1
|
Zamani M, Safari F, Siri M, Igder S, Khatami N, Dastghaib S, Mokarram P. Epigenetic modulation of autophagy pathway by small molecules in colorectal cancer: a systematic review. J Cancer Res Clin Oncol 2024; 150:474. [PMID: 39441422 PMCID: PMC11499346 DOI: 10.1007/s00432-024-05982-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE Colorectal cancer (CRC) remains a global health challenge with limited treatment success due to drug resistance. Recent research highlights the potential of small molecules to modulate CRC by targeting epigenetics or autophagy pathways. This systematic review explores the epigenetic effect of small molecules on autophagy in CRC, aiming to identify novel therapeutic strategies. METHODS Following PRISMA guidelines, we systematically reviewed 508 studies from PubMed, Scopus, and Web of Science databases until August 13, 2023. RESULTS Eight studies met inclusion criteria, examining the role of small molecules as epigenetic modulators (Histone acetylation/deacetylation, DNA methylation/demethylation and gene expression regulation by miRNAs) influencing the autophagy pathway in CRC. The studies encompassed in vitro and animal model in vivo studies. Small molecules exhibited diverse effects on autophagy in CRC. For instance, panobinostat promoted autophagy leading to CRC cell death, while aspirin inhibited autophagy flux, reducing aspirin-mediated CRC cell death. The epigenetic modulation of autophagy by various small molecules differently affects their anticancer effect, which underscores the complexity of therapeutic interventions. CONCLUSION Understanding the intricate dynamics among small molecules, epigenetic modifications, and autophagy in CRC is crucial for developing targeted therapeutic strategies. Considering the dual role of autophagy in tumorigenesis and tumor suppression, administration of these small molecules may differently affect the cancer cell fate and drug response or resistance based on their effect on the autophagy pathway. Therefore, recognition of the epigenetics mechanism of anticancer small molecules on autophagy may contribute to deciding how to prescribe them for better CRC treatment.
Collapse
Affiliation(s)
- Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farima Safari
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Morvarid Siri
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Igder
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Niloofar Khatami
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Pooneh Mokarram
- Autophagy Research Center, Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Li Q, Geng S, Luo H, Wang W, Mo YQ, Luo Q, Wang L, Song GB, Sheng JP, Xu B. Signaling pathways involved in colorectal cancer: pathogenesis and targeted therapy. Signal Transduct Target Ther 2024; 9:266. [PMID: 39370455 PMCID: PMC11456611 DOI: 10.1038/s41392-024-01953-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Its complexity is influenced by various signal transduction networks that govern cellular proliferation, survival, differentiation, and apoptosis. The pathogenesis of CRC is a testament to the dysregulation of these signaling cascades, which culminates in the malignant transformation of colonic epithelium. This review aims to dissect the foundational signaling mechanisms implicated in CRC, to elucidate the generalized principles underpinning neoplastic evolution and progression. We discuss the molecular hallmarks of CRC, including the genomic, epigenomic and microbial features of CRC to highlight the role of signal transduction in the orchestration of the tumorigenic process. Concurrently, we review the advent of targeted and immune therapies in CRC, assessing their impact on the current clinical landscape. The development of these therapies has been informed by a deepening understanding of oncogenic signaling, leading to the identification of key nodes within these networks that can be exploited pharmacologically. Furthermore, we explore the potential of integrating AI to enhance the precision of therapeutic targeting and patient stratification, emphasizing their role in personalized medicine. In summary, our review captures the dynamic interplay between aberrant signaling in CRC pathogenesis and the concerted efforts to counteract these changes through targeted therapeutic strategies, ultimately aiming to pave the way for improved prognosis and personalized treatment modalities in colorectal cancer.
Collapse
Affiliation(s)
- Qing Li
- The Shapingba Hospital, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Shan Geng
- Central Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei Wang
- Chongqing Municipal Health and Health Committee, Chongqing, China
| | - Ya-Qi Mo
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Lu Wang
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Guan-Bin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Jian-Peng Sheng
- College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| | - Bo Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
3
|
Wang Y, Wang J, Ye R, Jin Q, Yin F, Liu N, Wang Y, Zhang Q, Gao T, Zhao Y. Cancer Cell-Mimicking Prussian Blue Nanoplatform for Synergistic Mild Photothermal/Chemotherapy via Heat Shock Protein Inhibition. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38624164 DOI: 10.1021/acsami.4c00873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Combined mild-temperature photothermal/chemotherapy has emerged as a highly promising modality for tumor therapy. However, its therapeutic efficacy is drastically compromised by the heat-induced overexpression of heat shock proteins (HSPs) by the cells, which resist heat stress and apoptosis. The purpose of this study was to downregulate HSPs and enhance the mild-temperature photothermal/chemotherapy effect. In detail, the colon cancer cell membrane (CT26M)-camouflaged HSP90 inhibitor ganetespib and the chemotherapeutic agent doxorubicin (DOX)-coloaded hollow mesoporous Prussian blue (HMPB) nanoplatform (named PGDM) were designed for synergistic mild photothermal/chemotherapy via HSP inhibition. In addition to being a photothermal agent with a high efficiency of photothermal conversion (24.13%), HMPB offers a hollow hole that can be filled with drugs. Concurrently, the cancer cell membrane camouflaging enhances tumor accumulation through a homologous targeting mechanism and gives the nanoplatform the potential to evade the immune system. When exposed to NIR radiation, HMPB's photothermal action (44 °C) not only causes tumor cells to undergo apoptosis but also causes ganetespib to be released on demand. This inhibits the formation of HSP90, which enhances the mild photothermal/chemotherapy effect. The results confirmed that the combined treatment regimen of mild photothermal therapy (PTT) and chemotherapy showed a better therapeutic efficacy than the individual treatment methods. Therefore, this multimodal nanoparticle can advance the development of drugs for the treatment of malignancies, such as colon cancer, and has prospects for clinical application.
Collapse
Affiliation(s)
- Yun Wang
- Department of Gastroenterology, Jiamusi Central Hospital, Jiamus 154003, P. R. China
- Department of Internal Medicine, School of Clinical Medicine, Jiamusi University, Jiamusi 154007, P. R. China
| | - Jinling Wang
- Department of Emergency and Critical Care Center, The Second Affiliated Hospital of Guangdong Medical University, No.12 Minyou Road, Xiashan, Zhanjiang, Guangdong 524003, P. R. China
| | - Roumei Ye
- Department of Pharmacy, Medical College of Guangxi University, Nanning 530004, P. R. China
| | - Quanyi Jin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, P. R. China
| | - Fengyue Yin
- Department of Pharmacy, Medical College of Guangxi University, Nanning 530004, P. R. China
| | - Nian Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, P. R. China
| | - Yubo Wang
- Department of Biomedical Engineering, Medical College of Guangxi University, Nanning 530004, P. R. China
| | - Quan Zhang
- Department of Gastroenterology, Jiamusi Central Hospital, Jiamus 154003, P. R. China
- Department of Internal Medicine, School of Clinical Medicine, Jiamusi University, Jiamusi 154007, P. R. China
| | - Ting Gao
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Yilin Zhao
- Department of Oncology and Vascular Interventional Radiology, Zhongshan Hospital of Xiamen University, Xiamen 361004, P. R. China
| |
Collapse
|
4
|
Sun L, Ji M, Liu Y, Zhang M, Zheng C, Wang P. XQZ3, a Chlorella pyrenoidosa polysaccharide suppresses cancer progression by restraining mitochondrial bioenergetics via HSP90/AKT signaling pathway. Int J Biol Macromol 2024; 264:130705. [PMID: 38458300 DOI: 10.1016/j.ijbiomac.2024.130705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
The mitochondria are known to exert significant influence on various aspects of cancer cell physiology. The suppression of mitochondrial function represents a novel avenue for the advancement of anti-cancer pharmaceuticals. The heat shock protein HSP90 functions as a versatile regulator of mitochondrial metabolism in cancer cells, rendering as a promising target for anticancer interventions. In this work, a novel acid polysaccharide named as XQZ3 was extracted from Chlorella pyrenoidosa and purified by DEAE-cellulose and gel-filtration chromatography. The structural characteristic of XQZ3 was evaluated by monosaccharides composition, methylation analysis, TEM, FT-IR, and 2D-NMR. It was found that XQZ3 with a molecular weight of 29.13 kDa was a complex branched polysaccharide with a backbone mainly composed of galactose and mannose. It exhibited good antitumor activity in vitro and in vivo by patient-derived 3D organoid models and patient-derived xenografts models. The mechanistic investigations revealed that XQZ3 specifically interacted with HSP90, impeding the activation of the HSP90/AKT/mTOR signaling cascade. This, in turn, led to the induction of mitochondrial dysfunction, autophagy, and apoptosis, ultimately resulting in the demise of cancer cells due to nutrient deprivation. This study offers a comprehensive theoretical foundation for the advancement of XQZ3, a novel polysaccharide inhibitor targeting HSP90, with potential as an effective therapeutic agent against cancer.
Collapse
Affiliation(s)
- Long Sun
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Meng Ji
- Department of Pancreatic-biliary Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai 200011, China
| | - Yulin Liu
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Minghui Zhang
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Caijuan Zheng
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou, Hainan 571158, China
| | - Peipei Wang
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-Gang Special Area, Shanghai 201306, China.
| |
Collapse
|
5
|
Ye J, Zhang J, Ding W. DNA methylation modulates epigenetic regulation in colorectal cancer diagnosis, prognosis and precision medicine. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:34-53. [PMID: 38464391 PMCID: PMC10918240 DOI: 10.37349/etat.2024.00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/11/2023] [Indexed: 03/12/2024] Open
Abstract
Colorectal cancer (CRC) is a multifaceted disease influenced by the interplay of genetic and environmental factors. The clinical heterogeneity of CRC cannot be attributed exclusively to genetic diversity and environmental exposures, and epigenetic markers, especially DNA methylation, play a critical role as key molecular markers of cancer. This review compiles a comprehensive body of evidence underscoring the significant involvement of DNA methylation modifications in the pathogenesis of CRC. Moreover, this review explores the potential utility of DNA methylation in cancer diagnosis, prognostics, assessment of disease activity, and prediction of drug responses. Recognizing the impact of DNA methylation will enhance the ability to identify distinct CRC subtypes, paving the way for personalized treatment strategies and advancing precision medicine in the management of CRC.
Collapse
Affiliation(s)
- Jingxin Ye
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
- Department of Gastroenterology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian 223800, Jiangsu Province, China
| | - Jianfeng Zhang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Weifeng Ding
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
6
|
Wang Z, Li Y, Mao R, Zhang Y, Wen J, Liu Q, Liu Y, Zhang T. DNAJB8 in small extracellular vesicles promotes Oxaliplatin resistance through TP53/MDR1 pathway in colon cancer. Cell Death Dis 2022; 13:151. [PMID: 35165262 PMCID: PMC8844036 DOI: 10.1038/s41419-022-04599-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/20/2022] [Accepted: 01/28/2022] [Indexed: 12/31/2022]
Abstract
Chemotherapy is one of the most frequently used therapies for the treatment of colon cancer (COAD). However, Oxaliplatin (L-OHP) resistance is a major obstacle to the effective treatment of COAD. Here, we investigated whether DNAJB8, a heat shock protein 40 (HSP40) family protein, could be used for the prognosis and therapy of L-OHP resistance in COAD. Treatment with small interfering RNA targeting DNAJB8 could restore the response to L-OHP in vitro and in vivo. On the mechanism, we demonstrated that DNAJB8 could interact with TP53 and inhibit the ubiquitination degradation of TP53, leading to MDR1 upregulation which promotes colon cancer L-OHP resistance. We found that small extracellular vesicle (sEV)-mediated transfer of DNAJB8 from L-OHP-resistant COAD cells to sensitive cells contributed to L-OHP resistance. A prognostic signature based on the DNAJB8 levels in both tissue and serum showed that COAD patients with high-risk scores exhibited significantly worse overall survival and disease-free survival than patients with low-risk scores. These results indicate that DNAJB8 levels in serum sEVs may serve as a biomarker for COAD. DNAJB8 from sEVs might be a promising therapeutic target for L-OHP resistance and a prognostic predictor of clinical response.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Li
- Department of Radiology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, Sichuan Province, China
| | - Rui Mao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Wen
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Qian Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanjun Liu
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Tongtong Zhang
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China. .,Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, Sichuan Province, China.
| |
Collapse
|
7
|
Venkat S, Alahmari AA, Feigin ME. Drivers of Gene Expression Dysregulation in Pancreatic Cancer. Trends Cancer 2021; 7:594-605. [PMID: 33618999 PMCID: PMC8217125 DOI: 10.1016/j.trecan.2021.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 12/21/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a devastating disease with a poor prognosis. The functional consequences of common genetic aberrations and their roles in treatment strategies have been extensively reviewed. In addition to these genomic aberrations, consideration of non-genetic drivers of altered oncogene expression is essential to account for the diversity in PDAC phenotypes. In this review we seek to assess our current understanding of mechanisms of gene expression dysregulation. We focus on four drivers of gene expression dysregulation, including mutations, transcription factors, epigenetic regulators, and RNA stability/isoform regulation, in the context of PDAC pathogenesis. Recent studies provide much-needed insight into the role of gene expression dysregulation in dissecting tumor heterogeneity and stratifying patients for the development of personalized treatment strategies.
Collapse
Affiliation(s)
- Swati Venkat
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Abdulrahman A Alahmari
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA; Department of Medical Laboratory Sciences, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Michael E Feigin
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
8
|
Lv W, Zhang X, Dong H, Wu Q, Sun B, Zhang Y. Exploring effects of DNA methylation and gene expression on pan-cancer drug response by mathematical models. Exp Biol Med (Maywood) 2021; 246:1626-1642. [PMID: 33910405 DOI: 10.1177/15353702211007766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Since genetic alteration only accounts for 20%-30% in the drug effect-related factors, the role of epigenetic regulation mechanisms in drug response is gradually being valued. However, how epigenetic changes and abnormal gene expression affect the chemotherapy response remains unclear. Therefore, we constructed a variety of mathematical models based on the integrated DNA methylation, gene expression, and anticancer drug response data of cancer cell lines from pan-cancer levels to identify genes whose DNA methylation is associated with drug response and then to assess the impact of epigenetic regulation of gene expression on the sensitivity of anticancer drugs. The innovation of the mathematical models lies in: Linear regression model is followed by logistic regression model, which greatly shortens the calculation time and ensures the reliability of results by considering the covariates. Second, reconstruction of prediction models based on multiple dataset partition methods not only evaluates the model stability but also optimizes the drug-gene pairs. For 368,520 drug-gene pairs with P < 0.05 in linear models, 999 candidate pairs with both AUC ≥ 0.8 and P < 0.05 were obtained by logistic regression models between drug response and DNA methylation. Then 931 drug-gene pairs with 45 drugs and 491 genes were optimized by model stability assessment. Integrating both DNA methylation and gene expression markedly increased predictive power for 732 drug-gene pairs where 598 drug-gene pairs including 44 drugs and 359 genes were prioritized. Several drug target genes were enriched in the modules of the drug-gene-weighted interaction network. Besides, for cancer driver genes such as EGFR, MET, and TET2, synergistic effects of DNA methylation and gene expression can predict certain anticancer drugs' responses. In summary, we identified potential drug sensitivity-related markers from pan-cancer levels and concluded that synergistic regulation of DNA methylation and gene expression affect anticancer drug response.
Collapse
Affiliation(s)
- Wenhua Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Xingda Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Huili Dong
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin 150001, China
| | - Qiong Wu
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin 150001, China
| | - Baoqing Sun
- Guangzhou Institute of Respiratory health, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 51000, China
| | - Yan Zhang
- Guangzhou Institute of Respiratory health, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 51000, China
| |
Collapse
|
9
|
Abstract
Malignant melanoma is one of the most common tumours of the skin. Heat shock protein 90α (HSP90α) has been applied in the auxiliary diagnosis of various malignancies, as a tumour marker. This study aims to evaluate diagnostic, therapeutic efficacy and prognostic value of plasma HSP90α levels in malignant melanoma. In this study, higher plasma HSP90α levels and abnormal rates were found in malignant melanoma patients than in healthy controls (92.63 vs. 51.84 ng/mL; P < 0.001 and 68.30 vs. 8.30%; P < 0.001). Plasma HSP90α levels were higher with Breslow thickness >4 mm, a high Clark level (IV + V), abnormal serum lactate dehydrogenase (LDH), distant metastases occurrence and Ki-67≥30% (P < 0.05). The area under the curves (AUCs) of HSP90α was greater than LDH in the training (0.847 vs. 0.677) and validation (0.867 vs. 0.672) cohort. Meanwhile, the sensitivity (76.70%) and negative predictive values (78.80%) of HSP90α were higher. Plasma HSP90α levels were significantly reduced in objective response (81.05 vs. 37.26 ng/mL; P = 0.012) and disease control patients (84.16 vs. 47.05 ng/mL; P = 0.002) post-treatment. Patients with normal HSP90α levels had slightly longer progression-free survival (PFS) than those with abnormal levels (8.0 vs. 3.5 months; P = 0.096). Unfortunately, the trend was not statistically significant. In multivariable analysis, immunotherapy was an independent prognostic factor for PFS. Nevertheless, patients with normal HSP90α levels who received chemotherapy(±targeted therapy) without immunotherapy had significantly longer PFS than patients with abnormal levels (6.0 vs. 2.0 months; P = 0.008). Therefore, HSP90α can be used for auxiliary diagnosis and predict the responses to therapy in malignant melanoma patients.
Collapse
|
10
|
Zhang Y, Ware MB, Zaidi MY, Ruggieri AN, Olson BM, Komar H, Farren MR, Nagaraju GP, Zhang C, Chen Z, Sarmiento JM, Ahmed R, Maithel SK, El-Rayes BF, Lesinski GB. Heat Shock Protein-90 Inhibition Alters Activation of Pancreatic Stellate Cells and Enhances the Efficacy of PD-1 Blockade in Pancreatic Cancer. Mol Cancer Ther 2021; 20:150-160. [PMID: 33037138 PMCID: PMC7790996 DOI: 10.1158/1535-7163.mct-19-0911] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 04/09/2020] [Accepted: 09/30/2020] [Indexed: 11/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a prominent fibrotic stroma, which is a result of interactions between tumor, immune and pancreatic stellate cells (PSC), or cancer-associated fibroblasts (CAF). Targeting inflammatory pathways present within the stroma may improve access of effector immune cells to PDAC and response to immunotherapy. Heat shock protein-90 (Hsp90) is a chaperone protein and a versatile target in pancreatic cancer. Hsp90 regulates a diverse array of cellular processes of relevance to both the tumor and the immune system. However, to date the role of Hsp90 in PSC/CAF has not been explored in detail. We hypothesized that Hsp90 inhibition would limit inflammatory signals, thereby reprogramming the PDAC tumor microenvironment to enhance sensitivity to PD-1 blockade. Treatment of immortalized and primary patient PSC/CAF with the Hsp90 inhibitor XL888 decreased IL6, a key cytokine that orchestrates immune changes in PDAC at the transcript and protein level in vitro XL888 directly limited PSC/CAF growth and reduced Jak/STAT and MAPK signaling intermediates and alpha-SMA expression as determined via immunoblot. Combined therapy with XL888 and anti-PD-1 was efficacious in C57BL/6 mice bearing syngeneic subcutaneous (Panc02) or orthotopic (KPC-Luc) tumors. Tumors from mice treated with both XL888 and anti-PD-1 had a significantly increased CD8+ and CD4+ T-cell infiltrate and a unique transcriptional profile characterized by upregulation of genes associated with immune response and chemotaxis. These data demonstrate that Hsp90 inhibition directly affects PSC/CAF in vitro and enhances the efficacy of anti-PD-1 blockade in vivo.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
- Department of Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Michael B Ware
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Mohammad Y Zaidi
- Department of Surgery, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Amanda N Ruggieri
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Brian M Olson
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Hannah Komar
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Matthew R Farren
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Chao Zhang
- Department of Biostatistics, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Zhengjia Chen
- Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, Illinois
| | - Juan M Sarmiento
- Department of Surgery, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | | | - Shishir K Maithel
- Department of Surgery, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Bassel F El-Rayes
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia.
| | - Gregory B Lesinski
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia.
| |
Collapse
|
11
|
Runau F, Arshad A, Isherwood JD, Sandhu JK, Ng LL, Dennison AR, Jones DJL. Proteomic Characterization of Circulating Molecular Perturbations Associated With Pancreatic Adenocarcinoma Following Intravenous ω-3 Fatty Acid and Gemcitabine Administration: A Pilot Study. JPEN J Parenter Enteral Nutr 2020; 45:738-750. [PMID: 32716569 DOI: 10.1002/jpen.1952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND Administration of intravenous ω-3 fatty acid (ω-3FA) in advanced pancreatic adenocarcinoma patients receiving gemcitabine chemotherapy shows disease stabilization and improved progression-free survival. Using high-definition plasma proteomics, the underlying biological mechanisms responsible for these clinical effects are investigated. METHODS AND RESULTS A pilot study involving plasma that was collected at baseline from 13 patients with histologically confirmed, unresectable pancreatic adenocarcinoma (baseline group) after 1-month treatment with intravenous gemcitabine and ω-3FA (treatment group) and intravenous gemcitabine only (control group) and was prepared for proteomic analysis. A 2-arm study comparing baseline vs treatment and treatment vs control was performed. Proteins were isolated from plasma with extensive immunodepletion, then digested and labeled with isobaric tandem mass tag peptide tags. Samples were then combined, fractionated, and injected into a QExactive-Orbitrap Mass-Spectrometer and analyzed on Proteome Discoverer and Scaffold with ensuing bioinformatics analysis. Selective reaction monitoring analysis was performed for verification. In total, 3476 proteins were identified. Anti-inflammatory markers (C-reactive protein, haptoglobin, and serum amyloid-A1) were reduced in the treatment group. Enrichment analysis showed angiogenesis downregulation, complement immune systems upregulation, and epigenetic modifications on histones. Pathway analysis identified direct action via the Pi3K-AKT pathway. Serum amyloid-A1 significantly reduced (P < .001) as a potential biomarker of efficacy for ω-3FA. CONCLUSIONS This pilot study demonstrates administration of ω-3FA has potential anti-inflammatory, antiangiogenic, and proapoptotic effects via direct interaction with cancer-signaling pathways in patients with advanced pancreatic adenocarcinoma. Further studies in a larger sample size is required to validate the clinical correlation found in this preliminary study.
Collapse
Affiliation(s)
- Franscois Runau
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK.,Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Ali Arshad
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | - John D Isherwood
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | - Jatinderpal K Sandhu
- Department of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Leong L Ng
- Department of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Ashley R Dennison
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | - Donald J L Jones
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK.,Department of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| |
Collapse
|
12
|
Nagaraju GP, Farran B, Farren M, Chalikonda G, Wu C, Lesinski GB, El-Rayes BF. Napabucasin (BBI 608), a potent chemoradiosensitizer in rectal cancer. Cancer 2020; 126:3360-3371. [PMID: 32383803 DOI: 10.1002/cncr.32954] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/12/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND The induction of reactive oxygen species (ROS) represents a viable strategy for enhancing the activity of radiotherapy. The authors hypothesized that napabucasin would increase ROS via its ability to inhibit NAD(P)H:quinone oxidoreductase 1 and potentiate the response to chemoradiotherapy in rectal cancer via distinct mechanisms. METHOD Proliferation studies, colony formation assays, and ROS levels were measured in HCT116 and HT29 cell lines treated with napabucasin, chemoradiation, or their combination. DNA damage (pγH2AX), activation of STAT, and downstream angiogenesis were evaluated in both untreated and treated cell lines. Finally, the effects of napabucasin, chemoradiotherapy, and their combination were assessed in vivo with subcutaneous mouse xenograft models. RESULTS Napabucasin significantly potentiated the growth inhibition of chemoradiation in both cell lines. Napabucasin increased ROS generation. Inhibition of ROS by N-acetylcysteine decreased the growth inhibitory effect of napabucasin alone and in combination with chemoradiotherapy. Napabucasin significantly increased pγH2AX in comparison with chemoradiotherapy alone. Napabucasin reduced the levels of pSTAT3 and VEGF and inhibited angiogenesis through an ROS-mediated effect. Napabucasin significantly potentiated the inhibition of growth and blood vessel formation by chemoradiotherapy in mouse xenografts. CONCLUSION Napabucasin is a radiosensitizer with a novel mechanism of action: increasing ROS production and inhibiting angiogenesis. Clinical trials testing the addition of napabucasin to chemoradiotherapy in rectal cancer are needed.
Collapse
Affiliation(s)
- Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Batoul Farran
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Matthew Farren
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Gayathri Chalikonda
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Christina Wu
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Gregory B Lesinski
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Bassel F El-Rayes
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
13
|
Synergistic Effect of Network-Based Multicomponent Drugs: An Investigation on the Treatment of Non-Small-Cell Lung Cancer with Compound Liuju Formula. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9854047. [PMID: 31949474 PMCID: PMC6948348 DOI: 10.1155/2019/9854047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/25/2019] [Accepted: 11/12/2019] [Indexed: 11/22/2022]
Abstract
Lung cancer is the most common cause of cancer death with high morbidity and mortality, which non-small-cell lung cancer (NSCLC) accounting for the majority. Traditional Chinese Medicine (TCM) is effective in the treatment of complex diseases, especially cancer. However, TCM is still in the conceptual stage. The interaction between different components remains unknown due to its multicomponent and multitarget characteristics. In this study, compound Liuju formula was taken as an example to isolate compounds with synergistic biological activity through systems pharmacology strategy. Through pharmacokinetic evaluation, 37 potentially active compounds were screened out. Meanwhile, 116 targets of these compounds were obtained by combing with the target prediction model. Through network analysis, we found that multicomponent drugs can present a synergistic effect through regulating inflammatory signaling pathway, invasion pathway, proliferation, and apoptosis pathway. Finally, it was confirmed that the bioactive compounds of compound Liuju formula have not only a killing effect on NSCLC tumor cells but also a synergistic effect on inhibiting the secretion of correlative inflammatory mediators, including TNF-α and IL-1β. The systems pharmacology method was applied in this study, which provides a new direction for analyzing the mechanism of TCM.
Collapse
|
14
|
Ye C, Huang C, Zou M, Hu Y, Luo L, Wei Y, Wan X, Zhao H, Li W, Cai S, Dong H. The role of secreted Hsp90α in HDM-induced asthmatic airway epithelial barrier dysfunction. BMC Pulm Med 2019; 19:218. [PMID: 31747880 PMCID: PMC6868813 DOI: 10.1186/s12890-019-0938-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 09/12/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The dysfunction of airway epithelial barrier is closely related to the pathogenesis of asthma. Secreted Hsp90α participates in inflammation and Hsp90 inhibitor protects endothelial dysfunction. In the current study, we aimed to explore the role of secreted Hsp90α in asthmatic airway epithelial barrier function. METHODS Male BALB/c mice were sensitized and challenged with HDM to generate asthma model. The 16HBE and Hsp90α-knockdown cells were cultured and treated according to the experiment requirements. Transepithelial Electric Resistance (TEER) and permeability of epithelial layer in vitro, distribution and expression of junction proteins both in vivo and in vitro were used to evaluate the epithelial barrier function. Western Blot was used to evaluate the expression of junction proteins and phosphorylated AKT in cells and lung tissues while ELISA were used to evaluate the Hsp90α expression and cytokines release in the lung homogenate. RESULTS HDM resulted in a dysfunction of airway epithelial barrier both in vivo and in vitro, paralleled with the increased expression and release of Hsp90α. All of which were rescued in Hsp90α-knockdown cells or co-administration of 1G6-D7. Furthermore, either 1G6-D7 or PI3K inhibitor LY294002 suppressed the significant phosphorylation of AKT, which caused by secreted and recombinant Hsp90α, resulting in the restoration of epithelial barrier function. CONCLUSIONS Secreted Hsp90α medicates HDM-induced asthmatic airway epithelial barrier dysfunction via PI3K/AKT pathway, indicating that anti-secreted Hsp90α therapy might be a potential treatment to asthma in future.
Collapse
Affiliation(s)
- Cuiping Ye
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nan Fang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Chaowen Huang
- Department of Respiratory Medicine, Jiangmen Central Hospital, Jiangmen, Guangdong, 529030, People's Republic of China
| | - Mengchen Zou
- Department of Endocrinology and Metabolism, Nan Fang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yahui Hu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nan Fang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Lishan Luo
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nan Fang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yilan Wei
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nan Fang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xuan Wan
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nan Fang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Haijin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nan Fang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Wei Li
- Department of Dermatology and the Norris Comprehensive Cancer Centre, University of Southern California Keck, Medical Centre, Los Angeles, CA, 90033, USA
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nan Fang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nan Fang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
15
|
Zhou JW, Tang JJ, Sun W, Wang H. PGK1 facilities cisplatin chemoresistance by triggering HSP90/ERK pathway mediated DNA repair and methylation in endometrial endometrioid adenocarcinoma. Mol Med 2019; 25:11. [PMID: 30925862 PMCID: PMC6441178 DOI: 10.1186/s10020-019-0079-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 03/19/2019] [Indexed: 12/12/2022] Open
Abstract
Background Endometrial carcinoma represents one of the most common cancer types of the female reproductive tract. If diagnosed at an early stage, the 5-year survival rate is promising. However, recurrence and chemoresistance remain problematic for at least 15% of the patients. In the present study, we aim to reveal the mechanism by which PGK1 regulates chemoresistance in endometrial carcinoma. Methods qPCR was performed to detect expression of PGK1 in clinical tissue samples of endometrial carcinoma. Specific shRNAs were employed to knockdown PGK1 expression in endometrial cancer cell lines. MTT assay was used to evaluate cell viability and cisplatin sensitivity of endometrial carcinoma cell lines. Western blot was performed to assess the effects of PGK1 knockdown on the expression levels of HSP90, DNA repair-associated proteins (c-JUN, FOSL1, and POLD1), and DNA methylation-related enzymes (DNMT1, DNMT3A and DNMT3B). Immunoprecipitation was performed to verify direct binding between PGK1 and HSP90. Results We first showed that PGK1 expression is elevated in tumor tissues of endometrial cancer, and high PGK1 levels are associated with clinical stages and metastasis. Knockdown of PGK1 inhibits proliferation of endometrial cancer cells, and enhances the inhibitory effect of cisplatin on cell viability. In addition, knockdown of PGK1 down-regulates the expression of DNA repair-related proteins, methylation-related enzymes, and total cellular methylation level. PGK1 was next shown to interact directly with HSP90 and exhibit pro-tumor effects by modulating the ATPase activity of HSP90. Conclusions We propose that PGK1 mediates DNA repair and methylation through the HSP90/ERK pathway, and eventually enhances the chemoresistance to cisplatin. The results provide new insights on functions of PGK1 and HSP90, which might make them as promising targets for endometrial cancer chemotherapy.
Collapse
Affiliation(s)
- Jing-Wei Zhou
- Department of Gynecology, Jiangsu Province Hospital, Room 1711, No.220, Jiangdongbei Road, Gulou District, Nanjing, 210000, Jiangsu Province, People's Republic of China.
| | - Juan-Juan Tang
- Department of Gynecology, Jiangsu Province Hospital, Room 1711, No.220, Jiangdongbei Road, Gulou District, Nanjing, 210000, Jiangsu Province, People's Republic of China
| | - Wei Sun
- Department of Gynecology, Jiangsu Province Hospital, Room 1711, No.220, Jiangdongbei Road, Gulou District, Nanjing, 210000, Jiangsu Province, People's Republic of China
| | - Hui Wang
- Department of Gynecology, Jiangsu Province Hospital, Room 1711, No.220, Jiangdongbei Road, Gulou District, Nanjing, 210000, Jiangsu Province, People's Republic of China
| |
Collapse
|
16
|
Lescanne M, Ahuja P, Blok A, Timmer M, Akerud T, Ubbink M. Methyl group reorientation under ligand binding probed by pseudocontact shifts. JOURNAL OF BIOMOLECULAR NMR 2018; 71:275-285. [PMID: 29860649 PMCID: PMC6132577 DOI: 10.1007/s10858-018-0190-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/26/2018] [Indexed: 05/05/2023]
Abstract
Liquid-state NMR spectroscopy is a powerful technique to elucidate binding properties of ligands on proteins. Ligands binding in hydrophobic pockets are often in close proximity to methyl groups and binding can lead to subtle displacements of methyl containing side chains to accommodate the ligand. To establish whether pseudocontact shifts can be used to characterize ligand binding and the effects on methyl groups, the N-terminal domain of HSP90 was tagged with caged lanthanoid NMR probe 5 at three positions and titrated with a ligand. Binding was monitored using the resonances of leucine and valine methyl groups. The pseudocontact shifts (PCS) caused by ytterbium result in enhanced dispersion of the methyl spectrum, allowing more resonances to be observed. The effects of tag attachment on the spectrum and ligand binding are small. Significant changes in PCS were observed upon ligand binding, indicating displacements of several methyl groups. By determining the cross-section of PCS iso-surfaces generated by two or three paramagnetic centers, the new position of a methyl group can be estimated, showing displacements in the range of 1-3 Å for methyl groups in the binding site. The information about such subtle but significant changes may be used to improve docking studies and can find application in fragment-based drug discovery.
Collapse
Affiliation(s)
- Mathilde Lescanne
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Puneet Ahuja
- Structure, Biophysics & Fragment-Based Lead Generation, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Anneloes Blok
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Monika Timmer
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Tomas Akerud
- Structure, Biophysics & Fragment-Based Lead Generation, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
17
|
Nakamura S, Nakajima R, Fujimoto K. DNA Photocrosslinking Using 3-Vinylcarbazole Derivatives in Two-color Detection of Methylcytosine. CHEM LETT 2018. [DOI: 10.1246/cl.180205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shigetaka Nakamura
- Department of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahi-dai, Nomi, Ishikawa 923-1292, Japan
| | - Ryo Nakajima
- Department of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahi-dai, Nomi, Ishikawa 923-1292, Japan
| | - Kenzo Fujimoto
- Department of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahi-dai, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
18
|
Cruickshank B, Giacomantonio M, Marcato P, McFarland S, Pol J, Gujar S. Dying to Be Noticed: Epigenetic Regulation of Immunogenic Cell Death for Cancer Immunotherapy. Front Immunol 2018; 9:654. [PMID: 29666625 PMCID: PMC5891575 DOI: 10.3389/fimmu.2018.00654] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/16/2018] [Indexed: 12/13/2022] Open
Abstract
Immunogenic cell death (ICD) activates both innate and adaptive arms of the immune system during apoptotic cancer cell death. With respect to cancer immunotherapy, the process of ICD elicits enhanced adjuvanticity and antigenicity from dying cancer cells and consequently, promotes the development of clinically desired antitumor immunity. Cancer ICD requires the presentation of various "hallmarks" of immunomodulation, which include the cell-surface translocation of calreticulin, production of type I interferons, and release of high-mobility group box-1 and ATP, which through their compatible actions induce an immune response against cancer cells. Interestingly, recent reports investigating the use of epigenetic modifying drugs as anticancer therapeutics have identified several connections to ICD hallmarks. Epigenetic modifiers have a direct effect on cell viability and appear to fundamentally change the immunogenic properties of cancer cells, by actively subverting tumor microenvironment-associated immunoevasion and aiding in the development of an antitumor immune response. In this review, we critically discuss the current evidence that identifies direct links between epigenetic modifications and ICD hallmarks, and put forward an otherwise poorly understood role for epigenetic drugs as ICD inducers. We further discuss potential therapeutic innovations that aim to induce ICD during epigenetic drug therapy, generating highly efficacious cancer immunotherapies.
Collapse
Affiliation(s)
| | | | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Sherri McFarland
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, United States
- Department of Chemistry, Acadia University, Wolfville, NS, Canada
| | - Jonathan Pol
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- Centre for Innovative and Collaborative Health Services Research, IWK Health Centre, Halifax, NS, Canada
| |
Collapse
|
19
|
Ge H, Yan Y, Guo L, Tian F, Wu D. Prognostic role of HSPs in human gastrointestinal cancer: a systematic review and meta-analysis. Onco Targets Ther 2018; 11:351-359. [PMID: 29391812 PMCID: PMC5774472 DOI: 10.2147/ott.s155816] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Heat shock proteins (HSPs) have been reported to be overexpressed in a wide range of human tumors. It has been shown that HSPs act as an oncogenic regulator and are involved in tumorigenesis. The clinical and prognostic significance of HSPs in gastrointestinal cancers (GICs) remains controversial. The aim of this study was to conduct a meta-analysis to assess the prognostic value of HSPs in GICs. Materials and methods A literature search was performed in PubMed, Cochrane Library, Web of Science, and Embase databases. Data on the relationship between expression of HSPs and survival outcomes were extracted. Pooled hazard ratios (HRs) with 95% CI were calculated. Results The expression of HSPs was not associated with the overall survival (OS) of GIC patients; however, it was significantly associated with worse OS for gastric cancer (GC) and colorectal cancer (CRC) patients. Conclusion Current evidence suggests that a high level of HSPs may not be a potential marker to predict the survival rate for every type of GICs. However, the expression of HSPs may predict a poor prognosis for GC and CRC patients.
Collapse
Affiliation(s)
- Hua Ge
- Department of Gastrointestinal Surgery
| | - Yan Yan
- Quality Control Department, The First People's Hospital of Zunyi, Zunyi Medical University, Huichuan, Zunyi, Guizhou, China
| | | | - Fei Tian
- Department of Gastrointestinal Surgery
| | - Di Wu
- Department of Gastrointestinal Surgery
| |
Collapse
|
20
|
Moriya C, Taniguchi H, Nagatoishi S, Igarashi H, Tsumoto K, Imai K. PRDM14 directly interacts with heat shock proteins HSP90α and glucose-regulated protein 78. Cancer Sci 2017; 109:373-383. [PMID: 29178343 PMCID: PMC5797828 DOI: 10.1111/cas.13458] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 12/22/2022] Open
Abstract
PRDM14 is overexpressed in various cancers and can regulate cancer phenotype under certain conditions. Inhibiting PRDM14 expression in breast and pancreatic cancers has been reported to reduce cancer stem‐like phenotypes, which are associated with aggressive tumor properties. Therefore, PRDM14 is considered a promising target for cancer therapy. To develop a pharmaceutical treatment, the mechanism and interacting partners of PRDM14 need to be clarified. Here, we identified the proteins interacting with PRDM14 in triple‐negative breast cancer (TNBC) cells, which do not express the three most common types of receptor (estrogen receptors, progesterone receptors, and HER2). We obtained 13 candidates that were pulled down with PRDM14 in TNBC HCC1937 cells and identified them by mass spectrometry. Two candidates—glucose‐regulated protein 78 (GRP78) and heat shock protein 90‐α (HSP90α)—were confirmed in immunoprecipitation assay in two TNBC cell lines (HCC1937 and MDA‐MB231). Surface plasmon resonance analysis using GST‐PRDM14 showed that these two proteins directly interacted with PRDM14 and that the interactions required the C‐terminal region of PRDM14, which includes zinc finger motifs. We also confirmed the interactions in living cells by NanoLuc luciferase‐based bioluminescence resonance energy transfer (NanoBRET) assay. Moreover, HSP90 inhibitors (17DMAG and HSP990) significantly decreased breast cancer stem‐like CD24− CD44+ and side population (SP) cells in HCC1937 cells, but not in PRDM14 knockdown HCC1937 cells. The combination of the GRP78 inhibitor HA15 and PRDM14 knockdown significantly decreased cell proliferation and SP cell number in HCC1937 cells. These results suggest that HSP90α and GRP78 interact with PRDM14 and participate in cancer regulation.
Collapse
Affiliation(s)
- Chiharu Moriya
- Center for Antibody and Vaccine Therapy, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Taniguchi
- Center for Antibody and Vaccine Therapy, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoru Nagatoishi
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan.,Project Division of Advanced Biopharmaceutical Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hisayoshi Igarashi
- Center for Antibody and Vaccine Therapy, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan.,Drug Discovery Initiative, The University of Tokyo, Tokyo, Japan.,Laboratory of Medical Proteomics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kohzoh Imai
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|