1
|
Fang HA, Irfan A, Vickers SM, Gbolahan O, Williams GR, Outlaw D, Wang TNT, Dudeja V, Rose JB, Reddy S. Are Lymph Node Metastases Associated With Survival in Black Patients With Pancreatic Cancer? J Surg Res 2023; 284:143-150. [PMID: 36571869 DOI: 10.1016/j.jss.2022.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/12/2022] [Accepted: 11/16/2022] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Despite aggressive surgical care and systemic therapy, patients with pancreatic ductal adenocarcinoma (PDAC) have a poor prognosis. Recent studies show that racial disparities in outcome also exist. We sought to investigate the association lymph node (LN) metastases had with survival between Black and White patients with PDAC after resection. METHODS Retrospective analysis of 226 PDAC patients who underwent resection at a single institution from 2010 to 2018 was performed with attention to LN metastasis and patient race. The number of patients who received chemotherapy was also evaluated. RESULTS One Hundred Seventy Five (77.4%) PDAC patients were White and 51 (22.6%) were Black. 130 (59.3%) patients had LN metastasis (LN+). LN+ and LN- groups were similar in race (P = 0.93), sex (P = 0.10) and age at the time of diagnosis (P = 0.45). Patients with LN + disease were more likely to present with larger tumors (3.4 versus 2.8 cm, P = 0.02) and higher T status (P = 0.001). White and Black patients had similar rates of LN metastasis (59% versus 58.8%, P = 1.0). The median survival for LN- Black and White patients were similar (43.2 versus 30.2 mo, P = 0.82). LN + Black patients trended towards receiving more systemic therapy than White LN + patients (55% versus 42%, P = 0.10). The median survival for LN + Black patients was significantly less than LN + White patients (17.5 versus 24.6 mo, P = 0.04). CONCLUSIONS Black LN + PDAC patients have an inferior survival rate after resection when compared to their White counterparts. Our disparity in outcome cannot be solely explained by a difference in systemic treatment. Further investigation is warranted to determine racial differences in tumor biology or response to chemotherapy.
Collapse
Affiliation(s)
- Hua Amanda Fang
- School of Medicine, University of Alabama in Birmingham, Birmingham, Alabama; Department of Surgery, Birmingham, University of Alabama in Birmingham, Alabama
| | - Ahmer Irfan
- Department of Surgery, Birmingham, University of Alabama in Birmingham, Alabama
| | - Selwyn M Vickers
- Department of Surgery, Birmingham, University of Alabama in Birmingham, Alabama
| | - Olumide Gbolahan
- Department of Surgery, Birmingham, University of Alabama in Birmingham, Alabama; Department of Hematology and Oncology, University of Alabama in Birmingham, Birmingham, Alabama
| | - Grant R Williams
- Department of Hematology and Oncology, University of Alabama in Birmingham, Birmingham, Alabama
| | - Darryl Outlaw
- Department of Hematology and Oncology, University of Alabama in Birmingham, Birmingham, Alabama
| | | | - Vikas Dudeja
- Department of Surgery, Birmingham, University of Alabama in Birmingham, Alabama
| | - J Bart Rose
- Department of Surgery, Birmingham, University of Alabama in Birmingham, Alabama
| | - Sushanth Reddy
- Department of Surgery, Birmingham, University of Alabama in Birmingham, Alabama.
| |
Collapse
|
2
|
Telisnor G, DeRemer DL, Frimpong E, Agyare E, Allen J, Ricks-Santi L, Han B, George T, Rogers SC. Review of genetic and pharmacogenetic differences in cytotoxic and targeted therapies for pancreatic cancer in African Americans. J Natl Med Assoc 2023; 115:164-174. [PMID: 36801148 PMCID: PMC10639003 DOI: 10.1016/j.jnma.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/16/2022] [Accepted: 01/24/2023] [Indexed: 02/19/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is currently the third leading cause of cancer mortality and the incidence is projected to increase by 2030. Despite recent advances in its treatment, African Americans have a 50-60% higher incidence and 30% higher mortality rate when compared to European Americans possibly resulting from differences in socioeconomic status, access to healthcare, and genetics. Genetics plays a role in cancer predisposition, response to cancer therapeutics (pharmacogenetics), and in tumor behavior, making some genes targets for oncologic therapeutics. We hypothesize that the germline genetic differences in predisposition, drug response, and targeted therapies also impact PDAC disparities. To demonstrate the impact of genetics and pharmacogenetics on PDAC disparities, a review of the literature was performed using PubMed with variations of the following keywords: pharmacogenetics, pancreatic cancer, race, ethnicity, African, Black, toxicity, and the FDA-approved drug names: Fluoropyrimidines, Topoisomerase inhibitors, Gemcitabine, Nab-Paclitaxel, Platinum agents, Pembrolizumab, PARP-inhibitors, and NTRK fusion inhibitors. Our findings suggest that the genetic profiles of African Americans may contribute to disparities related to FDA approved chemotherapeutic response for patients with PDAC. We recommend a strong focus on improving genetic testing and participation in biobank sample donations for African Americans. In this way, we can improve our current understanding of genes that influence drug response for patients with PDAC.
Collapse
Affiliation(s)
- Guettchina Telisnor
- College of Pharmacy, CaRE(2) Health Equity Center, University of Florida, Gainesville, FL, USA
| | - David L DeRemer
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Esther Frimpong
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida Agricultural and Mechanical University, Tallahassee, FL, USA
| | - Edward Agyare
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida Agricultural and Mechanical University, Tallahassee, FL, USA
| | - John Allen
- College of Pharmacy, CaRE(2) Health Equity Center, University of Florida, Gainesville, FL, USA
| | - Luisel Ricks-Santi
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Bo Han
- Department of Surgery, College of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Thomas George
- Division of Hematology and Oncology, College of Medicine, University of Florida, 600 SW Archer Road, PO BOX 100278, Gainesville, FL 32610- 0278, USA
| | - Sherise C Rogers
- Division of Hematology and Oncology, College of Medicine, University of Florida, 600 SW Archer Road, PO BOX 100278, Gainesville, FL 32610- 0278, USA.
| |
Collapse
|
3
|
Salam H, Ahmed S, Bari MF, Bukhari U, Haider G, Najeeb S, Mughal N. Association of Kaiso and partner proteins in oral squamous cell carcinoma. J Taibah Univ Med Sci 2022; 18:802-811. [PMID: 36852243 PMCID: PMC9957818 DOI: 10.1016/j.jtumed.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/21/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022] Open
Abstract
Objectives 1. Identification of protein expression and subcellular localization of E-cadherin (E-cad), p120 catenin (P120ctn), and Kaiso in oral cancer (OC). 2. To study the protein expression of cyclin D1 and c-Myc (Kaiso targets) and determine their relationship with the expression and localization of Kaiso. Methods Histological grading was performed in accordance with Broder's criteria. Expression and localization data for E-cad, p120ctn, Kaiso, cyclin D1, and c-Myc were acquired using immunohistochemistry. Data were analyzed using SPSS version 21. The chi-square test was used to measure the statistical significance of associations, with p < 0.05 as statistically significant. Results Of 47 OC cases, 36% showed low E-cad expression and 34% showed low p120ctn. Low Kaiso expression was recognized in 78% of tumor specimens. Aberrant cytoplasmic localization of p120ctn was seen in 80.8% cases. Cytoplasmic Kaiso localization was appreciated in 87% of tumor tissues, whereas 29.7% lacked any nuclear Kaiso. Kaiso expression was significantly associated with the expression of cyclin D1 but not with c-Myc. Conclusion The present study identified a change in the localization of Kaiso in OC. The significance of this in relation to OC and tumor prognosis needs to be investigated with further studies using larger sample sizes and more sensitive molecular tools.
Collapse
Key Words
- AJ, Adherens junction
- BTB/POZ, Broad complex
- ChIP, Chromatin immunoprecipitation
- DDRRL, Dow Diagnostic Research and Reference Laboratory
- DNA, Deoxyribonucleic acid
- DUHS, Dow University of Health Sciences
- E-cad, E-cadherin
- E-cadherin
- FFPE, Formalin-fixed paraffin embedded
- H&E, Hematoxylin and eosin
- HPV, Human papilloma virus
- IHC, Immunohistochemistry
- KBS, Kaiso-binding site
- Kaiso protein
- MBP, Methyl CpG DNA-binding proteins
- OC, Oral cancer
- Oral squamous cell carcinoma
- SES, Socioeconomic status
- TNM, Tumor
- Tramtrack, and Bric a brac/poxvirus and zinc finger
- ZBTB33 protein
- ZF, Zinc finger
- c-Myc, Cellular Myc proteins
- node, metastasis
- p120ctn, p120-catenin
- qPCR, Quantitative polymerase chain reaction
Collapse
Affiliation(s)
- Hira Salam
- Department of Oral Pathology, Dr. Ishrat-ul-Ibad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Pakistan,Corresponding address: Department of Oral Pathology, Dr Ishrat-ul-Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Ojha campus, Pakistan.
| | - Shaheen Ahmed
- Department of Oral Surgery, Dow International Dental College, Dow University of Health Sciences, Pakistan
| | - Muhammad Furqan Bari
- Department of Pathology, Dr. Ishrat-ul-Ibad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi
| | - Uzma Bukhari
- Department of Pathology, Dow International Medical College, Dow University of Health Sciences, Pakistan
| | - Ghulam Haider
- Department of Biological and Biomedical Sciences, Agha Khan University, Pakistan
| | - Shariq Najeeb
- Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada,Department of Evidence Synthesis, Evidentia Dental Research, Calgary, Alberta, Canada
| | - Nouman Mughal
- Department of Surgery, Agha Khan University, Pakistan
| |
Collapse
|
4
|
Ahmed S, Khan S, Qureshi MA, Bukhari U, Anis M, Mughal MN. Expressional variations of Kaiso: an association with pathological characteristics and field cancerization of OSCC. BMC Cancer 2022; 22:990. [PMID: 36115941 PMCID: PMC9482199 DOI: 10.1186/s12885-022-10014-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/01/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
A group of genetically altered cells that have not transformed into a clinical or histologically identifiable state of malignancy but contains a higher risk of transforming into one is known as the field of cancerization. Numerous molecules are being investigated for their significance in the development of this phenomenon. One such protein of this family is Kaiso also known as ZBTB33 (Zinc Finger and BTB Domain containing 33). This protein belongs to the POZ-ZF family of transcription factors and may have functional tasks similar to its other siblings such as the growth and development of vertebrates and the pathogenesis of neoplastic diseases. Nevertheless, its role in the pathogenesis, progression, epithelial mesenchyal transition and field cancerization in case of oral cancer still needs exploration. Hence, this study was designed to explore the expressional differences between the mucosa of controls and those diagnosed with oral squamous cell carcinoma (OSCC).
Methods
Soft tissue samples were obtained from the main tumor, tumor periphery and opposite buccal mucosa of 50 oral cancer patients, whereas normal mucosa was taken from 50 volunteers undergoing elective tooth removal. The acquired samples were subjected to Immunohistochemical exploration for expression of Kaiso and E-Cadherin. The expression was measured using Image-J IHC profiler and summed as Optical density. The Optical density values were then subjected to statistical analysis.
Results
Results revealed a significant differential expression of Kaiso between the mucosal tissues taken from oral cancer patients and controls (p-value: < 0.0001), showing almost 50% down-regulation of Kaiso in all three tissue samples taken from oral cancer patients as compared to normal mucosa.
Conclusion
Kaiso has a significant difference of expression in the mucosa of oral cancer patients as compared to the mucosa of normal patients, making it a probable contributor to disease pathogenesis and field cancerization.
Collapse
|
5
|
Zhao Y, Yang M, Wang S, Abbas SJ, Zhang J, Li Y, Shao R, Liu Y. An Overview of Epigenetic Methylation in Pancreatic Cancer Progression. Front Oncol 2022; 12:854773. [PMID: 35296007 PMCID: PMC8918690 DOI: 10.3389/fonc.2022.854773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Over the past decades, the aberrant epigenetic modification, apart from genetic alteration, has emerged as dispensable events mediating the transformation of pancreatic cancer (PC). However, the understanding of molecular mechanisms of methylation modifications, the most abundant epigenetic modifications, remains superficial. In this review, we focused on the mechanistic insights of DNA, histone, and RNA methylation that regulate the progression of PC. The methylation regulators including writer, eraser and reader participate in the modification of gene expression associated with cell proliferation, invasion and apoptosis. Some of recent clinical trials on methylation drug targeting were also discussed. Understanding the novel regulatory mechanisms in the methylation modification may offer alternative opportunities to improve therapeutic efficacy to fight against this dismal disease.
Collapse
Affiliation(s)
- Yuhao Zhao
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Mao Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Shijia Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Sk Jahir Abbas
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
| | - Junzhe Zhang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Yongsheng Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Rong Shao
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yingbin Liu, ; Rong Shao,
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- *Correspondence: Yingbin Liu, ; Rong Shao,
| |
Collapse
|
6
|
Torres MB, Dixon MEB, Gusani NJ. Undertreatment of Pancreatic Cancer: The Intersection of Bias, Biology, and Geography. Surg Oncol Clin N Am 2021; 31:43-54. [PMID: 34776063 DOI: 10.1016/j.soc.2021.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pancreatic cancer is the third leading cause of cancer deaths in the United States. Black patients with pancreatic cancer experience higher incidence and increased mortality. Although racial biologic differences exist, socioeconomic status, insurance type, physician bias, and patient beliefs contribute to the disparities in outcomes observed among patients who are Black, indigenous, and people of color.
Collapse
Affiliation(s)
- Madeline B Torres
- General Surgery, Department of Surgery, Penn State Health Milton S. Hershey Medical Center, 500 University Avenue MC H149, Hershey, PA 17033, USA. https://twitter.com/MadelineBTorres
| | - Matthew E B Dixon
- Division of Surgical Oncology, Penn State Health Milton S. Hershey Medical Center, 500 University Avenue MC H070, Hershey, PA 17036, USA. https://twitter.com/mebdixon
| | - Niraj J Gusani
- Section of Surgical Oncology, Baptist MD Anderson Cancer Center, 1301 Palm Avenue, Jacksonville, FL 32207, USA.
| |
Collapse
|
7
|
Singhal SK, Byun JS, Park S, Yan T, Yancey R, Caban A, Hernandez SG, Hewitt SM, Boisvert H, Hennek S, Bobrow M, Ahmed MSU, White J, Yates C, Aukerman A, Vanguri R, Bareja R, Lenci R, Farré PL, De Siervi A, Nápoles AM, Vohra N, Gardner K. Kaiso (ZBTB33) subcellular partitioning functionally links LC3A/B, the tumor microenvironment, and breast cancer survival. Commun Biol 2021; 4:150. [PMID: 33526872 PMCID: PMC7851134 DOI: 10.1038/s42003-021-01651-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 12/29/2020] [Indexed: 12/30/2022] Open
Abstract
The use of digital pathology for the histomorphologic profiling of pathological specimens is expanding the precision and specificity of quantitative tissue analysis at an unprecedented scale; thus, enabling the discovery of new and functionally relevant histological features of both predictive and prognostic significance. In this study, we apply quantitative automated image processing and computational methods to profile the subcellular distribution of the multi-functional transcriptional regulator, Kaiso (ZBTB33), in the tumors of a large racially diverse breast cancer cohort from a designated health disparities region in the United States. Multiplex multivariate analysis of the association of Kaiso’s subcellular distribution with other breast cancer biomarkers reveals novel functional and predictive linkages between Kaiso and the autophagy-related proteins, LC3A/B, that are associated with features of the tumor immune microenvironment, survival, and race. These findings identify effective modalities of Kaiso biomarker assessment and uncover unanticipated insights into Kaiso’s role in breast cancer progression. Through automated image analysis, Singhal et al quantify nuclear versus cytoplasmic distribution of the Kaiso transcription factor in breast cancer patient tissue. They find that Kaiso distribution correlates with breast cancer subtype and overall survival, and discover a link between cytoplasmic Kaiso and autophagy marker LC3.
Collapse
Affiliation(s)
- Sandeep K Singhal
- Department of Pathology, School of Medicine and Health Sciences, Department of Computer Science, School of Electrical Engineering and Computer Science, University of North Dakota, Grand Forks, ND, USA
| | - Jung S Byun
- Division of Intramural Research, National Institutes of Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, USA
| | - Samson Park
- Division of Intramural Research, National Institutes of Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, USA
| | - Tingfen Yan
- Division of Intramural Research, National Institutes of Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, USA.,National Institutes of Genome Research, National Institutes of Health, Bethesda, MD, USA
| | - Ryan Yancey
- Department of Pathology and Cell Biology, Columbia University Irvine Medical Center, New York, NY, USA
| | - Ambar Caban
- Department of Pathology and Cell Biology, Columbia University Irvine Medical Center, New York, NY, USA
| | - Sara Gil Hernandez
- Division of Intramural Research, National Institutes of Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, USA
| | - Stephen M Hewitt
- Laboratory of Pathology, Centers for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | - Md Shakir Uddin Ahmed
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, Al, USA
| | - Jason White
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, Al, USA
| | - Clayton Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, Al, USA
| | - Andrew Aukerman
- Department of Pathology and Cell Biology, Columbia University Irvine Medical Center, New York, NY, USA
| | - Rami Vanguri
- Department of Pathology and Cell Biology, Columbia University Irvine Medical Center, New York, NY, USA
| | - Rohan Bareja
- Department Computer Science Department, Columbia University, New York, NY, USA
| | - Romina Lenci
- Department of Pathology and Cell Biology, Columbia University Irvine Medical Center, New York, NY, USA
| | - Paula Lucia Farré
- Laboratorio de Oncologıa Molecular y Nuevos Blancos Terapeuticos, Instituto de Biologıa y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Adriana De Siervi
- Laboratorio de Oncologıa Molecular y Nuevos Blancos Terapeuticos, Instituto de Biologıa y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Anna María Nápoles
- Division of Intramural Research, National Institutes of Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, USA
| | - Nasreen Vohra
- Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Kevin Gardner
- Department of Pathology and Cell Biology, Columbia University Irvine Medical Center, New York, NY, USA.
| |
Collapse
|
8
|
Hodges AJ, Hudson NO, Buck-Koehntop BA. Cys 2His 2 Zinc Finger Methyl-CpG Binding Proteins: Getting a Handle on Methylated DNA. J Mol Biol 2019:S0022-2836(19)30567-4. [PMID: 31628952 DOI: 10.1016/j.jmb.2019.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022]
Abstract
DNA methylation is an essential epigenetic modification involved in the maintenance of genomic stability, preservation of cellular identity, and regulation of the transcriptional landscape needed to maintain cellular function. In an increasing number of disease conditions, DNA methylation patterns are inappropriately distributed in a manner that supports the disease phenotype. Methyl-CpG binding proteins (MBPs) are specialized transcription factors that read and translate methylated DNA signals into recruitment of protein assemblies that can alter local chromatin architecture and transcription. MBPs thus play a key intermediary role in gene regulation for both normal and diseased cells. Here, we highlight established and potential structure-function relationships for the best characterized members of the zinc finger (ZF) family of MBPs in propagating DNA methylation signals into downstream cellular responses. Current and future investigations aimed toward expanding our understanding of ZF MBP cellular roles will provide needed mechanistic insight into normal and disease state functions, as well as afford evaluation for the potential of these proteins as epigenetic-based therapeutic targets.
Collapse
Affiliation(s)
- Amelia J Hodges
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Nicholas O Hudson
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Bethany A Buck-Koehntop
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
9
|
Liu KH, Hung CY, Hsueh SW, Chang PH, Chen YY, Lu CH, Chen PT, Yeh KY, Huang PW, Tsang NM, Hung YS, Chou WC. Lung Metastases in Patients with Stage IV Pancreatic Cancer: Prevalence, Risk Factors, and Survival Impact. J Clin Med 2019; 8:jcm8091402. [PMID: 31500146 PMCID: PMC6780197 DOI: 10.3390/jcm8091402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 08/29/2019] [Accepted: 09/05/2019] [Indexed: 02/08/2023] Open
Abstract
The aim of this study was to evaluate the prevalence, the clinicopathological variables associated with probability of lung metastases, and the impact of lung metastases on survival outcome in patients with stage IV pancreatic cancer (PC) treated with palliative chemotherapy. A total of 654 patients with stage IV PC who underwent palliative chemotherapy from 2010–2016 were retrospectively enrolled in this study. Possible clinical variables associated with lung metastases and survival outcome were examined by univariate and multivariate analysis. Lung metastases were detected in 15.0% (3.4% with isolated lung metastases and 11.6% with synchronic metastases to lung and other organs). Female gender, poorly differentiated tumor grade, and large primary tumor size were independent risk factor in multivariate analysis. The median overall survival (OS) time was 6.5 months in the entire cohort, while the median OS was 11.8, 6.9, 7.7, 10.1, and 5.0 months for patients with isolated lung, isolated liver, isolated peritoneum, isolated distant lymph nodes, and multiple sites metastases, respectively. Isolated lung metastases were a better prognosticator for OS in univariate and multivariate analysis. This study utilized real-world clinical practice data to assess the prevalence, risk factors, and survival impact of lung metastases in patients with stage IV pancreatic cancer.
Collapse
Affiliation(s)
- Keng-Hao Liu
- Department of Surgery; Chang Gung Memorial Hospital at Linkou, Linkou 333, Taiwan
| | - Chia-Yen Hung
- Department of Hematology-Oncology; Chang Gung Memorial Hospital at Linkou, Linkou 333, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei 104, Taiwan
| | - Shu-Wen Hsueh
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Keelung, Keelung 204, Taiwan
| | - Pei-Hung Chang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Keelung, Keelung 204, Taiwan
| | - Yen-Yang Chen
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Kaohsiung, Kaohsiung 833, Taiwan
| | - Chang-Hsien Lu
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Chiayi, Chiayi 612, Taiwan
| | - Ping-Tsung Chen
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Chiayi, Chiayi 612, Taiwan
| | - Kun-Yun Yeh
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Keelung, Keelung 204, Taiwan
| | - Pei-Wei Huang
- Department of Hematology-Oncology; Chang Gung Memorial Hospital at Linkou, Linkou 333, Taiwan
| | - Ngan-Ming Tsang
- Department of Radiation Oncology, Chang Gung Memorial Hospital at Linkou, Linkou, 333, Taiwan
| | - Yu-Shin Hung
- Department of Hematology-Oncology; Chang Gung Memorial Hospital at Linkou, Linkou 333, Taiwan
| | - Wen-Chi Chou
- Department of Hematology-Oncology; Chang Gung Memorial Hospital at Linkou, Linkou 333, Taiwan.
| |
Collapse
|
10
|
Closing the Disparity in Pancreatic Cancer Outcomes: A Closer Look at Nonmodifiable Factors and Their Potential Use in Treatment. Pancreas 2019; 48:242-249. [PMID: 30629027 DOI: 10.1097/mpa.0000000000001238] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES African Americans (AAs) have disproportionately higher incidence and lower survival rates from pancreatic cancer compared with whites. Historically, this disparity has been attributed to modifiable risk factors. Recent studies suggest that nonmodifiable aspects may also play an important role. We review these new contributions as potential targets for closing the disparity. METHODS A PubMed search was conducted to review studies of nonmodifiable elements contributing to pancreatic cancer disparities in AAs. RESULTS Several nonmodifiable risks are associated with the racial disparity in pancreatic cancer. SSTR5 P335L, Kaiso, and KDM4/JMJD2A demonstrate differential racial expression, increasing their potential as therapeutic targets. Many social determinants of health and their associations with diabetes, obesity, and the microbiome are partially modifiable risk factors that significantly contribute to outcomes in minorities. Barriers to progress include the low minority inclusion in research studies. CONCLUSIONS Genomics, epigenetics, the microbiome, and social determinants of health are components that contribute to the pancreatic cancer disparity in AAs. These factors can be researched, targeted, and modified to improve mortality rates. Closing the disparity in pancreatic cancer will require an integrated approach of personalized medicine, increased minority recruitment to studies, and advanced health care/education access.
Collapse
|
11
|
Pierre CC, Hercules SM, Yates C, Daniel JM. Dancing from bottoms up - Roles of the POZ-ZF transcription factor Kaiso in Cancer. Biochim Biophys Acta Rev Cancer 2018; 1871:64-74. [PMID: 30419310 DOI: 10.1016/j.bbcan.2018.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/05/2018] [Accepted: 10/07/2018] [Indexed: 12/11/2022]
Abstract
The POZ-ZF transcription factor Kaiso was discovered two decades ago as a binding partner for p120ctn. Since its discovery, roles for Kaiso in diverse biological processes (epithelial-to-mesenchymal transition, apoptosis, inflammation) and several signalling pathways (Wnt/β-catenin, TGFβ, EGFR, Notch) have emerged. While Kaiso's biological role in normal tissues has yet to be fully elucidated, Kaiso has been increasingly implicated in multiple human cancers including colon, prostate, ovarian, lung, breast and chronic myeloid leukemia. In the majority of human cancers investigated to date, high Kaiso expression correlates with aggressive tumor characteristics including proliferation and metastasis, and/or poor prognosis. More recently, interest in Kaiso stems from its apparent correlation with racial disparities in breast and prostate cancer incidence and survival outcomes in people of African Ancestry. This review discusses Kaiso's role in various cancers, and Kaiso's potential for driving racial disparities in incidence and/or outcomes in people of African ancestry.
Collapse
Affiliation(s)
- Christina C Pierre
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Shawn M Hercules
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Clayton Yates
- Department of Biology, Center for Cancer Research, Tuskegee University, Tuskegee, AL, USA
| | - Juliet M Daniel
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| |
Collapse
|
12
|
Abisoye-Ogunniyan A, Lin H, Ghebremedhin A, Salam AB, Karanam B, Theodore S, Jones-Trich J, Davis M, Grizzle W, Wang H, Yates C. Transcriptional repressor Kaiso promotes epithelial to mesenchymal transition and metastasis in prostate cancer through direct regulation of miR-200c. Cancer Lett 2018; 431:1-10. [PMID: 29751044 DOI: 10.1016/j.canlet.2018.04.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 01/06/2023]
Abstract
The loss of miR-200 family, through DNA methylation, results in cancer cells undergoing an epithelial to mesenchymal transition (EMT), and metastasis. In this study, we established that the transcriptional repressor Kaiso directly binds methylated regions of the miR-200 family, and this is reversed with 5-aza treatment. sh-Kaiso PC-3 cells display increased miR-200-a/b/c, miR-141, and miR-429 expression, with miR-200c demonstrating the most significant increase. Interestingly, overexpression of EGFR or treatment with EGF decreases miR-200c expression and this is reversed after treatment with EGFR specific kinase inhibitor PD153035. However, EGF did not have a significant effect on miR-200c in sh-Kaiso DU-145 or PC-3 cell lines, suggesting Kaiso silences miR-200c through the activation of EGFR signaling. Overexpression of Kaiso in LNCaP cells results in decreased expression of miR-200-a/b/c, miR-141, and miR-429, along with increased expression of ZEB1, p-EGFR and total EGFR levels. Overexpression of miR200c in PC-3 cells results in decreased expression of EGFR, ZEB1, ERK1/2 and Kaiso. Additionally, sh-Kaiso PC-3 demonstrates reduced in vivo tumor formation and metastasis. Thus, our data suggests that EGFR signaling regulates the silencing of miR-200 family through Kaiso binding to methylated regions in the promoter.
Collapse
Affiliation(s)
| | - Huxian Lin
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, 36088, USA
| | - Anghesom Ghebremedhin
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, 36088, USA
| | - Ahmad Bin Salam
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, 36088, USA
| | - Balasubramanyam Karanam
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, 36088, USA
| | - Shaniece Theodore
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, 36088, USA
| | | | - Melissa Davis
- Department of Surgery, Henry Ford Medical Center, Detroit, MI, USA
| | - William Grizzle
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Honghe Wang
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, 36088, USA
| | - Clayton Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, 36088, USA.
| |
Collapse
|
13
|
Bassey-Archibong BI, Hercules SM, Rayner LGA, Skeete DHA, Smith Connell SP, Brain I, Daramola A, Banjo AAF, Byun JS, Gardner K, Dushoff J, Daniel JM. Kaiso is highly expressed in TNBC tissues of women of African ancestry compared to Caucasian women. Cancer Causes Control 2017; 28:1295-1304. [PMID: 28887687 PMCID: PMC5681979 DOI: 10.1007/s10552-017-0955-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 08/31/2017] [Indexed: 12/22/2022]
Abstract
Purpose Triple-negative breast cancer (TNBC) is most prevalent in young women of African ancestry (WAA) compared to women of other ethnicities. Recent studies found a correlation between high expression of the transcription factor Kaiso, TNBC aggressiveness, and ethnicity. However, little is known about Kaiso expression and localization patterns in TNBC tissues of WAA. Herein, we analyze Kaiso expression patterns in TNBC tissues of African (Nigerian), Caribbean (Barbados), African American (AA), and Caucasian American (CA) women. Methods Formalin-fixed and paraffin embedded (FFPE) TNBC tissue blocks from Nigeria and Barbados were utilized to construct a Nigerian/Barbadian tissue microarray (NB-TMA). This NB-TMA and a commercially available TMA comprising AA and CA TNBC tissues (AA-CA-YTMA) were subjected to immunohistochemistry to assess Kaiso expression and subcellular localization patterns, and correlate Kaiso expression with TNBC clinical features. Results Nigerian and Barbadian women in our study were diagnosed with TNBC at a younger age than AA and CA women. Nuclear and cytoplasmic Kaiso expression was observed in all tissues analyzed. Analysis of Kaiso expression in the NB-TMA and AA-CA-YTMA revealed that nuclear Kaiso H scores were significantly higher in Nigerian, Barbadian, and AA women compared with CA women. However, there was no statistically significant difference in nuclear Kaiso expression between Nigerian versus Barbadian women, or Barbadian versus AA women. Conclusions High levels of nuclear Kaiso expression were detected in patients with a higher degree of African heritage compared to their Caucasian counterparts, suggesting a role for Kaiso in TNBC racial disparity. Electronic supplementary material The online version of this article (doi:10.1007/s10552-017-0955-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Shawn M Hercules
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | | | - Desiree H A Skeete
- Department of Pathology, Queen Elizabeth Hospital (QEH), Bridgetown, Barbados.,Faculty of Medical Sciences, The University of the West Indies, Cave Hill Campus, Bridgetown, Barbados
| | - Suzanne P Smith Connell
- Faculty of Medical Sciences, The University of the West Indies, Cave Hill Campus, Bridgetown, Barbados.,Department of Radiation Oncology, Queen Elizabeth Hospital (QEH), Bridgetown, Barbados
| | - Ian Brain
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Adetola Daramola
- Department of Anatomic and Molecular Pathology, Lagos University Teaching Hospital (LUTH), Lagos, Nigeria
| | - Adekunbiola A F Banjo
- Department of Anatomic and Molecular Pathology, Lagos University Teaching Hospital (LUTH), Lagos, Nigeria
| | - Jung S Byun
- Genetics Branch, National Institute of Health, Bethesda, MD, USA
| | - Kevin Gardner
- Genetics Branch, National Institute of Health, Bethesda, MD, USA
| | - Jonathan Dushoff
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Juliet M Daniel
- Department of Biology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
14
|
Loss of Kaiso expression in breast cancer cells prevents intra-vascular invasion in the lung and secondary metastasis. PLoS One 2017; 12:e0183883. [PMID: 28880889 PMCID: PMC5589175 DOI: 10.1371/journal.pone.0183883] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 08/14/2017] [Indexed: 01/04/2023] Open
Abstract
The metastatic activity of breast carcinomas results from complex genetic changes in epithelial tumor cells and accounts for 90% of deaths in affected patients. Although the invasion of the local lymphatic vessels and veins by malignant breast tumor cells and their subsequent metastasis to the lung, has been recognized, the mechanisms behind the metastatic activity of breast tumor cells to other distal organs and the pathogenesis of metastatic cancer are not well understood. In this study, we utilized derivatives of the well-established and highly metastatic triple negative breast cancer (TNBC) cell line MDA-MB-231 (MDA-231) to study breast tumor metastasis in a mouse model. These MDA-231 derivatives had depleted expression of Kaiso, a POZ-ZF transcription factor that is highly expressed in malignant, triple negative breast cancers. We previously reported that Kaiso depletion attenuates the metastasis of xenografted MDA-231 cells. Herein, we describe the pathological features of the metastatic activity of parental (Kaisopositive) versus Kaisodepleted MDA-231 cells. Both Kaisopositive and Kaisodepleted MDA-231 cells metastasized from the original tumor in the mammary fat pad to the lung. However, while Kaisopositive cells formed large masses in the lung parenchyma, invaded large pulmonary blood vessels and formed secondary metastases and large tumors in the distal organs, Kaisodepleted cells metastasized only to the lung where they formed small metastatic lesions. Importantly, intravascular invasion and secondary metastases in distal organs were not observed in mice xenografted with Kaisodepleted cells. It thus appears that the lung may constitute a barrier for less invasive breast tumors such as the Kaisodepleted TNBC cells; this barrier may limit tumor growth and prevents Kaisodepleted TNBC cells from invading the pulmonary blood vessels and forming secondary metastases in distal organs.
Collapse
|
15
|
Robinson SC, Donaldson-Kabwe NS, Dvorkin-Gheva A, Longo J, He L, Daniel JM. The POZ-ZF transcription factor Znf131 is implicated as a regulator of Kaiso-mediated biological processes. Biochem Biophys Res Commun 2017; 493:416-421. [PMID: 28882591 DOI: 10.1016/j.bbrc.2017.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/03/2017] [Indexed: 12/14/2022]
Abstract
Znf131 belongs to the family of POZ-ZF transcription factors, but, in contrast to most other characterized POZ-ZF proteins that function as transcriptional repressors, Znf131 acts as a transcriptional activator. Znf131 heterodimerizes with the POZ-ZF protein Kaiso, which itself represses a subset of canonical Wnt target genes, including the cell cycle regulator Cyclin D1. Herein, we report a possible role for Znf131 in Kaiso-mediated processes. Notably, we found that Znf131 associates with several Kaiso target gene promoters, including that of CCND1. ChIP analysis revealed that Znf131 indirectly associates with the CCND1 promoter in HCT116 and MCF7 cells via a region that encompasses the previously characterized +69 Kaiso Binding Site, hinting that the Znf131/Kaiso heterodimer may co-regulate Cyclin D1 expression. We also demonstrate that Kaiso inhibits Znf131 expression, raising the possibility that Kaiso and Znf131 act to fine-tune target gene expression. Together, our findings implicate Znf131 as a co-regulator of Kaiso-mediated biological processes.
Collapse
Affiliation(s)
| | | | - Anna Dvorkin-Gheva
- Department of Pathology and Molecular Medicine, Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Joseph Longo
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Lloyd He
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Juliet M Daniel
- Department of Biology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
16
|
Pozner A, Terooatea TW, Buck-Koehntop BA. Cell-specific Kaiso (ZBTB33) Regulation of Cell Cycle through Cyclin D1 and Cyclin E1. J Biol Chem 2016; 291:24538-24550. [PMID: 27694442 DOI: 10.1074/jbc.m116.746370] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/19/2016] [Indexed: 12/11/2022] Open
Abstract
The correlation between aberrant DNA methylation with cancer promotion and progression has prompted an interest in discerning the associated regulatory mechanisms. Kaiso (ZBTB33) is a specialized transcription factor that selectively recognizes methylated CpG-containing sites as well as a sequence-specific DNA target. Increasing reports link ZBTB33 overexpression and transcriptional activities with metastatic potential and poor prognosis in cancer, although there is little mechanistic insight into how cells harness ZBTB33 transcriptional capabilities to promote and progress disease. Here we report mechanistic details for how ZBTB33 mediates cell-specific cell cycle regulation. By utilizing ZBTB33 depletion and overexpression studies, it was determined that in HeLa cells ZBTB33 directly occupies the promoters of cyclin D1 and cyclin E1, inducing proliferation by promoting retinoblastoma phosphorylation and allowing for E2F transcriptional activity that accelerates G1- to S-phase transition. Conversely, in HEK293 cells ZBTB33 indirectly regulates cyclin E abundance resulting in reduced retinoblastoma phosphorylation, decreased E2F activity, and decelerated G1 transition. Thus, we identified a novel mechanism by which ZBTB33 mediates the cyclin D1/cyclin E1/RB1/E2F pathway, controlling passage through the G1 restriction point and accelerating cancer cell proliferation.
Collapse
Affiliation(s)
- Amir Pozner
- From the Department of Chemistry, University of Utah, Salt Lake City, Utah 84112
| | - Tommy W Terooatea
- From the Department of Chemistry, University of Utah, Salt Lake City, Utah 84112
| | | |
Collapse
|