1
|
Wilke N, Frias C, Berkessel A, Prokop A. (2,6-Dimethylphenyl)arsonic Acid Induces Apoptosis through the Mitochondrial Pathway, Downregulates XIAP, and Overcomes Multidrug Resistance to Cytostatic Drugs in Leukemia and Lymphoma Cells In Vitro. Int J Mol Sci 2024; 25:4713. [PMID: 38731935 PMCID: PMC11083614 DOI: 10.3390/ijms25094713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Cancer treatment is greatly challenged by drug resistance, highlighting the need for novel drug discoveries. Here, we investigated novel organoarsenic compounds regarding their resistance-breaking and apoptosis-inducing properties in leukemia and lymphoma. Notably, the compound (2,6-dimethylphenyl)arsonic acid (As2) demonstrated significant inhibition of cell proliferation and induction of apoptosis in leukemia and lymphoma cells while sparing healthy leukocytes. As2 reached half of its maximum activity (AC50) against leukemia cells at around 6.3 µM. Further experiments showed that As2 overcomes multidrug resistance and sensitizes drug-resistant leukemia and lymphoma cell lines to treatments with the common cytostatic drugs vincristine, daunorubicin, and cytarabine at low micromolar concentrations. Mechanistic investigations of As2-mediated apoptosis involving FADD (FAS-associated death domain)-deficient or Smac (second mitochondria-derived activator of caspases)/DIABLO (direct IAP binding protein with low pI)-overexpressing cell lines, western blot analysis of caspase-9 cleavage, and measurements of mitochondrial membrane integrity identified the mitochondrial apoptosis pathway as the main mode of action. Downregulation of XIAP (x-linked inhibitor of apoptosis protein) and apoptosis induction independent of Bcl-2 (B-cell lymphoma 2) and caspase-3 expression levels suggest the activation of additional apoptosis-promoting mechanisms. Due to the selective apoptosis induction, the synergistic effects with common anti-cancer drugs, and the ability to overcome multidrug resistance in vitro, As2 represents a promising candidate for further preclinical investigations with respect to refractory malignancies.
Collapse
Affiliation(s)
- Nathalie Wilke
- Department of Pediatric Hematology/Oncology, Children’s Hospital Cologne, Amsterdamer Straße 59, 50735 Cologne, Germany
| | - Corazon Frias
- Department of Pediatric Hematology/Oncology, Children’s Hospital Cologne, Amsterdamer Straße 59, 50735 Cologne, Germany
- Department of Pediatric Oncology/Hematology, Helios Clinics Schwerin, Wismarsche Straße 393–397, 19049 Schwerin, Germany
- Medical School Hamburg (MSH), University of Applied Sciences and Medical University, Am Kaiserkai 1, 20457 Hamburg, Germany
| | - Albrecht Berkessel
- Department of Chemistry, Organic Chemistry, University of Cologne, Greinstraße 4, 50939 Cologne, Germany
| | - Aram Prokop
- Department of Pediatric Hematology/Oncology, Children’s Hospital Cologne, Amsterdamer Straße 59, 50735 Cologne, Germany
- Department of Pediatric Oncology/Hematology, Helios Clinics Schwerin, Wismarsche Straße 393–397, 19049 Schwerin, Germany
- Medical School Hamburg (MSH), University of Applied Sciences and Medical University, Am Kaiserkai 1, 20457 Hamburg, Germany
| |
Collapse
|
2
|
Hrgovic I, Zöller E, Doll M, Hailemariam-Jahn T, Jakob T, Kaufmann R, Meissner M, Kleemann J. Arsenic Trioxide Decreases Lymphangiogenesis by Inducing Apoptotic Pathways and Inhibition of Important Endothelial Cell Receptors. Curr Issues Mol Biol 2023; 46:67-80. [PMID: 38275666 PMCID: PMC10813910 DOI: 10.3390/cimb46010006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Tumor-induced lymphangiogenesis is strongly associated with the formation of tumor metastasis. Therefore, the regulation of lymphangiogenesis offers a promising target in cancer therapy. Arsenic trioxide (ATO) is highly effective in the treatment of patients with acute promyelocytic leukemia (APL). As ATO mediates anti-angiogenic effects on endothelial and tumor cells, we aimed to explore the impact of ATO on lymphangiogenesis in human lymphatic endothelial cells (LEC). The BrdU assay and flow cytometry analysis were used to evaluate the influence of ATO on the proliferation and cell cycle distribution of LECs. The lymphatic suppression effects of ATO were investigated in vitro using the lymphatic tube formation assay. The effects of ATO on apoptosis, mitochondrial membrane potential and endothelial cell receptors were investigated by Western blotting, ELISA, flow cytometry and qRT-PCR. The treatment of LECs with ATO attenuated cell proliferation, blocked tube formation and induced subG0/G1 arrest in LECs, thus suggesting enhanced apoptosis. Although subG0/G1 arrest was accompanied by the upregulation of p21 and p53, ATO treatment did not lead to visible cell cycle arrest in LECs. In addition, ATO caused apoptosis via the release of cytochrome c from mitochondria, activating caspases 3, 8 and 9; downregulating the anti-apoptotic proteins survivin, XIAP and cIAP-2; and upregulating the pro-apoptotic protein Fas. Furthermore, we observed that ATO inhibited the VEGF-induced proliferation of LECs, indicating that pro-survival VEGF/VEGFR signaling was affected by ATO treatment. Finally, we found that ATO inhibited the expression of the important endothelial cell receptors VEGFR-2, VEGFR-3, Tie-2 and Lyve-1. In conclusion, we demonstrate that ATO inhibits lymphangiogenesis by activating apoptotic pathways and inhibiting important endothelial cell receptors, which suggests that this drug should be further evaluated in the treatment of tumor-associated lymphangiogenesis.
Collapse
Affiliation(s)
- Igor Hrgovic
- Department of Dermatology and Allergy, Experimental Dermatology and Allergy Research Group, University Medical Center Giessen, Justus Liebig University, 35392 Giessen, Germany
| | - Eva Zöller
- Department of Dermatology, Venereology and Allergy, Goethe University, 60596 Frankfurt am Main, Germany
| | - Monika Doll
- Department of Dermatology, Venereology and Allergy, Goethe University, 60596 Frankfurt am Main, Germany
| | - Tsige Hailemariam-Jahn
- Department of Dermatology, Venereology and Allergy, Goethe University, 60596 Frankfurt am Main, Germany
| | - Thilo Jakob
- Department of Dermatology and Allergy, Experimental Dermatology and Allergy Research Group, University Medical Center Giessen, Justus Liebig University, 35392 Giessen, Germany
| | - Roland Kaufmann
- Department of Dermatology, Venereology and Allergy, Goethe University, 60596 Frankfurt am Main, Germany
| | - Markus Meissner
- Department of Dermatology, Venereology and Allergy, Goethe University, 60596 Frankfurt am Main, Germany
| | - Johannes Kleemann
- Department of Dermatology, Venereology and Allergy, Goethe University, 60596 Frankfurt am Main, Germany
| |
Collapse
|
3
|
Sarkar A, Paul A, Banerjee T, Maji A, Saha S, Bishayee A, Maity TK. Therapeutic advancements in targeting BCL-2 family proteins by epigenetic regulators, natural, and synthetic agents in cancer. Eur J Pharmacol 2023; 944:175588. [PMID: 36791843 DOI: 10.1016/j.ejphar.2023.175588] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Cancer is amongst the deadliest and most disruptive disorders, having a much higher death rate than other diseases worldwide. Human cancer rates continue to rise, thereby posing the most significant concerns for medical health professionals. In the last two decades, researchers have gone past several milestones in tackling cancer while gaining insight into the role of apoptosis in cancer or targeting various biomarker tools for prognosis and diagnosis. Apoptosis which is still a topic full of complexities, can be controlled considerably by B-cell lymphoma 2 (BCL-2) and its family members. Therefore, targeting proteins of this family to prevent tumorigenesis, is essential to focus on the pharmacological features of the anti-apoptotic and pro-apoptotic members, which will help to develop and manage this disorder. This review deals with the advancements of various epigenetic regulators to target BCL-2 family proteins, including the mechanism of several microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Similarly, a rise in natural and synthetic molecules' research over the last two decades has allowed us to acquire insights into understanding and managing the transcriptional alterations that have led to apoptosis and treating various neoplastic diseases. Furthermore, several inhibitors targeting anti-apoptotic proteins and inducers or activators targeting pro-apoptotic proteins in preclinical and clinical stages have been summarized. Overall, agonistic and antagonistic mechanisms of BCL-2 family proteins conciliated by epigenetic regulators, natural and synthetic agents have proven to be an excellent choice in developing cancer therapeutics.
Collapse
Affiliation(s)
- Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Abhik Paul
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Tanmoy Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Avik Maji
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Sanjukta Saha
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| | - Tapan Kumar Maity
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| |
Collapse
|
4
|
Current Advances of Nanomedicines Delivering Arsenic Trioxide for Enhanced Tumor Therapy. Pharmaceutics 2022; 14:pharmaceutics14040743. [PMID: 35456577 PMCID: PMC9026299 DOI: 10.3390/pharmaceutics14040743] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/18/2022] Open
Abstract
Arsenic trioxide (ATO) is one of the first-line chemotherapeutic drugs for acute promyelocytic leukemia. Its anti-cancer activities against various human neoplastic diseases have been extensively studied. However, the clinical use of ATO for solid tumors is limited, and these limitations are because of severe systemic toxicity, low bioavailability, and quick renal elimination before it reaches the target site. Although without much success, several efforts have been made to boost ATO bioavailability toward solid tumors without raising its dose. It has been found that nanomedicines have various advantages for drug delivery, including increased bioavailability, effectiveness, dose-response, targeting capabilities, and safety as compared to traditional drugs. Therefore, nanotechnology to deliver ATO to solid tumors is the main topic of this review, which outlines the previous and present medical applications of ATO. We also summarised ATO anti-cancer mechanisms, limitations, and outcomes of combinatorial treatment with chemo agents. As a result, we strongly recommend conducting pre-clinical and clinical studies of ATO, especially nano-system-based ones that might lead to a novel combination therapy for cancer treatment with high efficacy, bioavailability, and low toxicity for cancer patients.
Collapse
|
5
|
Wang J, Su G, Yan X, Zhang W, Jia J, Yan B. Predicting cytotoxicity of binary pollutants towards a human cell panel in environmental water by experimentation and deep learning methods. CHEMOSPHERE 2022; 287:132324. [PMID: 34563777 DOI: 10.1016/j.chemosphere.2021.132324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/12/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Biological assays are useful in water quality evaluation by providing the overall toxicity of chemical mixtures in environmental waters. However, it is impossible to elucidate the source of toxicity and some lethal combination of pollutants simply using biological assays. As facile and cost-effective methods, computation model-based toxicity assessments are complementary technologies. Herein, we predicted the human health risk of binary pollutant mixtures (i.e., binary combinations of As(III), Cd(II), Cr(VI), Pb(II) and F(I)) in water using in vitro biological assays and deep learning methods. By employing a human cell panel containing human stomach, colon, liver, and kidney cell lines, we assessed the human health risk mimicking cellular responses after oral exposures of environmental water containing pollutants. Based on the experimental cytotoxicity data in pure water, multi-task deep learning was applied to predict cellular response of binary pollutant mixtures in environmental water. Using additive descriptors and single pollutant toxicity data in pure water, the established deep learning model could predict the toxicity of most binary mixtures in environmental water, with coefficient of determination (R2) > 0.65 and root mean squared error (RMSE) < 0.22. Further combining the experimental data on synergistic and antagonistic effects of pollutant mixtures, deep learning helped improve the predictive ability of the model (R2 > 0.74 and RMSE <0.17). Moreover, predictive models allowed us identify a number of toxicity source-related physiochemical properties. This study illustrates the combination of experimental findings and deep learning methods in the water quality evaluation.
Collapse
Affiliation(s)
- Jiahui Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong, 226001, China.
| | - Xiliang Yan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, China.
| | - Wei Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, China
| | - Jianbo Jia
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, China
| | - Bing Yan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Peng X, Xiong X, Li Y, Feng C, Liu H, Wu P, Li C, Weng W. Encouraging Early Outcomes of Treatment With Arsenic Trioxide Combined With Chemotherapy for Alveolar Rhabdomyosarcoma in Children: 4 Case Reports. Front Oncol 2021; 11:751623. [PMID: 34778066 PMCID: PMC8586416 DOI: 10.3389/fonc.2021.751623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
Background Alveolar rhabdomyosarcoma (ARMS) is a subtype of rhabdomyosarcoma characterized by its aggressive behavior and poor prognosis, highlighting the need for novel treatment options. Arsenic trioxide (ATO) has been shown to specifically inhibit tumor growth and the metastasis of ARMS in vitro by acting on the hedgehog pathway. Here we report on a pilot clinical study to evaluate the activity of an ATO-combined chemotherapy approach for the treatment of ARMS patients. Methods We designed a therapeutic schedule of an ATO-combined chemotherapy, incorporating comprehensive management according to the Intergroup Rhabdomyosarcoma Study Group protocol. ATO was administered at 0.16 mg/kg per day over 8 h via an IV for 10 days combined with a chemotherapeutic regimen of vincristine, actinomycin, and cyclophosphamide (VAC regimen) on the third day, which was repeated every 21 days. A total of eight cycles of ATO-combined chemotherapy were applied throughout the entire scheme. Results A total of three refractory/recurrent and one untreated ARMS patient, three male and one female, with a median age of 5.8 years (range, 5.1 to 12.5 years), were enrolled in the present study. All patients were sensitive to combined chemotherapy with ATO and achieved partial or complete remission during treatment. Except for reversible gastrointestinal reaction and myelosuppression, no other adverse events were observed during the process of treatment. Conclusions The combined chemotherapy of ATO and the VAC regimen exhibited beneficial activities against ARMS in pediatrics and was well tolerated, but prospective large-scale clinical trials are warranted to determine the long-term efficacy, optimal courses, and late toxicity in this population.
Collapse
Affiliation(s)
- Xiaomin Peng
- Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xilin Xiong
- Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yang Li
- Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chuchu Feng
- Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongyan Liu
- Hematology and Oncology Department ward 7, Beijing Jingdu Children's Hospital, Beijing, China
| | - Pingping Wu
- Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chunmou Li
- Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wenjun Weng
- Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
7
|
Abele M, Müller SL, Schleicher S, Hartmann U, Döring M, Queudeville M, Lang P, Handgretinger R, Ebinger M. Arsenic trioxide in pediatric cancer - a case series and review of literature. Pediatr Hematol Oncol 2021; 38:471-485. [PMID: 33635158 DOI: 10.1080/08880018.2021.1872748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Arsenic trioxide (ATO) has become an established component of treatment protocols for acute promyelocytic leukemia (APL) with excellent efficacy and no relevant sustained toxicity. Part of its action has been attributed to the inhibition of Hedgehog signaling (Hh) which enables a possible therapeutic approach as many pediatric tumor entities have been associated with increased Hh activity. We retrospectively analyzed 31 patients with refractory and relapsed pediatric cancer who were treated with ATO at the University Children's Hospital of Tuebingen. Additionally a literature review on the clinical and preclinical use of ATO in pediatric cancer treatment was performed.ATO alone as well as combinations with other drugs have proven effective in vitro and in mouse models of various pediatric malignancies. However, only few data on the clinical use of ATO in pediatric patients besides APL exist. In our patient sample, ATO was overall well tolerated in the treatment of various pediatric cancers, even in combination with other cytostatic drugs. Due to distinct tumor entities, differently progressed disease stages and varying co-medication, no clear statement can be made regarding the efficacy of ATO treatment. However, patients with proven Hh activation in molecular tumor profiling surpassed all other patients, who received ATO in an experimental treatment setting, in terms of survival. As molecular profiling of tumors increases and enhanced Hh activity can be detected at an early stage, ATO might expand its clinical use to other pediatric malignancies beyond APL depending on further clinical studies.
Collapse
Affiliation(s)
- Michael Abele
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | - Sara-Lena Müller
- Clinic for Anaesthesiology, Critical Care, Emergency Medicine and Pain Management, Klinikum Ludwigsburg, Germany
| | - Sabine Schleicher
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | | | - Michaela Döring
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | - Manon Queudeville
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | - Peter Lang
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | - Rupert Handgretinger
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | - Martin Ebinger
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
8
|
Manzella G, Moonamale DC, Römmele M, Bode P, Wachtel M, Schäfer BW. A combinatorial drug screen in PDX-derived primary rhabdomyosarcoma cells identifies the NOXA - BCL-XL/MCL-1 balance as target for re-sensitization to first-line therapy in recurrent tumors. Neoplasia 2021; 23:929-938. [PMID: 34329950 PMCID: PMC8329430 DOI: 10.1016/j.neo.2021.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/15/2021] [Accepted: 07/02/2021] [Indexed: 01/31/2023] Open
Abstract
First-line therapy for most pediatric sarcoma is based on chemotherapy in combination with radiotherapy and surgery. A significant number of patients experience drug resistance and development of relapsed tumors. Drugs that have the potential to re-sensitize relapsed tumor cells toward chemotherapy treatment are therefore of great clinical interest. Here, we used a drug profiling platform with PDX-derived primary rhabdomyosarcoma cells to screen a large drug library for compounds re-sensitizing relapse tumor cells toward standard chemotherapeutics used in rhabdomyosarcoma therapy. We identified ABT-263 (navitoclax) as most potent compound enhancing general chemosensitivity and used different pharmacologic and genetic approaches in vitro and in vivo to detect the NOXA-BCL-XL/MCL-1 balance to be involved in modulating drug response. Our data therefore suggests that players of the intrinsic mitochondrial apoptotic cascade are major targets for stimulation of response toward first-line therapies in rhabdomyosarcoma.
Collapse
Affiliation(s)
- Gabriele Manzella
- Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Devmini C Moonamale
- Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Michaela Römmele
- Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Peter Bode
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Marco Wachtel
- Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Beat W Schäfer
- Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland.
| |
Collapse
|
9
|
Ceritinib-Induced Regression of an Insulin-Like Growth Factor-Driven Neuroepithelial Brain Tumor. Int J Mol Sci 2019; 20:ijms20174267. [PMID: 31480400 PMCID: PMC6747232 DOI: 10.3390/ijms20174267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/15/2019] [Accepted: 08/28/2019] [Indexed: 12/25/2022] Open
Abstract
The insulin-like growth factor (IGF) pathway plays an important role in several brain tumor entities. However, the lack of inhibitors crossing the blood–brain barrier remains a significant obstacle for clinical translation. Here, we targeted the IGF pathway using ceritinib, an off-target inhibitor of the IGF1 receptor (IGF1R) and insulin receptor (INSR), in a pediatric patient with an unclassified brain tumor and a notch receptor 1 (NOTCH1) germline mutation. Pathway analysis of the tumor revealed activation of the sonic hedgehog (SHH), the wingless and integrated-1 (WNT), the IGF, and the Notch pathway. The proliferation of the patient tumor cells (225ZL) was inhibited by arsenic trioxide (ATO), which is an inhibitor of the SHH pathway, by linsitinib, which is an inhibitor of IGF1R and INSR, and by ceritinib. 225ZL expressed INSR but not IGF1R at the protein level, and ceritinib blocked the phosphorylation of INSR. Our first personalized treatment included ATO, but because of side effects, we switched to ceritinib. After 46 days, we achieved a concentration of 1.70 µM of ceritinib in the plasma, and after 58 days, MRI confirmed that there was a response to the treatment. Ceritinib accumulated in the tumor at a concentration of 2.72 µM. Our data suggest ceritinib as a promising drug for the treatment of IGF-driven brain tumors.
Collapse
|
10
|
Chen J, Tian B, Zhou C, Sun J, Lin L, Jin S, Liu Q, Fu S, Liu L, Liu H, Zhang Z, Li C, Wei H. A Novel Resveratrol-Arsenic Trioxide Combination Treatment Synergistically Induces Apoptosis of Adriamycin-Selected Drug-Resistant Leukemia K562 Cells. J Cancer 2019; 10:5483-5493. [PMID: 31632492 PMCID: PMC6775695 DOI: 10.7150/jca.34506] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/09/2019] [Indexed: 02/07/2023] Open
Abstract
Leukemia cells can develop resistance to apoptosis induced by chemotherapeutic agents. Concomitant multidrug resistance of cells remains the greatest clinical obstacle in the effective treatment of blood and solid tumors. Natural products have been identified that possess the capacity to modulate chemotherapeutic resistance and induce apopotosis. In this study, we generated adriamycin-resistant K562 leukemia (K562/RA) cells and compared the responses of sensitive and resistant leukemia cells to the natural products arsenic trioxide (ATO) and resveratrol (Rsv), with a view to determining whether Rsv potentiates the sensitivity of drug-resistant cells to ATO-induced apoptosis and the associated molecular mechanisms. Our results showed that resistance of K562/RA cells induced by adriamycin treatment was significantly higher (115.81-fold) than that of parental K562 cells. Simultaneously, K562/RA cells were cross-resistant to multiple agents, with the exception of ATO. Rsv enhanced the sensitivity of K562/RA cells to ATO and reduced the required dose of ATO as well as associated adverse reactions by promoting the proliferation inhibitory and apoptosis-inducing effects of ATO, which may be associated with reduced expression of the drug resistance genes mdr1/P-gp, mrp1/MRP1 and bcrp/BCRP, as well as the apoptotic inhibitory genes bcl-2, NF-κB and P53, and conversely, activation of caspase-3. Our collective findings indicate that ATO and Rsv synergistically enhance the sensitivity of drug-resistant leukemia cells to apoptosis.
Collapse
Affiliation(s)
- Jing Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000
| | - Baoying Tian
- Hanzhong vocational and technical college, Hanzhong, Shanxi, 723000
| | - Cunmin Zhou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000
| | - Jingjing Sun
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000
| | - Li Lin
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000
| | - Shucheng Jin
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000
| | - Quanrui Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000
| | - Siyu Fu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000
| | - Lian Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000
| | - Hang Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000
| | - Zhewen Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000
| | - Caili Li
- School of Medicine of Northwest University for Nationalities, Lanzhou, Gansu 730030, P.R. China
| | - Hulai Wei
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000
| |
Collapse
|
11
|
Concomitant targeting of Hedgehog signaling and MCL-1 synergistically induces cell death in Hedgehog-driven cancer cells. Cancer Lett 2019; 465:1-11. [PMID: 31465840 DOI: 10.1016/j.canlet.2019.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023]
Abstract
In the present study, we show that concomitant inhibition of Hedgehog (HH) signaling by the glioma-associated oncogene homolog1 (GLI1)-targeting agent GANT61 and the antiapoptotic BCL-2 protein family member MCL-1 by A-1210477 synergistically induces cell death in HH-driven cancers, i.e. rhabdomyosarcoma (RMS) and medulloblastoma (MB) cells. Combined genetic and pharmacological inhibition emphasized that co-treatment of GANT61 and A-1210477 indeed relies on inhibition of GLI1 (by GANT61) and MCL-1 (by A-1210477). Mechanistic studies revealed that A-1210477 triggers the release of BIM from MCL-1 and its shuttling to BCL-xL and BCL-2. Indeed, BIM proved to be required for GANT61/A-1210477-induced cell death, as genetic silencing of BIM using siRNA significantly rescues cell death upon GANT61/A-1210477 co-treatment. Similarly, genetic silencing of NOXA results in a significant reduction of GANT61/A-1210477-mediated cell death. Also, overexpression of MCL-1 or BCL-2 significantly protects RMS cells from GANT61/A-1210477-triggered cell death. Addition of the pan-caspase inhibitor zVAD.fmk significantly decreases GANT61/A-1210477-stimulated cell demise, indicating apoptotic cell death. In conclusion, GANT61 and A-1210477 synergize to engage mitochondrial apoptosis. These findings provide the rationale for further evaluation of dual inhibition of HH signaling and MCL-1 in HH-driven cancers.
Collapse
|
12
|
van Erp AEM, Versleijen-Jonkers YMH, van der Graaf WTA, Fleuren EDG. Targeted Therapy-based Combination Treatment in Rhabdomyosarcoma. Mol Cancer Ther 2019; 17:1365-1380. [PMID: 29967215 DOI: 10.1158/1535-7163.mct-17-1131] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/27/2018] [Accepted: 05/01/2018] [Indexed: 11/16/2022]
Abstract
Targeted therapies have revolutionized cancer treatment; however, progress lags behind in alveolar (ARMS) and embryonal rhabdomyosarcoma (ERMS), a soft-tissue sarcoma mainly occurring at pediatric and young adult age. Insulin-like growth factor 1 receptor (IGF1R)-directed targeted therapy is one of the few single-agent treatments with clinical activity in these diseases. However, clinical effects only occur in a small subset of patients and are often of short duration due to treatment resistance. Rational selection of combination treatments of either multiple targeted therapies or targeted therapies with chemotherapy could hypothetically circumvent treatment resistance mechanisms and enhance clinical efficacy. Simultaneous targeting of distinct mechanisms might be of particular interest in this regard, as this affects multiple hallmarks of cancer at once. To determine the most promising and clinically relevant targeted therapy-based combination treatments for ARMS and ERMS, we provide an extensive overview of preclinical and (early) clinical data concerning a variety of targeted therapy-based combination treatments. We concentrated on the most common classes of targeted therapies investigated in rhabdomyosarcoma to date, including those directed against receptor tyrosine kinases and associated downstream signaling pathways, the Hedgehog signaling pathway, apoptosis pathway, DNA damage response, cell-cycle regulators, oncogenic fusion proteins, and epigenetic modifiers. Mol Cancer Ther; 17(7); 1365-80. ©2018 AACR.
Collapse
Affiliation(s)
- Anke E M van Erp
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Winette T A van der Graaf
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands. .,The Institute of Cancer Research, Division of Clinical Studies, Clinical and Translational Sarcoma Research and The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Emmy D G Fleuren
- The Institute of Cancer Research, Division of Clinical Studies, Clinical and Translational Sarcoma Research, Sutton, United Kingdom.
| |
Collapse
|
13
|
Carpenter RL, Ray H. Safety and Tolerability of Sonic Hedgehog Pathway Inhibitors in Cancer. Drug Saf 2019; 42:263-279. [PMID: 30649745 DOI: 10.1007/s40264-018-0777-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The hedgehog pathway, for which sonic hedgehog (Shh) is the most prominent ligand, is highly conserved and is tightly associated with embryonic development in a number of species. This pathway is also tightly associated with the development of several types of cancer, including basal cell carcinoma (BCC) and acute promyelocytic leukemia, among many others. Inactivating mutations in Patched-1 (PTCH1), leading to ligand-independent pathway activation, are frequent in several cancer types, but most prominent in BCC. This has led to the development of several compounds targeting this pathway as a cancer therapeutic. These compounds target the inducers of this pathway in Smoothened (SMO) and the GLI transcription factors, although targeting SMO has had the most success. Despite the many attempts at targeting this pathway, only three US FDA-approved drugs for cancers affect the Shh pathway. Two of these compounds, vismodegib and sonidegib, target SMO to suppress signaling from either PTCH1 or SMO mutations that lead to upregulation of the pathway. The other approved compound is arsenic trioxide, which can suppress this pathway at the level of the GLI proteins, although current evidence suggests it also has other targets. This review focuses on the safety and tolerability of these clinically approved drugs targeting the Shh pathway, along with a discussion on other Shh pathway inhibitors being developed.
Collapse
Affiliation(s)
- Richard L Carpenter
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 1001 E. 3rd St, Bloomington, IN, 47405, USA. .,Medical Sciences, Indiana University School of Medicine, 1001 E. 3rd St, Bloomington, IN, 47405, USA. .,Simon Cancer Center, Indiana University School of Medicine, 535 Barnhill Dr., Indianapolis, IN, 46202, USA.
| | - Haimanti Ray
- Medical Sciences, Indiana University School of Medicine, 1001 E. 3rd St, Bloomington, IN, 47405, USA
| |
Collapse
|
14
|
Feng C, Gong R, Zheng Q, Yan G, He M, Lei H, Li X, Zhang L, Xu Z, Liu S, Yu M, Ma T, Gao M, Bamba D, Idiiatullina E, Zagidullin N, Pavlov V, Xu C, Yuan Y, Yang L. Synergistic anti-tumor effects of arsenic trioxide and blue LED irradiation on human osteosarcoma. Int J Biol Sci 2019; 15:386-394. [PMID: 30745828 PMCID: PMC6367547 DOI: 10.7150/ijbs.28356] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 11/11/2018] [Indexed: 12/15/2022] Open
Abstract
Arsenic trioxide (ATO) has been well recognized as an anti-tumor agent for various human cancers. Recently, the blue light emitting diodes (LEDs)-based therapy has also been demonstrated to be potential therapeutic strategies for several cancers. However, the combination effects of ATO and blue LED on tumor suppression are still unclear. In this study, we determined whether combination of ATO and blue LED irradiation at 470 nm in wavelength exhibited superior anti-tumor activity in human osteosarcoma (OS). We observed that combination treatments of ATO and blue LED much more significantly decreased the percentages of proliferative cells, and increased apoptotic rate compared with any single treatments in U-2 OS cells. Furthermore, we found suppression of cell migration and invasion were much more pronounced in ATO plus blue LED treated group than single treated groups. Moreover, reactive oxygen species (ROS) assay and immunostaining of γ-H2A.X and p53 indicated that the combined treatments resulted in further markedly increases in ROS accumulation, DNA damage and p53 activity. Taken together, our study demonstrated synergistical anti-tumor effects of combined treatments of ATO and blue LED on human OS cells, which were associated with an increased ROS accumulation, DNA damaged mediated p53 activation.
Collapse
Affiliation(s)
- Chao Feng
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; and Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Rui Gong
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; and Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Qiuyan Zheng
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; and Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Gege Yan
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; and Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Mingyu He
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; and Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Hong Lei
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; and Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Xingda Li
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; and Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China.,Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Lai Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; and Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Zihang Xu
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; and Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Shenzhen Liu
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; and Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Meixi Yu
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; and Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Tianshuai Ma
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; and Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Manqi Gao
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; and Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Djibril Bamba
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; and Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Elina Idiiatullina
- Central Laboratory of Scientific Research, Bashkir State Medical University, Ufa 450008, Russia
| | - Naufal Zagidullin
- Central Laboratory of Scientific Research, Bashkir State Medical University, Ufa 450008, Russia
| | - Valentin Pavlov
- Central Laboratory of Scientific Research, Bashkir State Medical University, Ufa 450008, Russia
| | - Chaoqian Xu
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; and Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China.,Department of Pharmacology, College of Pharmacy, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Ye Yuan
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; and Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Lei Yang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
15
|
Wachtel M, Schäfer BW. PAX3-FOXO1: Zooming in on an “undruggable” target. Semin Cancer Biol 2018; 50:115-123. [DOI: 10.1016/j.semcancer.2017.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/31/2017] [Accepted: 11/13/2017] [Indexed: 12/17/2022]
|
16
|
Metformin ameliorates arsenic trioxide hepatotoxicity via inhibiting mitochondrial complex I. Cell Death Dis 2017; 8:e3159. [PMID: 29095437 PMCID: PMC5775401 DOI: 10.1038/cddis.2017.482] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/19/2017] [Accepted: 08/22/2017] [Indexed: 12/11/2022]
Abstract
Arsenic trioxide (ATO) is a well-accepted chemotherapy agent in managing promyelocytic leukemia. ATO often causes severe health hazards such as hepatotoxicity, dermatosis, neurotoxicity, nephrotoxicity and cardiotoxicity. The production of reactive oxygen species, (ROS) play a significant role in ATO-induced hepatotoxicity. The oral hypoglycemic drug, metformin, is considered to be a potential novel agent for chemoprevention in the treatment of cancer. Moreover, metformin has also been shown to have hepatoprotective effects. In the present study, we demonstrated that metformin protected normal hepatocytes from ATO-induced apoptotic cell death in vitro and in vivo. Gene expression screening revealed that glucose metabolism might be related to the metformin-induced protective effect on ATO-treated AML12 cells. The metformin-promoted or induced glycolysis was not responsible for the protection of AML12 cells from ATO-induced apoptotic cell death. Instead, metformin increased the intracellular NADH/NAD+ ratio by inhibiting mitochondrial respiratory chain complex I, further decreasing the intracellular ROS induced by ATO. Treatment with low glucose or rotenone, a mitochondrial respiratory chain complex I inhibitor, also protected AML12 cells from ATO-induced apoptotic cell death. We show for the first time that metformin protects the hepatocyte from ATO by regulating the mitochondrial function. With its properties of chemoprevention, chemosensitization and the amelioration of liver damage, metformin has great prospects for clinical application other than type 2 diabetes mellitus (T2DM).
Collapse
|
17
|
Choi BH, Xie S, Dai W. PTEN is a negative regulator of mitotic checkpoint complex during the cell cycle. Exp Hematol Oncol 2017; 6:19. [PMID: 28670501 PMCID: PMC5492438 DOI: 10.1186/s40164-017-0079-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/22/2017] [Indexed: 12/18/2022] Open
Abstract
Nuclear PTEN plays an important role during mitosis. To understand the molecular basis by which PTEN mediates mitotic progression, we examined whether PTEN regulated the formation of mitotic checkpoint complex (MCC). We observed that arsenic trioxide, a mitotic inducer, stimulated nuclear translocation of PTEN in a time-dependent manner. PTEN physically interacted with Cdc20 and Mad2, two important components of MCC. Arsenic treatment diminished the physical association of PTEN with BubR1 and Bub3 but not with Cdc20 and Mad2. Our further studies revealed that downregulation of PTEN via RNAi enhanced formation of MCC during the cell cycle. Moreover, PTEN silencing induced chromosomal instability. Given the crucial role of PTEN in suppressing tumor development, our study strongly suggests that PTEN also functions to maintain chromosomal stability, partly through suppressing unscheduled formation of MCC.
Collapse
Affiliation(s)
- Byeong H Choi
- Departments of Environmental Medicine, Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, Tuxedo, NY 10987 USA
| | - Steve Xie
- Institute of Pathology, Kings County Hospital Center, Brooklyn, NY USA
| | - Wei Dai
- Departments of Environmental Medicine, Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, Tuxedo, NY 10987 USA.,Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987 USA
| |
Collapse
|