1
|
Romanelli MN, Manetti D, Braconi L, Dei S, Gabellini A, Teodori E. The piperazine scaffold for novel drug discovery efforts: the evidence to date. Expert Opin Drug Discov 2022; 17:969-984. [PMID: 35848922 DOI: 10.1080/17460441.2022.2103535] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION . Piperazine is a structural element present in drugs belonging to various chemical classes and used for numerous different therapeutic applications; it has been considered a privileged scaffold for drug design. AREAS COVERED The authors have searched examples of piperazine-containing compounds among drugs recently approved by the FDA, and in some research fields (nicotinic receptor modulators, compounds acting against cancer and bacterial multi-drug resistance), looking in particular to the design behind the insertion of this moiety. EXPERT OPINION Piperazine is widely used due to its peculiar characteristics, such as solubility, basicity, chemical reactivity, and conformational properties. This moiety has represented an important tool to modulate pharmacokinetic and pharmacodynamic properties of drugs.
Collapse
Affiliation(s)
- Maria Novella Romanelli
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Dina Manetti
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Laura Braconi
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Silvia Dei
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Alessio Gabellini
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Elisabetta Teodori
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
2
|
Synthesis, Anticancer Assessment, and Molecular Docking of Novel Chalcone-Thienopyrimidine Derivatives in HepG2 and MCF-7 Cell Lines. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:4759821. [PMID: 35003514 PMCID: PMC8728392 DOI: 10.1155/2021/4759821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/06/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022]
Abstract
Heterocycles containing thienopyrimidine moieties have attracted attention due to their interesting biological and pharmacological activities. In this research article, we reported the synthesis of a series of new hybrid molecules through merging the structural features of chalcones and pyridothienopyrimidinones. Our results indicated that the synthesis of chalcone-thienopyrimidine derivatives from the corresponding thienopyrimidine and chalcones proceeded in a relatively short reaction time with good yields and high purity. Most of these novel compounds exhibited moderate to robust cytotoxicity against HepG2 and MCF-7 cancer cells similar to that of 5-fluorouracil (5-FU). The results indicated that IC50 of the two compounds (3b and 3g) showed more potent anticancer activities against HepG2 and MCF-7 than 5-FU. An MTT assay and flow cytometry showed that only 3b and 3g had anticancer activity and antiproliferative activities at the G1 phase against MCF-7 cells, while six compounds (3a-e and 3g) had cytotoxicity and cell cycle arrest at different phases against HepG2 cells. Their cytotoxicity was achieved through downregulation of Bcl-2 and upregulation of Bax, caspase-3, and caspase-9. Although all tested compounds increased oxidative stress via increment of MDA levels and decrement of glutathione reductase (GR) activities compared to control, the 3a, 3b, and 3g in HepG2 and 3b and 3g in MCF-7 achieved the target results. Moreover, there was a positive correlation between cytotoxic efficacy of the compound and apoptosis in both HepG2 (R 2 = 0.531; P = 0.001) and MCF-7 (R 2 = 0.219; P = 0.349) cell lines. The results of molecular docking analysis of 3a-g into the binding groove of Bcl-2 revealed relatively moderate binding free energies compared to the selective Bcl-2 inhibitor, DRO. Like venetoclax, compounds 3a-g showed 2 violations from Lipinski's rule. However, the results of the ADME study also revealed higher drug-likeness scores for compounds 3a-g than for venetoclax. In conclusion, the tested newly synthesized chalcone-pyridothienopyrimidinone derivatives showed promising antiproliferative and apoptotic effects. Mechanistically, the compounds increased ROS production with concomitant cell cycle arrest and apoptosis. Therefore, regulation of the cell cycle and apoptosis are possible targets for anticancer therapy. The tested compounds could be potent anticancer agents to be tested in future clinical trials after extensive pharmacodynamic, pharmacokinetic, and toxicity profile investigations.
Collapse
|
3
|
Sui M, Yang H, Guo M, Li W, Gong Z, Jiang J, Li P. Cajanol Sensitizes A2780/Taxol Cells to Paclitaxel by Inhibiting the PI3K/Akt/NF-κB Signaling Pathway. Front Pharmacol 2021; 12:783317. [PMID: 34955854 PMCID: PMC8694871 DOI: 10.3389/fphar.2021.783317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/22/2021] [Indexed: 01/06/2023] Open
Abstract
Ovarian cancer is the second most common gynecological malignancy, and one of the most deadly. The bottleneck restricting the treatment of ovarian cancer is its multi-drug resistance to chemotherapy. Cajanol is an isoflavone from pigeon pea (Cajanus cajan) that has been reported to have anti-tumor activity. In this work, we evaluate the effect of cajanol in reversing paclitaxel resistance of the A2780/Taxol ovarian cancer cell line in vitro and in vivo, and we discuss its mechanism of action. We found that 8 μM cajanol significantly restored the sensitivity of A2780/Taxol cells to paclitaxel, and in vivo experiments demonstrated that the combination of 0.5 mM/kg paclitaxel and 2 mM/kg cajanol significantly inhibited the growth of A2780/Taxol metastatic tumors in mice. Flow cytometry, fluorescence quantitative PCR, western blotting and immunohistochemical staining methods were used to study the mechanism of reversing paclitaxel resistance with cajanol. First, we determined that cajanol inhibits paclitaxel efflux in A2780/Taxol cells by down-regulating permeability glycoprotein (P-gp) expression, and further found that cajanol can inhibit P-gp transcription and translation through the PI3K/Akt/NF-κB pathway. The results of this work are expected to provide a new candidate compound for the development of paclitaxel sensitizers.
Collapse
Affiliation(s)
- Ming Sui
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Hairong Yang
- Department of Obstetrics and Gynecology, First Hospital of Qiqihar, Qiqihar, China
| | - Mingqi Guo
- Department of Obstetrics and Gynecology, First Hospital of Qiqihar, Qiqihar, China
| | - Wenle Li
- Department of Obstetrics and Gynecology, First Hospital of Qiqihar, Qiqihar, China
| | - Zheng Gong
- Department of Obstetrics and Gynecology, First Hospital of Qiqihar, Qiqihar, China
| | - Jing Jiang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peiling Li
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Repurposing Antipsychotics for Cancer Treatment. Biomedicines 2021; 9:biomedicines9121785. [PMID: 34944601 PMCID: PMC8698939 DOI: 10.3390/biomedicines9121785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022] Open
Abstract
Cancer is a leading cause of death worldwide, with approximately 19 million new cases each year. Lately, several novel chemotherapeutic drugs have been introduced, efficiently inhibiting tumor growth and proliferation. However, developing a new drug is a time- and money-consuming process, requiring around 1 billion dollars and nearly ten years, with only a minority of the initially effective anti-cancer drugs experimentally finally being efficient in human clinical trials. Drug repurposing for cancer treatment is an optimal alternative as the safety of these drugs has been previously tested, and thus, in case of successful preclinical studies, can be introduced faster and with a lower cost into phase 3 clinical trials. Antipsychotic drugs are associated with anti-cancer properties and, lately, there has been an increasing interest in their role in cancer treatment. In the present review, we discussed in detail the in-vitro and in-vivo properties of the most common typical and atypical antipsychotics, along with their mechanism of action.
Collapse
|
5
|
Len JM, Hussein N, Malla S, Mcintosh K, Patidar R, Elangovan M, Chandrabose K, Moorthy NSHN, Pandey M, Raman D, Trivedi P, Tiwari AK. A Novel Dialkylamino-Functionalized Chalcone, DML6, Inhibits Cervical Cancer Cell Proliferation, In Vitro, via Induction of Oxidative Stress, Intrinsic Apoptosis and Mitotic Catastrophe. Molecules 2021; 26:4214. [PMID: 34299490 PMCID: PMC8306139 DOI: 10.3390/molecules26144214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 12/18/2022] Open
Abstract
In this study, we designed, synthesized and evaluated, in vitro, novel chalcone analogs containing dialkylamino pharmacophores in the cervical cancer cell line, OV2008. The compound, DML6 was selective and significantly decreased the proliferation of OV2008 and HeLa cells in sub-micromolar concentrations, compared to prostate, lung, colon, breast or human embryonic kidney cell line (HEK293). DML6, at 5 μM, arrested the OV2008 cells in the G2 phase. Furthermore, DML6, at 5 μM, increased the levels of reactive oxygen species and induced a collapse in the mitochondrial membrane potential, compared to OV2008 cells incubated with a vehicle. DML6, at 5 μM, induced intrinsic apoptosis by significantly (1) increasing the levels of the pro-apoptotic proteins, Bak and Bax, and (2) decreasing the levels of l the anti-apoptotic protein, Bcl-2, compared to cell incubated with a vehicle. Furthermore, DML6, at 5 and 20 μM, induced the cleavage of caspase-9, followed by subsequent cleavage of the executioner caspases, caspase-3 and caspase-7, which produced OV2008 cell death. Overall, our data suggest that DML6 is an apoptosis-inducing compound that should undergo further evaluation as a potential treatment for cervical cancer.
Collapse
Affiliation(s)
- Jenna M. Len
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (J.M.L.); (N.H.); (S.M.); (K.M.)
| | - Noor Hussein
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (J.M.L.); (N.H.); (S.M.); (K.M.)
| | - Saloni Malla
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (J.M.L.); (N.H.); (S.M.); (K.M.)
| | - Kyle Mcintosh
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (J.M.L.); (N.H.); (S.M.); (K.M.)
| | - Rahul Patidar
- School of Pharmacy, Devi Ahilya Vishwavidyalaya, Indore 452001, India;
| | | | - Karthikeyan Chandrabose
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak 484887, India; (K.C.); (N.S.H.N.M.)
| | - N. S. Hari Narayana Moorthy
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak 484887, India; (K.C.); (N.S.H.N.M.)
| | - Manoj Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA;
| | - Dayanidhi Raman
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA;
| | - Piyush Trivedi
- Center of Innovation and Translational Research, Poona College of Pharmacy, Bhartiya Vidyapeeth, Pune 411038, India;
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (J.M.L.); (N.H.); (S.M.); (K.M.)
- School of Pharmacy, Devi Ahilya Vishwavidyalaya, Indore 452001, India;
| |
Collapse
|
6
|
Hussein NA, Malla S, Pasternak MA, Terrero D, Brown NG, Ashby CR, Assaraf YG, Chen ZS, Tiwari AK. The role of endolysosomal trafficking in anticancer drug resistance. Drug Resist Updat 2021; 57:100769. [PMID: 34217999 DOI: 10.1016/j.drup.2021.100769] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/10/2021] [Accepted: 05/14/2021] [Indexed: 02/08/2023]
Abstract
Multidrug resistance (MDR) remains a major obstacle towards curative treatment of cancer. Despite considerable progress in delineating the basis of intrinsic and acquired MDR, the underlying molecular mechanisms remain to be elucidated. Emerging evidences suggest that dysregulation in endolysosomal compartments is involved in mediating MDR through multiple mechanisms, such as alterations in endosomes, lysosomes and autophagosomes, that traffic and biodegrade the molecular cargo through macropinocytosis, autophagy and endocytosis. For example, altered lysosomal pH, in combination with transcription factor EB (TFEB)-mediated lysosomal biogenesis, increases the sequestration of hydrophobic anti-cancer drugs that are weak bases, thereby producing an insufficient and off-target accumulation of anti-cancer drugs in MDR cancer cells. Thus, the use of well-tolerated, alkalinizing compounds that selectively block Vacuolar H⁺-ATPase (V-ATPase) may be an important strategy to overcome MDR in cancer cells and increase chemotherapeutic efficacy. Other mechanisms of endolysosomal-mediated drug resistance include increases in the expression of lysosomal proteases and cathepsins that are involved in mediating carcinogenesis and chemoresistance. Therefore, blocking the trafficking and maturation of lysosomal proteases or direct inhibition of cathepsin activity in the cytosol may represent novel therapeutic modalities to overcome MDR. Furthermore, endolysosomal compartments involved in catabolic pathways, such as macropinocytosis and autophagy, are also shown to be involved in the development of MDR. Here, we review the role of endolysosomal trafficking in MDR development and discuss how targeting endolysosomal pathways could emerge as a new therapeutic strategy to overcome chemoresistance in cancer.
Collapse
Affiliation(s)
- Noor A Hussein
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - Saloni Malla
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - Mariah A Pasternak
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - David Terrero
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - Noah G Brown
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, St. John's University, Queens, NY, USA
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, St. John's University, Queens, NY, USA.
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA; Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, 43614, OH, USA.
| |
Collapse
|
7
|
Weissenrieder JS, Neighbors JD, Mailman RB, Hohl RJ. Cancer and the Dopamine D 2 Receptor: A Pharmacological Perspective. J Pharmacol Exp Ther 2019; 370:111-126. [PMID: 31000578 DOI: 10.1124/jpet.119.256818] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/16/2019] [Indexed: 01/12/2023] Open
Abstract
The dopamine D2 receptor (D2R) family is upregulated in many cancers and tied to stemness. Reduced cancer risk has been correlated with disorders such as schizophrenia and Parkinson's disease, in which dopaminergic drugs are used. D2R antagonists are reported to have anticancer efficacy in cell culture and animal models where they have reduced tumor growth, induced autophagy, affected lipid metabolism, and caused apoptosis, among other effects. This has led to several hypotheses, the most prevalent being that D2R ligands may be a novel approach to cancer chemotherapy. This hypothesis is appealing because of the large number of approved and experimental drugs of this class that could be repurposed. We review the current state of the literature and the evidence for and against this hypothesis. When the existing literature is evaluated from a pharmacological context, one of the striking findings is that the concentrations needed for cytotoxic effects of D2R antagonists are orders of magnitude higher than their affinity for this receptor. Although additional definitive studies will provide further clarity, our hypothesis is that targeting D2-like dopamine receptors may only yield useful ligands for cancer chemotherapy in rare cases.
Collapse
Affiliation(s)
- Jillian S Weissenrieder
- Biomedical Sciences Program (J.S.W.) and Departments of Medicine (J.D.N., R.J.H.) and Pharmacology (J.D.N., R.B.M., R.J.H.), Penn State College of Medicine and Penn State Cancer Institute, Hershey, Pennsylvania
| | - Jeffrey D Neighbors
- Biomedical Sciences Program (J.S.W.) and Departments of Medicine (J.D.N., R.J.H.) and Pharmacology (J.D.N., R.B.M., R.J.H.), Penn State College of Medicine and Penn State Cancer Institute, Hershey, Pennsylvania
| | - Richard B Mailman
- Biomedical Sciences Program (J.S.W.) and Departments of Medicine (J.D.N., R.J.H.) and Pharmacology (J.D.N., R.B.M., R.J.H.), Penn State College of Medicine and Penn State Cancer Institute, Hershey, Pennsylvania
| | - Raymond J Hohl
- Biomedical Sciences Program (J.S.W.) and Departments of Medicine (J.D.N., R.J.H.) and Pharmacology (J.D.N., R.B.M., R.J.H.), Penn State College of Medicine and Penn State Cancer Institute, Hershey, Pennsylvania
| |
Collapse
|
8
|
Martín-Escolano R, Molina-Carreño D, Delgado-Pinar E, Martin-Montes Á, Clares MP, Medina-Carmona E, Pitarch-Jarque J, Martín-Escolano J, Rosales MJ, García-España E, Sánchez-Moreno M, Marín C. New polyamine drugs as more effective antichagas agents than benznidazole in both the acute and chronic phases. Eur J Med Chem 2018; 164:27-46. [PMID: 30583247 DOI: 10.1016/j.ejmech.2018.12.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 12/25/2022]
Abstract
Despite the continuous research effort that has been made in recent years to find ways to treat the potentially life threatening Chagas disease (CD), this remains the third most important infectious disease in Latin America. CD is an important public health problem affecting 6-7 million people. Since the need to search for new drugs for the treatment of DC persists, in this article we present a panel of new polyamines based on the tripodal structure of tris(2-aminomethyl)amine (tren) that can be prepared at low cost with high yields. Moreover, these polyamines present the characteristic of being water-soluble and resistant to the acidic pH values of stomach, which would allow their potential oral administration. In vitro and in vivo assays permitted to identify the compound with the tren moiety functionalized with one fluorene unit (7) as a potential antichagas agent. Compound 7 has broader spectrum of action, improved efficacy in acute and chronic phases of the disease and lower toxicity than the reference drug benznidazole. Finally, the action mechanisms studied at metabolic and mitochondrial levels shows that the trypanocidal activity of compound 7 could be related to its effect at the glycosomal level. Therefore, this work allowed us to select compound 7 as a promising candidate to perform preclinical evaluation studies.
Collapse
Affiliation(s)
- Rubén Martín-Escolano
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs. Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, E-18071, Granada, Spain
| | - Daniel Molina-Carreño
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs. Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, E-18071, Granada, Spain
| | - Estefanía Delgado-Pinar
- ICMol, Departamento de Química Inorgánica, Universidad de Valencia, C/Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Álvaro Martin-Montes
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs. Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, E-18071, Granada, Spain
| | - M Paz Clares
- ICMol, Departamento de Química Inorgánica, Universidad de Valencia, C/Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Encarnación Medina-Carmona
- Department of Physical Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, 18071, Granada, Spain
| | - Javier Pitarch-Jarque
- ICMol, Departamento de Química Inorgánica, Universidad de Valencia, C/Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Javier Martín-Escolano
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs. Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, E-18071, Granada, Spain
| | - María José Rosales
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs. Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, E-18071, Granada, Spain
| | - Enrique García-España
- ICMol, Departamento de Química Inorgánica, Universidad de Valencia, C/Catedrático José Beltrán 2, 46980, Paterna, Spain.
| | - Manuel Sánchez-Moreno
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs. Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, E-18071, Granada, Spain.
| | - Clotilde Marín
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs. Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, E-18071, Granada, Spain.
| |
Collapse
|
9
|
Martín-Escolano R, Aguilera-Venegas B, Marín C, Martín-Montes Á, Martín-Escolano J, Medina-Carmona E, Arán VJ, Sánchez-Moreno M. Synthesis and Biological in vitro and in vivo Evaluation of 2-(5-Nitroindazol-1-yl)ethylamines and Related Compounds as Potential Therapeutic Alternatives for Chagas Disease. ChemMedChem 2018; 13:2104-2118. [PMID: 30098232 DOI: 10.1002/cmdc.201800512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Indexed: 12/17/2022]
Abstract
Chagas disease, a neglected tropical disease caused by infection with the protozoan parasite Trypanosoma cruzi, is a potentially life-threatening illness that affects 5-8 million people in Latin America, and more than 10 million people worldwide. It is characterized by an acute phase, which is partly resolved by the immune system, but then develops as a chronic disease without an effective treatment. There is an urgent need for new antiprotozoal agents, as the current standard therapeutic options based on benznidazole and nifurtimox are characterized by limited efficacy, toxicity, and frequent failures in treatment. In vitro and in vivo assays were used to identify some new low-cost 5-nitroindazoles as a potential antichagasic therapeutic alternative. Compound 16 (3-benzyloxy-5-nitro-1-vinyl-1H-indazole) showed improved efficiency and lower toxicity than benznidazole in both in vitro and in vivo experiments, and its trypanocidal activity seems to be related to its effect at the mitochondrial level. Therefore, compound 16 is a promising candidate for the development of a new anti-Chagas agent, and further preclinical evaluation should be considered.
Collapse
Affiliation(s)
- Rubén Martín-Escolano
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios de Granada, University of Granada, c/ Severo Ochoa s/n, 18071, Granada, Spain
| | - Benjamín Aguilera-Venegas
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Box 233, Santiago, 8380492, Chile
| | - Clotilde Marín
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios de Granada, University of Granada, c/ Severo Ochoa s/n, 18071, Granada, Spain
| | - Álvaro Martín-Montes
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios de Granada, University of Granada, c/ Severo Ochoa s/n, 18071, Granada, Spain
| | - Javier Martín-Escolano
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios de Granada, University of Granada, c/ Severo Ochoa s/n, 18071, Granada, Spain
| | - Encarnación Medina-Carmona
- Department of Physical Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, 18071, Granada, Spain
| | - Vicente J Arán
- Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), c/ Juan de la Cierva 3, 28006, Madrid, Spain
| | - Manuel Sánchez-Moreno
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios de Granada, University of Granada, c/ Severo Ochoa s/n, 18071, Granada, Spain
| |
Collapse
|
10
|
Hussein N, Ashby CR, Amawi H, Nyinawabera A, Vij A, Khare VM, Karthikeyan C, Tiwari AK. Cariprazine, A Dopamine D₂/D₃ Receptor Partial Agonist, Modulates ABCG2-Mediated Multidrug Resistance in Cancer. Cancers (Basel) 2018; 10:E308. [PMID: 30181510 PMCID: PMC6162716 DOI: 10.3390/cancers10090308] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/13/2018] [Accepted: 08/27/2018] [Indexed: 12/20/2022] Open
Abstract
Multidrug resistance (MDR) is a continuing clinical problem that limits the efficacy of chemotherapy in cancer. The over expression of the ATP-binding cassette (ABC) family G2 (ABCG2) transporter is one of the main mechanisms that mediates MDR in cancer. Molecular modeling data indicated that cariprazine, a dopamine D₂/D₃ receptor partial agonist, had a significant binding affinity for ABCG2 transporter with a Glide XP score of -6.515. Therefore, in this in vitro study, we determined the effect of cariprazine on MDR resulting from the overexpression of ABCG2 transporters. Alone, cariprazine, at concentrations up to 20 μM, did not significantly decrease cell viability. Cariprazine, at concentrations ranging from 1 to 10 μM, did not significantly alter the cytotoxicity of mitoxantrone (MX) in the parental non-small cell cancer cell line, H460 and colon cancer cell S1. However, cariprazine (1⁻20 μM) significantly enhanced the efficacy of ABCG2 substrate antineoplastic drug MX in the ABCG2-overexpressing MDR cell line, H460-MX20 and S1M1-80, by reducing the resistance fold from 28 to 1 and from 93 to 1.33, respectively. Cariprazine, in a concentration-dependent (1⁻20 μM), significantly increased the intracellular accumulation of Rhodamine 123 in S1M1-80. Interestingly, 10 or 20 μM of cariprazine significantly decreased the expression levels of the ABCG2 protein in the colon and lung cancer cell lines, suggesting that cariprazine inhibits both the function and expression of ABCG2 transporters at nontoxic concentrations. Overall, our results suggest that cariprazine, via several distinct mechanisms, can resensitize resistant cancer cells to mitoxantrone.
Collapse
Affiliation(s)
- Noor Hussein
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA.
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy, St. John's University, Queens, NY 11439, USA.
| | - Haneen Amawi
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA.
| | - Angelique Nyinawabera
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA.
| | - Atul Vij
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA.
| | - Vishwa M Khare
- Cell and Developmental Biology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Chandrabose Karthikeyan
- Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, Amarkantak, MP 484887, India.
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA.
| |
Collapse
|
11
|
Ke M, Dong J, Wang Y, Zhang J, Zhang M, Wu Z, Lv Y, Wu R. MEL-pep, an analog of melittin, disrupts cell membranes and reverses 5-fluorouracil resistance in human hepatocellular carcinoma cells. Int J Biochem Cell Biol 2018; 101:39-48. [DOI: 10.1016/j.biocel.2018.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/11/2018] [Accepted: 05/21/2018] [Indexed: 02/07/2023]
|
12
|
Esmati N, Maddirala AR, Hussein N, Amawi H, Tiwari AK, Andreana PR. Efficient syntheses and anti-cancer activity of xenortides A-D including ent/epi-stereoisomers. Org Biomol Chem 2018; 16:5332-5342. [PMID: 29999086 DOI: 10.1039/c8ob00452h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A one-pot, two-step, total synthesis of naturally occurring xenortides A, B, C and D, (Xens A-D) isolated from the bacterium Xenorhabdus nematophila, and an entire complementary set of stereoisomers, has been achieved. Compounds were synthesized utilizing an isocyanide-based Ugi 4-CR followed by facile N-Boc deprotection. The reaction sequence took advantage of the chiral pool of N-Boc protected amino acids (l-Leu/Val and d-Leu/Val) with aryl isocyanides, phenyl acetaldehyde and methylamine giving the desired Xens A-D (A and B >98% ee) and all subsequent stereoisomers in reasonable yields upon deprotection followed by separation of diastereomers. Also, detailed mechanistic insights for diastereoselectivity of (-)-Xen A, as a model in the Ugi 4-CR, has been described. Moreover, for the first time, this focused library was screened for cytotoxicity against a panel of epithelial cancer cell lines as well as normal cell lines with an MTT proliferation assay. The structure-activity relationship (SAR) study demonstrated that tryptamides Xen B and D were more active than phenylethylamides Xen A and C. Furthermore, (-)-Xen B (IC50 = 19-25 μM) and ent-(+)-Xen D (IC50 = 21-26 μM) gave the highest cytotoxicity and they were also found to be non-toxic toward normal cells. Importantly, the SAR results indicate that the stereochemistry at C8 and C11 in (-)-Xen B and ent-(+)-Xen D play a critical role in cytotoxic activity.
Collapse
Affiliation(s)
- N Esmati
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft St, Toledo, OH 43606, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Martín-Escolano R, Moreno-Viguri E, Santivañez-Veliz M, Martin-Montes A, Medina-Carmona E, Paucar R, Marín C, Azqueta A, Cirauqui N, Pey AL, Pérez-Silanes S, Sánchez-Moreno M. Second Generation of Mannich Base-Type Derivatives with in Vivo Activity against Trypanosoma cruzi. J Med Chem 2018; 61:5643-5663. [PMID: 29883536 DOI: 10.1021/acs.jmedchem.8b00468] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chagas disease is a potentially life-threatening and neglected tropical disease caused by Trypanosoma cruzi. One of the most important challenges related to Chagas disease is the search for new, safe, effective, and affordable drugs since the current therapeutic arsenal is inadequate and insufficient. Here, we report a simple and cost-effective synthesis and the biological evaluation of the second generation of Mannich base-type derivatives. Compounds 7, 9, and 10 showed improved in vitro efficiency and lower toxicity than benznidazole, in addition to no genotoxicity; thus, they were applied in in vivo assays to assess their activity in both acute and chronic phases of the disease. Compound 10 presented a similar profile to benznidazole from the parasitological perspective but also yielded encouraging data, as no toxicity was observed. Moreover, compound 9 showed lower parasitaemia and higher curative rates than benznidazole, also with lower toxicity in both acute and chronic phases. Therefore, further studies should be considered to optimize compound 9 to promote its further preclinical evaluation.
Collapse
Affiliation(s)
- Rubén Martín-Escolano
- Departament of Parasitology , Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada , Severo Ochoa s/n , E-18071 Granada , Spain
| | - Elsa Moreno-Viguri
- Universidad de Navarra , Department of Organic and Pharmaceutical Chemistry, Instituto de Salud Tropical , Pamplona 31008 , Spain
| | - Mery Santivañez-Veliz
- Universidad de Navarra , Department of Organic and Pharmaceutical Chemistry, Instituto de Salud Tropical , Pamplona 31008 , Spain
| | - Alvaro Martin-Montes
- Departament of Parasitology , Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada , Severo Ochoa s/n , E-18071 Granada , Spain
| | - Encarnación Medina-Carmona
- Department of Physical Chemistry, Faculty of Sciences , University of Granada , Av. Fuentenueva s/n , 18071 Granada , Spain
| | - Rocío Paucar
- Universidad de Navarra , Department of Organic and Pharmaceutical Chemistry, Instituto de Salud Tropical , Pamplona 31008 , Spain
| | - Clotilde Marín
- Departament of Parasitology , Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada , Severo Ochoa s/n , E-18071 Granada , Spain
| | - Amaya Azqueta
- Universidad de Navarra , Department of Pharmacology and Toxicology , Pamplona 31008 , Spain
| | - Nuria Cirauqui
- Department of Pharmaceutical Sciences , Federal University of Rio de Janeiro , Rio de Janeiro 21949-900 , Brazil
| | - Angel L Pey
- Department of Physical Chemistry, Faculty of Sciences , University of Granada , Av. Fuentenueva s/n , 18071 Granada , Spain
| | - Silvia Pérez-Silanes
- Universidad de Navarra , Department of Organic and Pharmaceutical Chemistry, Instituto de Salud Tropical , Pamplona 31008 , Spain
| | - Manuel Sánchez-Moreno
- Departament of Parasitology , Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada , Severo Ochoa s/n , E-18071 Granada , Spain
| |
Collapse
|
14
|
Amawi H, Hussein NA, Ashby CR, Alnafisah R, Sanglard LM, Manivannan E, Karthikeyan C, Trivedi P, Eisenmann KM, Robey RW, Tiwari AK. Bax/Tubulin/Epithelial-Mesenchymal Pathways Determine the Efficacy of Silybin Analog HM015k in Colorectal Cancer Cell Growth and Metastasis. Front Pharmacol 2018; 9:520. [PMID: 29875662 PMCID: PMC5974752 DOI: 10.3389/fphar.2018.00520] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/30/2018] [Indexed: 12/31/2022] Open
Abstract
The inhibition of apoptosis, disruption of cellular microtubule dynamics, and over-activation of the epithelial mesenchymal transition (EMT), are involved in the progression, metastasis, and resistance of colorectal cancer (CRC) to chemotherapy. Therefore, the design of a molecule that can target these pathways could be an effective strategy to reverse CRC progression and metastasis. In this study, twelve novel silybin derivatives, HM015a-HM015k (15a−15k) and compound 17, were screened for cytotoxicity in CRC cell lines. Compounds HM015j and HM015k (15k and 15j) significantly decreased cell proliferation, inhibited colony formation, and produced cell cycle arrest in CRC cells. Furthermore, 15k significantly induced the formation of reactive oxygen species and apoptosis. It induced the cleavage of the intrinsic apoptotic protein (Bax p21) to its more efficacious fragment, p18. Compound 15k also inhibited tubulin expression and disrupted its structure. Compound 15k significantly decreased metastatic LOVO cell migration and invasion. Furthermore, 15k reversed mesenchymal morphology in HCT116 and LOVO cells. Additionally, 15k significantly inhibited the expression of the mesenchymal marker N-cadherin and upregulated the expression of the epithelial marker, E-cadherin. Compound 15k inhibited the expression of key proteins known to induce EMT (i.e., DVL3, β-catenin, c-Myc) and upregulated the anti-metastatic protein, cyclin B1. Overall, in vitro, 15k significantly inhibited CRC progression and metastasis by inhibiting apoptosis, tubulin activity and the EMT pathways. Overall, these data suggest that compound 15k should be tested in vivo in a CRC animal model for further development.
Collapse
Affiliation(s)
- Haneen Amawi
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| | - Noor A Hussein
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| | - Charles R Ashby
- Pharmaceutical Sciences, College of Pharmacy, St. John's University, Queens, NY, United States
| | - Rawan Alnafisah
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| | - Leticia M Sanglard
- Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, United States
| | | | | | - Piyush Trivedi
- School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, India
| | - Kathryn M Eisenmann
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Robert W Robey
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| |
Collapse
|
15
|
Roney MSI, Park SK. Antipsychotic dopamine receptor antagonists, cancer, and cancer stem cells. Arch Pharm Res 2018; 41:384-408. [PMID: 29556831 DOI: 10.1007/s12272-018-1017-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 02/27/2018] [Indexed: 12/12/2022]
Abstract
Cancer is one of the deadliest diseases in the world. Despite extensive studies, treating metastatic cancers remains challenging. Years of research have linked a rare set of cells known as cancer stem cells (CSCs) to drug resistance, leading to the suggestion that eradication of CSCs might be an effective therapeutic strategy. However, few drug candidates are active against CSCs. New drug discovery is often a lengthy process. Drug screening has been advantageous in identifying drug candidates. Current understanding of cancer biology has revealed various clues to target cancer from different points of view. Many studies have found dopamine receptors (DRs) in various cancers. Therefore, DR antagonists have attracted a lot of attention in cancer research. Recently, a group of antipsychotic DR antagonists has been demonstrated to possess remarkable abilities to restrain and sensitize CSCs to existing chemotherapeutics by a process called differentiation approach. In this review, we will describe current aspects of CSC-targeting therapeutics, antipsychotic DR antagonists, and their extraordinary abilities to fight cancer.
Collapse
Affiliation(s)
- Md Saiful Islam Roney
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, Republic of Korea
| | - Song-Kyu Park
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, Republic of Korea.
- Research Driven Hospital, Korea University Guro Hospital, Biomedical Research Center, Seoul, 08308, Republic of Korea.
| |
Collapse
|
16
|
Mohanty SK, Yagiz K, Pradhan D, Luthringer DJ, Amin MB, Alkan S, Cinar B. STAT3 and STAT5A are potential therapeutic targets in castration-resistant prostate cancer. Oncotarget 2017; 8:85997-86010. [PMID: 29156772 PMCID: PMC5689662 DOI: 10.18632/oncotarget.20844] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/03/2017] [Indexed: 11/25/2022] Open
Abstract
Mechanisms of castration-resistant prostate cancer (CRPC) are not well understood, thus hindering rational-based drug design. Activation of STAT3/5A, key components of the JAK/STAT pathway, is implicated in aggressive PC, yet their clinical relevance in CRPC remains elusive. Here, we evaluated the possible role of STAT3/5A in CRPC using immunological, quantitative mRNA expression profiling, and pharmacological methods. We observed a strong nuclear immunoreactivity for STAT3 and STAT5A in 93% (n=14/15) and 80% (n=12/15) of CRPC cases, respectively, compared with benign prostatic hyperplasia (BPH). We demonstrated that PC cells express varying levels of STAT3 and STAT5A transcripts. In addition, we demonstrate that pimozide, a psychotropic drug and an indirect inhibitor of STAT5, attenuated PC cells growth, and induced apoptosis in a dose-dependent manner. Furthermore, our analysis of the PC public data revealed that the STAT3/5A genes were frequently amplified in metastatic CRPC. These findings suggest that STAT3/5A potentially serves as a predictive biomarker to evaluate the therapeutic efficacy of a cancer drug targeting the JAK/STAT pathway. Since the JAK/STAT and AR pathways are suggested to be functionally synergistic, inhibition of the JAK/STAT signaling alone or together with AR may lead to a novel treatment modality for patients with advanced PC.
Collapse
Affiliation(s)
- Sambit K. Mohanty
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kader Yagiz
- Department of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dinesh Pradhan
- University of Pittsburgh Medical Center, Pittsburgh, PA 15238, USA
| | - Daniel J. Luthringer
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mahul B. Amin
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Serhan Alkan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Bekir Cinar
- Department of Biological Sciences, The Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
17
|
Amawi H, Hussein NA, Karthikeyan C, Manivannan E, Wisner A, Williams FE, Samuel T, Trivedi P, Ashby CR, Tiwari AK. HM015k, a Novel Silybin Derivative, Multi-Targets Metastatic Ovarian Cancer Cells and Is Safe in Zebrafish Toxicity Studies. Front Pharmacol 2017; 8:498. [PMID: 28824426 PMCID: PMC5539246 DOI: 10.3389/fphar.2017.00498] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/13/2017] [Indexed: 12/18/2022] Open
Abstract
This study was designed to determine the in vitro mechanisms by which the novel silybin derivative, (E)-3-(3-(benzyloxy) phenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (HM015k or 15k), produces its anticancer efficacy in ovarian cancer cells. Compound 15k induced apoptosis in ovarian cancer cells in a time-dependent manner by significantly upregulating the expression of Bax and Bak and downregulating the expression of Bcl-2. Interestingly, 15k induced the cleavage of Bax p21 into its more efficacious cleaved form, Bax p18. In addition, caspase 3 and caspase 9 were cleaved to their active forms, inducing the cleavage of poly ADP ribose polymerase (PARP) and β-catenin. Furthermore, in OV2008 cells, 15k induced significant cleavage in nuclear β-catenin to primarily inactive fragments of lower molecular weight. Furthermore, 15k reversed the metastatic potential of OV2008 cells by inhibiting their migration and invasiveness. The mesenchymal phenotype in OV2008 was reversed by 15k, causing cells to be rounder with epithelial-like phenotypes. The 15k-induced reversal was further confirmed by significant upregulation of the E-cadherin expression, an epithelial marker, while N-cadherin, a mesenchymal marker, was downregulated in OV2008 cells. Compound 15k inhibited the expression of the oncogenic c-Myc protein, downregulated proteins DVL3 and DVL2 and significantly upregulated cyclin B1. Also, 15k significantly downregulated the expression levels of ABCG2 and ABCB1 transporters in resistant ABCG2 overexpressing H460/MX20 and resistant ABCB1 overexpressing MDCK/MDR1 cells, respectively. Finally, 15k was safe in zebrafish in vivo model at concentrations up to 10 μM and induced no major toxicities in cardiac, morphology and swimming position parameters. Overall, 15k is a multi-targeted inhibitor with efficacy against metastatic and resistant ovarian cancer. Future in vivo studies will be conducted to determine the efficacy of 15k in tumor-bearing animals.
Collapse
Affiliation(s)
- Haneen Amawi
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of ToledoToledo, OH, United States
| | - Noor A Hussein
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of ToledoToledo, OH, United States
| | | | | | - Alexander Wisner
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of ToledoToledo, OH, United States
| | - Frederick E Williams
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of ToledoToledo, OH, United States
| | - Temesgen Samuel
- Department of Pathobiology, School of Veterinary Medicine, Tuskegee UniversityTuskegee, AL, United States
| | - Piyush Trivedi
- School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki VishwavidyalayaBhopal, India
| | - Charles R Ashby
- Pharmaceutical Sciences, College of Pharmacy, St. John's University QueensNew York, NY, United States
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of ToledoToledo, OH, United States
| |
Collapse
|
18
|
Amawi H, Karthikeyan C, Pathak R, Hussein N, Christman R, Robey R, Ashby CR, Trivedi P, Malhotra A, Tiwari AK. Thienopyrimidine derivatives exert their anticancer efficacy via apoptosis induction, oxidative stress and mitotic catastrophe. Eur J Med Chem 2017; 138:1053-1065. [PMID: 28759878 DOI: 10.1016/j.ejmech.2017.07.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/14/2017] [Accepted: 07/16/2017] [Indexed: 11/17/2022]
Abstract
In this study, a series of 13 structural variants of thieno[2,3d]pyrimidine derivatives (6a-6m) were synthesized and screened for cytotoxicity in a panel of colorectal, ovarian, and brain cancer cell lines. The selectivity of the compounds was assessed by determining the cytotoxicity in normal epithelial cell line (CHO). The most potent compound, 6j, was efficacious (with IC50 range of 0.6-1.2 μM) in colon (HCT116 and HCT15), brain (LN-229 and GBM-10) and ovarian (A2780 and OV2008) cancer cell lines. In contrast, in the normal cell line (CHO), the IC50 values for 6j were 14 ± 1.3 μM. Compound 6j significantly inhibited the clonogenic potential of HCT116, OV2008 and A2780 cell lines in concentration - dependent (0.5-4 μM) manner. Also, 6j induced 1) formation of reactive oxygen species; 2) apoptosis and 3) mitotic catastrophe in HCT116 and OV2008 cells (IC50 = 0.5-2 μM). Furthermore, apoptosis was the predominant mechanism of death in A2780 cells. The cytotoxicity of 6j in wild type HCT116 cells was similar to that in HCT116 cells lacking the apoptotic genes for Bax, Bak, or Bak and Bax, indicating that 6j induces mitotic catastrophe as alternative mechanism of death when when certain apoptotic proteins are absent. In summary, this study has identified a lead molecule, 6j, that selectively induces oxidative stress, apoptosis and mitotic catastrophe in specific cancer (colon and ovarian) cell lines.
Collapse
Affiliation(s)
- Haneen Amawi
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, OH, USA
| | - Chandrabose Karthikeyan
- School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Airport Bypass Road, Gandhi Nagar, Bhopal MP, India.
| | - Rekha Pathak
- School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Airport Bypass Road, Gandhi Nagar, Bhopal MP, India
| | - Noor Hussein
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, OH, USA
| | - Ryann Christman
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, OH, USA
| | - Robert Robey
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Charles R Ashby
- Pharmaceutical Sciences, College of Pharmacy, St. John's University Queens, NY, USA
| | - Piyush Trivedi
- School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Airport Bypass Road, Gandhi Nagar, Bhopal MP, India
| | - Ashim Malhotra
- School of Pharmacy, Pacific University, 222 SE 8th Ave, Hillsboro, OR, USA
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, OH, USA.
| |
Collapse
|