynamic invertible intramolecular charge-transfer fluorescence probe: real-time monitoring of mitochondrial ATPase activity. Chem Commun (Camb) 2017; 53:5535-5538. [PMID: 28466886 DOI: 10.1039/c7cc02450a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A dynamic invertible intramolecular charge-transfer (ICT) process could provide abundant response signals for real-time monitoring in living organisms. Herein, based on dynamic invertible ICT, we have reported a cancer cell-targeted fluorescence probe (OPM) for mitochondrial ATPase activity. Due to its abundant response signals, OPM could real-time monitor mitochondrial ATPase activity during the cancer apoptosis process, successfully.
Collapse
Affiliation(s)
- Hua Zhang
- Henan Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Key Laboratory of Green Chemical Media and Reactions, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Institution, Henan Normal University, 453007 Xinxiang, China.
| | | | | | | | | | | |
Collapse
|
26
|
Shimizu D, Inokawa Y, Sonohara F, Inaoka K, Nomoto S. Search for useful biomarkers in hepatocellular carcinoma, tumor factors and background liver factors. Oncol Rep 2017; 37:2527-2542. [DOI: 10.3892/or.2017.5541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/09/2017] [Indexed: 11/06/2022] Open
|