1
|
Li Y, Hamad M, Elkord E. Cancer-associated fibroblasts in hepatocellular carcinoma: heterogeneity, mechanisms and therapeutic targets. Hepatol Int 2025:10.1007/s12072-025-10788-5. [PMID: 39979756 DOI: 10.1007/s12072-025-10788-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/28/2025] [Indexed: 02/22/2025]
Abstract
Hepatocellular carcinoma (HCC) is one of the common malignant cancers worldwide. Although immunotherapy has improved the treatment outcome in HCC, a significant percentage of patients with advanced HCC still cannot benefit from immunotherapy. Therefore, developing new targets or combination therapeutic strategies to improve the efficacy of immunotherapy is urgently needed. A deeper understanding of the mechanisms underlying immune regulation may help in this regard. The tumor microenvironment (TME) consists of a diverse set of components modulating the efficacy of immunotherapy. Cancer-associated fibroblasts (CAFs) are critical components of the TME and can regulate both tumor and immune cells through secreted cytokines and exosomes that impact various signaling pathways in target cells. CAF-derived cytokines can also participate in extracellular matrix (ECM) remodeling, thereby impacting cancer progression and tumor responsiveness to immunotherapy among other effects. A thorough understanding of the phenotypic and functional profile dynamism of CAFs may lead the way for new treatment strategies and/or better treatment outcomes in HCC patients. In this review, we outline the biomarkers and functional heterogeneity of CAFs in HCC and elaborate on molecular mechanisms of CAFs, including anti-programmed cell death protein 1 (PD-1)/PD-ligand 1 (PD-L1) immunotherapy. We also examine current clinical implications of CAFs-related targets as potential therapeutic candidates in HCC.
Collapse
Affiliation(s)
- Yutong Li
- Department of Biosciences and Bioinformatics & Suzhou Municipal Key Lab of Biomedical Sciences and Translational Immunology, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Mawieh Hamad
- College of Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Eyad Elkord
- Department of Biosciences and Bioinformatics & Suzhou Municipal Key Lab of Biomedical Sciences and Translational Immunology, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
- College of Health Sciences, Abu Dhabi University, 59911, Abu Dhabi, United Arab Emirates.
- Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, M5 4WT, UK.
| |
Collapse
|
2
|
Liu L, Guan S, Xue Y, He Y, Ding L, Fu Y, Chen S, Wang Z, Wang Y. The immunological landscape of CCL26 High invasive oral squamous cell carcinoma. Front Cell Dev Biol 2025; 13:1502073. [PMID: 39931245 PMCID: PMC11808134 DOI: 10.3389/fcell.2025.1502073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/08/2025] [Indexed: 02/13/2025] Open
Abstract
Background Our previous study demonstrated that CCL26 secreted by cancer-associated fibroblasts (CAF) promoted the invasive phenotype of oral squamous cell carcinoma (OSCC), however, more comprehensive clinical expression patterns of CCL26 and its role in immunotherapy remains ambiguous. Methods CCL26 levels in different cancer and normal tissues were analyzed and validated in 67 OSCC patients through immunohistochemical staining (IHC). The clinical spatial distribution pattern of CCL26 in tumor microenvironment was determined, and its clinical outcomes were investigated. We also determined the invasive phenotype of tumor cells with distinct CCL26 level and explored its immune checkpoint and immunocytes relevance by differentially expressed gene (DEG) analysis, GSEA, and GO analysis. We collected peripheral blood from 28 OSCC patients to assess the percentage and absolute number of lymphocytes by flow cytometry. Results CCL26 was upregulated in HNSC and preferentially high-expressed on CAFs and tumor cells in OSCC patients, which exhibits a trend toward decreased overall survival. CCL26high OSCC had a characteristic of tumor invasive phenotype with upregulated CLDN8/20 and reduced keratin KRT36, which was significantly associated with EMT markers (CDH1, CDH2, VIM, SNAI2). In addition, CCL26high OSCC was found to be associated with immunoglobulin mediated immune response, B cell mediated immunity et al. Indeed, immune checkpoint molecules (PD-L1, PD-L2, et al.) also decreased in CCL26high OSCC. However, CCL26 did not affect T/B/NK lymphocytes in peripheral blood of OSCC patients. Conclusion CCL26 could regulate Immune balance and promote invasiveness of OSCC, which gave a new insight into a potential immunotherapy strategy.
Collapse
Affiliation(s)
- Lingyun Liu
- Central Laboratory of Stomatology, Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University, Nanjing, China
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Shuo Guan
- Central Laboratory of Stomatology, Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University, Nanjing, China
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Yizhuo Xue
- Central Laboratory of Stomatology, Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University, Nanjing, China
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Yijia He
- Central Laboratory of Stomatology, Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University, Nanjing, China
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Liang Ding
- Central Laboratory of Stomatology, Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University, Nanjing, China
| | - Yong Fu
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University, Nanjing, China
| | - Sheng Chen
- Department of Oral Pathology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Zhiyong Wang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University, Nanjing, China
| | - Yi Wang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Koch S. The transcription factor FOXQ1 in cancer. Cancer Metastasis Rev 2025; 44:22. [PMID: 39777582 PMCID: PMC11711781 DOI: 10.1007/s10555-025-10240-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025]
Abstract
FOXQ1 is a member of the large forkhead box (FOX) family of transcription factors that is involved in all aspects of mammalian development, physiology, and pathobiology. FOXQ1 has emerged as a major regulator of epithelial-to-mesenchymal transition and tumour metastasis in cancers, especially carcinomas of the digestive tract. Accordingly, FOXQ1 induction is recognised as an independent prognostic factor for worse overall survival in several types of cancer, including gastric and colorectal cancer. In this review article, I summarise new evidence on the role of FOXQ1 in cancer, with a focus on molecular mechanisms that control FOXQ1 levels and the regulation of FOXQ1 target genes. Unravelling the functions of FOXQ1 has the potential to facilitate the development of targeted treatments for metastatic cancers.
Collapse
Affiliation(s)
- Stefan Koch
- Wallenberg Centre for Molecular Medicine (WCMM), Linköping University, Linköping, Sweden.
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, BKV/MMV - Plan 13, Lab 1, 581 85, Linköping, Sweden.
| |
Collapse
|
4
|
Chen L, Wu GZ, Wu T, Shang HH, Wang WJ, Fisher D, Hiens NTT, Musabaev E, Zhao L. Cell Cycle-Related LncRNA-Based Prognostic Model for Hepatocellular Carcinoma: Integrating Immune Microenvironment and Treatment Response. Curr Med Sci 2024; 44:1217-1231. [PMID: 39681799 DOI: 10.1007/s11596-024-2924-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/04/2024] [Indexed: 12/18/2024]
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) presents substantial genetic and phenotypic diversity, making it challenging to predict patient outcomes. There is a clear need for novel biomarkers to better identify high-risk individuals. Long non-coding RNAs (lncRNAs) are known to play key roles in cell cycle regulation and genomic stability, and their dysregulation has been closely linked to HCC progression. Developing a prognostic model based on cell cycle-related lncRNAs could open up new possibilities for immunotherapy in HCC patients. METHODS Transcriptomic data and clinical samples were obtained from the TCGA-HCC dataset. Cell cycle-related gene sets were sourced from existing studies, and coexpression analysis identified relevant lncRNAs (correlation coefficient >0.4, P<0.001). Univariate analysis identified prognostic lncRNAs, which were then used in a LASSO regression model to create a risk score. This model was validated via cross-validation. HCC samples were classified on the basis of their risk scores. Correlations between the risk score and tumor mutational burden (TMB), tumor immune infiltration, immune checkpoint gene expression, and immunotherapy response were evaluated via R packages and various methods (TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCP-COUNTER, XCELL, and EPIC). RESULTS Four cell cycle-related lncRNAs (AC009549.1, AC090018.2, PKD1P6-NPIPP1, and TMCC1-AS1) were significantly upregulated in HCC. These lncRNAs were used to create a risk score (risk score=0.492×AC009549.1+1.390×AC090018.2+1.622×PKD1P6-NPIPP1+0.858×TMCC1-AS1). This risk score had superior predictive value compared to traditional clinical factors (AUC=0.738). A nomogram was developed to illustrate the 1-year, 3-year, and 5-year overall survival (OS) rates for individual HCC patients. Significant differences in TMB, immune response, immune cell infiltration, immune checkpoint gene expression, and drug responsiveness were observed between the high-risk and low-risk groups. CONCLUSION The risk score model we developed enhances the prognostication of HCC patients by identifying those at high risk for poor outcomes. This model could lead to new immunotherapy strategies for HCC patients.
Collapse
Affiliation(s)
- Lin Chen
- Department of Infectious Diseases, Tsinghua University Affiliated Chuiyangliu Hospital, Beijing, 100021, China.
| | - Guo-Zhi Wu
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Tao Wu
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Hao-Hu Shang
- Jingchuan County People's Hospital, Jingliang, 744300, China
| | - Wei-Juan Wang
- Department of Infectious Diseases, Tsinghua University Affiliated Chuiyangliu Hospital, Beijing, 100021, China
| | - David Fisher
- Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Cape Town, 7100, South Africa
| | | | - Erkin Musabaev
- The Research Institute of Virology, Ministry of Health, Tashkent, 100133, Uzbekistan
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
5
|
Yang Z, Wang J, Zhao T, Wang L, Liang T, Zheng Y. Mitochondrial structure and function: A new direction for the targeted treatment of chronic liver disease with Chinese herbal medicine. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118461. [PMID: 38908494 DOI: 10.1016/j.jep.2024.118461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Excessive fat accumulation, biological clock dysregulation, viral infections, and sustained inflammatory responses can lead to liver inflammation, fibrosis, and cancer, thus promoting the development of chronic liver disease. A comprehensive understanding of the etiological factors leading to chronic liver disease and the intrinsic mechanisms influencing its onset and progression can aid in identifying potential targets for targeted therapy. Mitochondria, as key organelles that maintain the metabolic homeostasis of the liver, provide an important foundation for exploring therapeutic targets for chronic liver disease. Recent studies have shown that active ingredients in herbal medicines and their natural products can modulate chronic liver disease by influencing the structure and function of mitochondria. Therefore, studying how Chinese herbs target mitochondrial structure and function to treat chronic liver diseases is of great significance. AIM OF THE STUDY Investigating the prospects of herbal medicine the Lens of chronic liver disease based on mitochondrial structure and function. MATERIALS AND METHODS A computerized search of PubMed was conducted using the keywords "mitochondrial structure", "mitochondrial function", "mitochondria and chronic liver disease", "botanicals, mitochondria and chronic liver disease".Data from the Web of Science and Science Direct databases were also included. The research findings regarding herbal medicines targeting mitochondrial structure and function for the treatment of chronic liver disease are summarized. RESULTS A computerized search of PubMed using the keywords "mitochondrial structure", "mitochondrial function", "mitochondria and chronic liver disease", "phytopharmaceuticals, mitochondria, and chronic liver disease", as well as the Web of Science and Science Direct databases was conducted to summarize information on studies of mitochondrial structure- and function-based Chinese herbal medicines for the treatment of chronic liver disease and to suggest that the effects of herbal medicines on mitochondrial division and fusion.The study suggested that there is much room for research on the influence of Chinese herbs on mitochondrial division and fusion. CONCLUSIONS Targeting mitochondrial structure and function is crucial for herbal medicine to combat chronic liver disease.
Collapse
Affiliation(s)
- Zhihui Yang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China
| | - Jiahui Wang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China
| | - Tiejian Zhao
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China
| | - Lei Wang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China
| | - Tianjian Liang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China.
| | - Yang Zheng
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China.
| |
Collapse
|
6
|
Liu Y, Wang X, Wang Z, Gao X, Xu H, Gao Y, Niu J. System analysis based on weighted gene co-expression analysis identifies SOX7 as a novel regulator of hepatic stellate cell activation and liver fibrosis. FASEB J 2024; 38:e23495. [PMID: 39126242 DOI: 10.1096/fj.202302379r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 08/12/2024]
Abstract
Hepatic stellate cell (HSC) activation is the essential pathological process of liver fibrosis (LF). The molecular mechanisms regulating HSC activation and LF are incompletely understood. Here, we explored the effect of transcription factor SRY-related high mobility group box 7 (SOX7) on HSC activation and LF, and the underlying molecular mechanism. We found the expression levels of SOX7 were decreased in human and mouse fibrotic livers, particularly at the fibrotic foci. SOX7 was also downregulated in primary activated HSCs and TGF-β1 stimulated LX-2 cells. SOX7 knockdown promoted activation and proliferation of LX-2 cells while inhibiting their apoptosis. On the other hand, overexpression of SOX7 suppressed the activation and proliferation of HSCs. Mechanistically, SOX7 attenuates HSC activation and LF by decreasing the expression of β-catenin and phosphorylation of Smad2 and Smad3 induced by TGF-β1. Furthermore, overexpression of SOX7 using AAV8-SOX7 mouse models ameliorated the extent of LF in response to CCl4 treatment in vivo. Collectively, SOX7 suppressed HSC activation and LF. Targeting SOX7, therefore, could be a potential novel strategy to protect against LF.
Collapse
Affiliation(s)
- Yuwei Liu
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, Jilin, China
- Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaomei Wang
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, Jilin, China
- Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhongfeng Wang
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, Jilin, China
- Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiuzhu Gao
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, Jilin, China
- Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Hongqin Xu
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, Jilin, China
- Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yanhang Gao
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, Jilin, China
- Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Junqi Niu
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, Jilin, China
- Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
7
|
Ruishi X, Linyi X, Yunfan B, Wenbo Y, Xiaoying Z, Xiaoxue F, Difu Z, Xintian L, Ming Z, Haoming L. New perspectives on chemokines in hepatocellular carcinoma therapy: a critical pathway for natural products regulation of the tumor microenvironment. Front Immunol 2024; 15:1456405. [PMID: 39206194 PMCID: PMC11349538 DOI: 10.3389/fimmu.2024.1456405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common primary neoplasms of the liver and one of the most common solid tumors in the world. Its global incidence is increasing and it has become the third leading cause of cancer-related deaths. There is growing evidence that chemokines play an important role in the tumor microenvironment, regulating the migration and localization of immune cells in tissues and are critical for the function of the immune system. This review comprehensively analyses the expression and activity of chemokines in the TME of HCC and describes their interrelationship with hepatocarcinogenesis and progression. Special attention is given to the role of chemokine-chemokine receptors in the regulation of immune cell accumulation in the TME. Therapeutic strategies targeting tumor-promoting chemokines or the induction/release of beneficial chemokines are reviewed, highlighting the potential value of natural products in modulating chemokines and their receptors in the treatment of HCC. The in-depth discussion in this paper provides a theoretical basis for the treatment of HCC. It is an important reference for new drug development and clinical research.
Collapse
Affiliation(s)
- Xie Ruishi
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xu Linyi
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Bai Yunfan
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yu Wenbo
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhang Xiaoying
- The First Hospital of Jilin University, Changchun, China
| | - Fang Xiaoxue
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhu Difu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Lan Xintian
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhu Ming
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Luo Haoming
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
8
|
Yin Y, Feng W, Chen J, Chen X, Wang G, Wang S, Xu X, Nie Y, Fan D, Wu K, Xia L. Immunosuppressive tumor microenvironment in the progression, metastasis, and therapy of hepatocellular carcinoma: from bench to bedside. Exp Hematol Oncol 2024; 13:72. [PMID: 39085965 PMCID: PMC11292955 DOI: 10.1186/s40164-024-00539-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly heterogeneous malignancy with high incidence, recurrence, and metastasis rates. The emergence of immunotherapy has improved the treatment of advanced HCC, but problems such as drug resistance and immune-related adverse events still exist in clinical practice. The immunosuppressive tumor microenvironment (TME) of HCC restricts the efficacy of immunotherapy and is essential for HCC progression and metastasis. Therefore, it is necessary to elucidate the mechanisms behind immunosuppressive TME to develop and apply immunotherapy. This review systematically summarizes the pathogenesis of HCC, the formation of the highly heterogeneous TME, and the mechanisms by which the immunosuppressive TME accelerates HCC progression and metastasis. We also review the status of HCC immunotherapy and further discuss the existing challenges and potential therapeutic strategies targeting immunosuppressive TME. We hope to inspire optimizing and innovating immunotherapeutic strategies by comprehensively understanding the structure and function of immunosuppressive TME in HCC.
Collapse
Affiliation(s)
- Yue Yin
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Weibo Feng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Jie Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Xilang Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Guodong Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Kaichun Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Limin Xia
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
9
|
Du YN, Zhao JW. GDF15: Immunomodulatory Role in Hepatocellular Carcinoma Pathogenesis and Therapeutic Implications. J Hepatocell Carcinoma 2024; 11:1171-1183. [PMID: 38911292 PMCID: PMC11193986 DOI: 10.2147/jhc.s471239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/07/2024] [Indexed: 06/25/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths globally and the sixth most common cancer worldwide. Evidence shows that growth differentiation factor 15 (GDF15) contributes to hepatocarcinogenesis through various mechanisms. This paper reviews the latest insights into the role of GDF15 in the development of HCC, its role in the immune microenvironment of HCC, and its molecular mechanisms in metabolic dysfunction associated steatohepatitis (MASH) and metabolic associated fatty liver disease (MAFLD)-related HCC. Additionally, as a serum biomarker for HCC, diagnostic and prognostic value of GDF15 for HCC is summarized. The article elaborates on the immunological effects of GDF15, elucidating its effects on hepatic stellate cells (HSCs), liver fibrosis, as well as its role in HCC metastasis and tumor angiogenesis, and its interactions with anticancer drugs. Based on the impact of GDF15 on the immune response in HCC, future research should identify its signaling pathways, affected immune cells, and tumor microenvironment interactions. Clinical studies correlating GDF15 levels with patient outcomes can aid personalized treatment. Additionally, exploring GDF15-targeted therapies with immunotherapies could improve anti-tumor responses and patient outcomes.
Collapse
Affiliation(s)
- Yi-Ning Du
- Department of Medical Sciences, Li Ka-shing School of Medicine, University of Hong Kong, Hong Kong, People’s Republic of China
| | - Jin-Wei Zhao
- Department of Hepatopancreatobiliary Surgery, Second Hospital of Jilin University, Jilin University, Changchun, Jilin Province, People’s Republic of China
| |
Collapse
|
10
|
Liu Y, Shao K, Yang W, Shen Q, Lu M, Shao Z, Chu S, Wang Y, Wang X, Chen X, Bai J, Wu X. Phosphorylated FOXQ1, a novel substrate of JNK1, inhibits sorafenib-induced ferroptosis by activating ETHE1 in hepatocellular carcinoma. Cell Death Dis 2024; 15:395. [PMID: 38839744 PMCID: PMC11153576 DOI: 10.1038/s41419-024-06789-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
Hepatocellular carcinoma (HCC) is a highly heterogeneous and malignant cancer with poor overall survival. The application of sorafenib is a major breakthrough in the treatment of HCC. In our study, FOXQ1 was significantly overexpressed in sorafenib-resistant HCC cells and suppressed sorafenib-induced ferroptosis. We found that phosphorylation of FOXQ1 at serine 248 is critical for the suppression of sorafenib-induced ferroptosis. Furthermore, as the upstream phosphorylation kinase of FOXQ1, JNK1, which is activated by sorafenib, can directly phosphorylate the serine 248 site of FOXQ1. Then, the phosphorylated FOXQ1 got a high affinity for the promoter of ETHE1 and activates its transcription. Further flow cytometry results showed that ETHE1 reduced intracellular lipid peroxidation and iron levels. Collectively, our study implicated the JNK1-FOXQ1-ETHE1 axis in HCC ferroptosis induced by sorafenib, providing mechanistic insight into sensitivity to sorafenib therapy of HCC.
Collapse
Affiliation(s)
- Yiwei Liu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Ke Shao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
- Department of General Surgery, The People's Hospital of Rugao, Affiliated Rugao Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Wendong Yang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Qi Shen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Mengru Lu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Zhiying Shao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Sufang Chu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yuming Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China.
| | - Xiaofeng Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, China.
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China.
| | - Xiaofeng Wu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China.
| |
Collapse
|
11
|
Wang X, Niu R, Yang H, Lin Y, Hou H, Yang H. Fibroblast activation protein promotes progression of hepatocellular carcinoma via regulating the immunity. Cell Biol Int 2024; 48:577-593. [PMID: 38501437 DOI: 10.1002/cbin.12154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/26/2023] [Accepted: 11/13/2023] [Indexed: 03/20/2024]
Abstract
Fibroblast activation protein (FAP) has been indicated to express in cancer-associated fibroblasts (CAFs) in most cancers. This work was dedicated to exploring FAP's effects on hepatocellular carcinoma (HCC). The data were extracted from The Cancer Genome Atlas, Gene Expression Omnibus, ImmPort, and Reactome databases. The correlation between FAP and HCC patients' prognosis was explored via survival analysis. The qRT-PCR and western blot analysis were used to analyze the FAP mRNA and protein expression levels, respectively. The cell proliferation and apoptosis were determined using the cell counting kit-8 assay kit and Annexin V-FITC/PI apoptosis kit, respectively. The HCC patients with FAP overexpression displayed a worse prognosis. The FAP expression was positively associated with the infiltration levels of tumor purity, B cell, CD8 + T cell, CD4 + T cell, macrophage, neutrophil, and dendritic cell. The optimal nine immune related genes were screened between two groups (FAP high vs. low). Moreover, we identified 24 energy metabolism related genes (FAP high vs. low) and these 24 genes were highly expressed in the high FAP expression group. The FAP expression had a significant positive correlation with the expression of PD-1, CTLA4, PDL-1, and PDL-2. The FAP overexpression promoted proliferation and migration while inhibiting the apoptosis of HCC cells. The FAP overexpression promoted the progression of HCC by regulating the immunity to affect the prognosis of HCC patients, thereby serving as a poor prognostic marker for HCC patients.
Collapse
Affiliation(s)
- Xiangcheng Wang
- Department of Nuclear Medicine, Shenzhen People's Hospital, Shenzhen, P.R. China
| | - Ruilong Niu
- Department of Nuclear Medicine, Inner Mongolia Medical University Affiliated Hospital, Hohhot, Inner Mongolia, P.R. China
| | - Hao Yang
- Department of Radiation Oncology, Inner Mongolia Cancer Hospital & Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, P.R. China
| | - Yu Lin
- Department of Radiation Oncology, Inner Mongolia Medical University Affiliated Hospital, Hohhot, Inner Mongolia, P.R. China
| | - Hui Hou
- Department of Paediatrics, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, P.R. China
| | - Hong Yang
- Department of Oncology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, P.R. China
| |
Collapse
|
12
|
Ni Y, Lu M, Li M, Hu X, Li F, Wang Y, Xue D. Unraveling the underlying pathogenic factors driving nonalcoholic steatohepatitis and hepatocellular carcinoma: an in-depth analysis of prognostically relevant gene signatures in hepatocellular carcinoma. J Transl Med 2024; 22:72. [PMID: 38238845 PMCID: PMC10795264 DOI: 10.1186/s12967-024-04885-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH) is a progressive manifestation of nonalcoholic fatty liver disease (NAFLD) that can lead to fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Despite the growing knowledge of NASH and HCC, the association between the two conditions remains to be fully explored. Bioinformatics has emerged as a valuable approach for identifying disease-specific feature genes, enabling advancements in disease prediction, prevention, and personalized treatment strategies. MATERIALS AND METHODS In this study, we utilized CellChat, copy number karyotyping of aneuploid tumors (CopyKAT), consensus Non-negative Matrix factorization (cNMF), Gene set enrichment analysis (GSEA), Gene set variation analysis (GSVA), Monocle, spatial co-localization, single sample gene set enrichment analysis (ssGSEA), Slingshot, and the Scissor algorithm to analyze the cellular and immune landscape of NASH and HCC. Through the Scissor algorithm, we identified three cell types correlating with disease phenotypic features and subsequently developed a novel clinical prediction model using univariate, LASSO, and multifactor Cox regression. RESULTS Our results revealed that macrophages are a significant pathological factor in the development of NASH and HCC and that the macrophage migration inhibitory factor (MIF) signaling pathway plays a crucial role in cellular crosstalk at the molecular level. We deduced three prognostic genes (YBX1, MED8, and KPNA2), demonstrating a strong diagnostic capability in both NASH and HCC. CONCLUSION These findings shed light on the pathological mechanisms shared between NASH and HCC, providing valuable insights for the development of novel clinical strategies.
Collapse
Affiliation(s)
- Yuan Ni
- College of Integrated Chinese and Western Medicine (College of Life Sciences), Anhui University of Chinese Medicine, Hefei, China
| | - Maoqing Lu
- College of Integrated Chinese and Western Medicine (College of Life Sciences), Anhui University of Chinese Medicine, Hefei, China
| | - Ming Li
- College of Integrated Chinese and Western Medicine (College of Life Sciences), Anhui University of Chinese Medicine, Hefei, China
| | - Xixi Hu
- College of Integrated Chinese and Western Medicine (College of Life Sciences), Anhui University of Chinese Medicine, Hefei, China
| | - Feng Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Yan Wang
- College of Integrated Chinese and Western Medicine (College of Life Sciences), Anhui University of Chinese Medicine, Hefei, China.
| | - Dong Xue
- College of Integrated Chinese and Western Medicine (College of Life Sciences), Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
13
|
Liu S, Jia M, Dai R. Deciphering the tumour immune microenvironment of hepatocellular carcinoma. Scand J Immunol 2023; 98:e13327. [PMID: 38441331 DOI: 10.1111/sji.13327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/13/2023] [Accepted: 08/28/2023] [Indexed: 03/07/2024]
Abstract
Current treatments for hepatocellular carcinoma (HCC) are less effective and prone to recurrence after surgery, so it's needed to seek new ideas for its therapy. Tumour immune microenvironment (TME) is crucial for the pathogenesis, development and metastasis of HCC. Interactions between immune cells and tumour cells significantly impact responses to immunotherapies and patient prognosis. In recent years, immunotherapies for HCC have shown promising potential, but the response rate is still unsatisfactory. Understanding their cross-talks is helpful for selecting potential therapeutic targets, predicting immunotherapy responses, determining immunotherapy efficacy, identifying prognostic markers and selecting individualized treatment options. In this paper, we reviewed the research advances on the roles of immune cells and multi-omic research associated with HCC pathogenesis and therapy, and future perspectives on TME.
Collapse
Affiliation(s)
- Sha Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Department of Pain, Daping Hospital, Army Medical University, Chongqing, China
| | - Man Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Rongyang Dai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
14
|
Li R, Liu X, Deng K, Wang X. M7G methylated core genes (METTL1 and WDR4) and associated RNA risk signatures are associated with prognosis and immune escape in HCC. BMC Med Genomics 2023; 16:179. [PMID: 37528384 PMCID: PMC10394781 DOI: 10.1186/s12920-023-01614-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023] Open
Abstract
N7 methylguanosine (m7G) has a crucial role the development of hepatocellular carcinoma (HCC). This study aimed to investigate the impact of the m7G methylation core genes (METTL1 and WDR4) and associated RNA risk signatures on HCC. we found m7G methylation core genes (METTL1 and WDR4) were upregulated in four HCC cell lines, and downregulation of METTL1 and WDR4 attenuated HCC cell proliferation, migration, and invasion. Moreover, METTL1 and WDR4 are upregulated in HCC tissues, and that there is a significant positive correlation between them. METTL1 and WDR4 were identified as independent prognostic markers for HCC by employing overall survival (OS), disease-specific survival (DSS), Progression Free Interval survival (PFI), and univariate/multivariate Cox analyses. We identified 1479 coding RNAs (mRNAs) and 232 long non-coding RNAs (lncRNAs) associated with METTL1 / WDR4 by using weighted coexpression network analysis (WGCNA) and co-clustering analysis. The least absolute shrinkage and selection operator (lasso) were used to constructing mRNA and lncRNA risk signatures associated with the METTL1 / WDR4. These risk were independent poor prognostic factors in HCC. Furthermore, we found that METTL1 / WDR4 expression and mRNA / lncRNA risk scores were closely associated with TP53 mutations. Clinicopathological features correlation results showed that METTL1 / WDR4 expression and mRNA / lncRNA risk score were associated with the stage and invasion depth (T) of HCC. To predict the overall survival of HCC individuals, we constructed a nomogram with METTL1/WDR4 expression, mRNA/lncRNA risk score, and clinicopathological features. In addition, we combined single-cell sequencing datasets and immune escape-related checkpoints to construct an immune escape-related protein-protein interaction(PPI) network. In conclusion, M7G methylated core genes (METTL1 and WDR4) and associated RNA risk signatures are associated with prognosis and immune escape in HCC.
Collapse
Affiliation(s)
- Rui Li
- Jiangnan University Medical Center, WuXi, China
- Wuxi No.2 People's Hospital, WuXi, China
- The Affiliated Wuxi No.2 People's Hospital of Clinical College of Nantong University, WuXi, China
| | | | - Kaiyuan Deng
- Jiangnan University Medical Center, WuXi, China
- Wuxi No.2 People's Hospital, WuXi, China
- The Affiliated Wuxi No.2 People's Hospital of Clinical College of Nantong University, WuXi, China
| | - Xin Wang
- Jiangnan University Medical Center, WuXi, China.
- Wuxi No.2 People's Hospital, WuXi, China.
- The Affiliated Wuxi No.2 People's Hospital of Clinical College of Nantong University, WuXi, China.
| |
Collapse
|
15
|
Shen J, Gao H, Li B, Huang Y, Shi Y. The integration of machine learning and multi-omics analysis provides a powerful approach to screen aging-related genes and predict prognosis and immunotherapy efficacy in hepatocellular carcinoma. Aging (Albany NY) 2023; 15:6848-6864. [PMID: 37517087 PMCID: PMC10415564 DOI: 10.18632/aging.204876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/15/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a highly malignant tumor with high incidence and mortality rates. Aging-related genes are closely related to the occurrence and development of cancer. Therefore, it is of great significance to evaluate the prognosis of HCC patients by constructing a model based on aging-related genes. METHOD Non-negative matrix factorization (NMF) clustering analysis was used to cluster the samples. The correlation between the risk score and immune cells, immune checkpoints, and Mismatch Repair (MMR) was evaluated through Spearman correlation test. Real Time Quantitative PCR (RT-qPCR) and immunohistochemistry were used to validate the expression levels of key genes in tissue and cells for the constructed model. RESULT By performing NMF clustering, we were able to effectively group the liver cancer samples into two distinct clusters. Considering the potential correlation between aging-related genes and the prognosis of liver cancer patients, we used aging-related genes to construct a prognostic model. Spearman correlation analysis showed that the model risk score was closely related to MMR and immune checkpoint expression. Drug sensitivity analysis also provided guidance for the clinical use of chemotherapy drugs. RT-qPCR showed that TFDP1, NDRG1, and FXR1 were expressed at higher levels in different liver cancer cell lines compared to normal liver cells. CONCLUSION In summary, we have developed an aging-related model to predict the prognosis of hepatocellular carcinoma and guide clinical drug treatment for different patients.
Collapse
Affiliation(s)
- Jiahui Shen
- Department of Pharmacy, Huzhou Maternity and Child Health Care Hospital, Huzhou, China
| | - Han Gao
- Department of Stomatology, First Affiliated Hospital of Huzhou University, Huzhou, China
| | - Bowen Li
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yan Huang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yinfang Shi
- Department of Stomatology, First Affiliated Hospital of Huzhou University, Huzhou, China
| |
Collapse
|
16
|
Liu Y, Shen B, Huang T, Wang J, Jiang J. Construction and validation of 3-genes hypoxia-related prognostic signature to predict the prognosis and therapeutic response of hepatocellular carcinoma patients. PLoS One 2023; 18:e0288013. [PMID: 37406019 DOI: 10.1371/journal.pone.0288013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Previous studies have shown that the hypoxia microenvironment significantly impacted tumor progression. However, the clinical prognostic value of hypoxia-related risk signatures and their effects on the tumor microenvironment (TME) in hepatocellular carcinoma (HCC) remains hazy. This study aimed to conduct novel hypoxia-related prognostic signatures and improve HCC prognosis and treatment. METHODS Differentially expressed hypoxia-related genes (HGs) were identified with the gene set enrichment analysis (GSEA). Univariate Cox regression was utilized to generate the tumor hypoxia-related prognostic signature, which consists of 3 HGs, based on the least absolute shrinkage and selection operator (LASSO) algorithm. Then the risk score for each patient was performed. The prognostic signature's independent prognostic usefulness was confirmed, and systematic analyses were done on the relationships between the prognostic signature and immune cell infiltration, somatic cell mutation, medication sensitivity, and putative immunological checkpoints. RESULTS A prognostic risk model of four HGs (FDPS, SRM, and NDRG1) was constructed and validated in the training, testing, and validation datasets. To determine the model's performance in patients with HCC, Kaplan-Meier curves and time-dependent receiver operating characteristic (ROC) curves analysis was implemented. According to immune infiltration analysis, the high-risk group had a significant infiltration of CD4+ T cells, M0 macrophages, and dendritic cells (DCs) than those of the low-risk subtype. In addition, the presence of TP53 mutations in the high-risk group was higher, in which LY317615, PF-562271, Pyrimethamine, and Sunitinib were more sensitive. The CD86, LAIR1, and LGALS9 expression were upregulated in the high-risk subtype. CONCLUSIONS The hypoxia-related risk signature is a reliable predictive model for better clinical management of HCC patients and offers clinicians a holistic viewpoint when determining the diagnosis and course of HCC treatment.
Collapse
Affiliation(s)
- Yunxun Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Bingbing Shen
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Ting Huang
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Jianguo Wang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Jianxin Jiang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| |
Collapse
|
17
|
Tang B, Wang Y, Zhu J, Song J, Fang S, Weng Q, Yang Y, Tu J, Zhao Z, Chen M, Xu M, Chen W, Ji J. TACE responser NDRG1 acts as a guardian against ferroptosis to drive tumorgenesis and metastasis in HCC. Biol Proced Online 2023; 25:13. [PMID: 37208604 DOI: 10.1186/s12575-023-00199-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/13/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND The treatment efficacy of transarterial chemoembolization (TACE) for hepatocellular carcinoma (HCC) varies widely between individuals. The aim of this study was to identify subtype landscapes and responser related to TACE, and further clarify the regulatory effect and corresponding mechanism of NDRG1 on HCC tumorgenesis and metastasis. METHODS The principal component analysis (PCA) algorithm was used to construct a TACE response scoring (TRscore) system. The random forest algorithm was applied to identify the TACE response-related core gene NDRG1 of HCC, and its role in the prognosis of HCC was explored. The role of NDRG1 in the progression and metastasis of HCC and functional mechanism were confirmed using several experimental methods. RESULTS Based on the GSE14520 and GSE104580 cohorts, we identified 2 TACE response-related molecular subtypes for HCC with significant differences in clinical features, and the TACE prognosis of Cluster A was significantly better than that of Cluster B (p < 0.0001). We then established the TRscore system and found that the low TRscore group showed a higher probability of survival and a lower rate of recurrence than the high TRscore group (p < 0.05) in both the HCC and TACE-treated HCC cohorts within the GSE14520 cohort. NDRG1 was determined to be the the hub gene associated with the TACE response of HCC and its high expression suggested a poor prognosis. Furthermore, The suppression of NDRG1 konckdown in tumorgenesis and metastasis of HCC was clarified in both vivo and vitro, which was importantly achieved through inducing ferroptosis in HCC cells, especially contributing to RLS3-induced ferroptosis. CONCLUSION The constructed TACE response-related molecular subtypes and TRscores can specifically and accurately predict TACE prognosis for HCC. In addition, the TACE response-related hub gene NDRG1 may act as a guardian against ferroptosis to drive tumorgenesis and metastasis in HCC, which laid a new foundation for the development of new potential targeted therapy strategies to improve disease prognosis in HCC patients.
Collapse
Affiliation(s)
- Bufu Tang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, China
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yajie Wang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, China
- Department of Radiology, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Jinyu Zhu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, China
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingjing Song
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, China
- Department of Radiology, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Shiji Fang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, China
- Department of Radiology, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Qiaoyou Weng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, China
- Department of Radiology, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Yang Yang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, China
- Department of Radiology, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Jianfei Tu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, China
- Department of Radiology, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, China
- Department of Radiology, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, China
- Department of Radiology, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Min Xu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, China
- Department of Radiology, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Weiqian Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, China.
- Department of Radiology, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, China.
- Department of Radiology, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
| |
Collapse
|
18
|
Zhao M, Huang H, He F, Fu X. Current insights into the hepatic microenvironment and advances in immunotherapy for hepatocellular carcinoma. Front Immunol 2023; 14:1188277. [PMID: 37275909 PMCID: PMC10233045 DOI: 10.3389/fimmu.2023.1188277] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and shows high global incidence and mortality rates. The liver is an immune-tolerated organ with a specific immune microenvironment that causes traditional therapeutic approaches to HCC, such as chemotherapy, radiotherapy, and molecular targeted therapy, to have limited efficacy. The dramatic advances in immuno-oncology in the past few decades have modified the paradigm of cancer therapy, ushering in the era of immunotherapy. Currently, despite the rapid integration of cancer immunotherapy into clinical practice, some patients still show no response to treatment. Therefore, a rational approach is to target the tumor microenvironment when developing the next generation of immunotherapy. This review aims to provide insights into the hepatic immune microenvironment in HCC and summarize the mechanisms of action and clinical usage of immunotherapeutic options for HCC, including immune checkpoint blockade, adoptive therapy, cytokine therapy, vaccine therapy, and oncolytic virus-based therapy.
Collapse
Affiliation(s)
| | | | - Feng He
- *Correspondence: Feng He, ; Xiangsheng Fu,
| | | |
Collapse
|
19
|
Yang J, Dong C, Wu J, Liu D, Luo Q, Jin X. Fructose utilization enhanced by GLUT5 promotes lung cancer cell migration via activating glycolysis/AKT pathway. Clin Transl Oncol 2023; 25:1080-1090. [PMID: 36454516 DOI: 10.1007/s12094-022-03015-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/12/2022] [Indexed: 12/03/2022]
Abstract
PURPOSE Lung cancer is the leading cause of cancer-related mortalities worldwide, and metastasis contributes to a large number of deaths in lung carcinoma patients. New approaches for anti-metastatic treatment are urgently needed. Enhanced fructose metabolism mediated by GLUT5 directly contributes to cancer metastasis. However, the underlying mechanism remains to be elucidated, which we aimed to explore in this study. METHODS The overexpression and knockdown of SLC2A5, the encoding gene of GLUT5, were established by retrovirus system and CRISPR/Cas9 technology, respectively. Cell migration was conducted by trans-well assay. Western blotting assay was carried out to detect the expression of GLUT5, total AKT, phosphorylated AKT (pAKT-S473 and pAKT-T308) and LDHA. Lactate production was measured by colorimetric assay. Experimental lung metastasis model by tail vein injection was constructed to evaluate the metastatic potential of GLUT5 in vivo. RESULTS Overexpression of SLC2A5 promoted migration of lung cancer cells both in vitro and in vivo, and shortened the overall survival of mice. While, SLC2A5 deletion blocked the migration of lung cancer cells. GLUT5-mediated fructose utilization upregulated phosphorylated AKT, which was responsible for enhanced migration of lung cancer cells. Additionally, GLUT5-mediated fructose utilization boosted glycolysis with overproduction of lactate, resulting in upregulation of phosphorylated AKT. Moreover, lung cancer cell migration and AKT activation were restrained by glycolysis inhibitor 2-deoxy-D-glucose (2-DG) or GLUT5-specific inhibitor 2,5-anhydro-D-mannitol (2,5-AM). CONCLUSION Our study unveils glycolysis/lactate/AKT pathway is responsible for lung cancer cell migration induced by GLUT5-mediated fructose metabolism, providing a potential therapeutic avenue for lung cancer metastasis.
Collapse
Affiliation(s)
- Jing Yang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Changsheng Dong
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Jia Wu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Dan Liu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Qin Luo
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Xing Jin
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
20
|
Liu P, Kong L, Liu Y, Li G, Xie J, Lu X. A key driver to promote HCC: Cellular crosstalk in tumor microenvironment. Front Oncol 2023; 13:1135122. [PMID: 37007125 PMCID: PMC10050394 DOI: 10.3389/fonc.2023.1135122] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
Liver cancer is the third greatest cause of cancer-related mortality, which of the major pathological type is hepatocellular carcinoma (HCC) accounting for more than 90%. HCC is characterized by high mortality and is predisposed to metastasis and relapse, leading to a low five-year survival rate and poor clinical prognosis. Numerous crosstalk among tumor parenchymal cells, anti-tumor cells, stroma cells, and immunosuppressive cells contributes to the immunosuppressive tumor microenvironment (TME), in which the function and frequency of anti-tumor cells are reduced with that of associated pro-tumor cells increasing, accordingly resulting in tumor malignant progression. Indeed, sorting out and understanding the signaling pathways and molecular mechanisms of cellular crosstalk in TME is crucial to discover more key targets and specific biomarkers, so that develop more efficient methods for early diagnosis and individualized treatment of liver cancer. This piece of writing offers insight into the recent advances in HCC-TME and reviews various mechanisms that promote HCC malignant progression from the perspective of mutual crosstalk among different types of cells in TME, aiming to assist in identifying the possible research directions and methods in the future for discovering new targets that could prevent HCC malignant progression.
Collapse
Affiliation(s)
- Pengyue Liu
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
| | - Lingyu Kong
- Department of Traditional Chinese Medicine, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Ying Liu
- Department of Clinical Skills Training Center, Tangshan Gongren Hospital, Tangshan, China
| | - Gang Li
- Department of Clinical Laboratory, Tangshan Maternal and Child Health Care Hospital, Tangshan, China
| | - Jianjia Xie
- Department of Clinical Laboratory, Tangshan Maternal and Child Health Care Hospital, Tangshan, China
| | - Xin Lu
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
- Department of Clinical Laboratory, Tangshan Maternal and Child Health Care Hospital, Tangshan, China
| |
Collapse
|
21
|
Huang H, Tsui YM, Ng IOL. Fueling HCC Dynamics: Interplay Between Tumor Microenvironment and Tumor Initiating Cells. Cell Mol Gastroenterol Hepatol 2023; 15:1105-1116. [PMID: 36736664 PMCID: PMC10036749 DOI: 10.1016/j.jcmgh.2023.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/05/2023]
Abstract
Liver cancer (hepatocellular carcinoma) is a common cancer worldwide. It is an aggressive cancer, with high rates of tumor relapse and metastasis, high chemoresistance, and poor prognosis. Liver tumor-initiating cells (LTICs) are a distinctive subset of liver cancer cells with self-renewal and differentiation capacities that contribute to intratumoral heterogeneity, tumor recurrence, metastasis, and chemo-drug resistance. LTICs, marked by different TIC markers, have high plasticity and use diverse signaling pathways to promote tumorigenesis and tumor progression. LTICs are nurtured in the tumor microenvironment (TME), where noncellular and cellular components participate to build an immunosuppressive and tumor-promoting niche. As a result, the TME has emerged as a promising anticancer therapeutic target, as exemplified by some successful applications of tumor immunotherapy. In this review, we discuss the plasticity of LTICs in terms of cellular differentiation, epithelial-mesenchymal transition, and cellular metabolism. We also discuss the various components of the TME, including its noncellular and cellular components. Thereafter, we discuss the mutual interactions between TME and LTICs, including recently reported molecular mechanisms. Lastly, we summarize and describe new ideas concerning novel approaches and strategies for liver cancer therapy.
Collapse
Affiliation(s)
- Hongyang Huang
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Yu-Man Tsui
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Irene Oi-Lin Ng
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong.
| |
Collapse
|
22
|
Ezhilarasan D, Najimi M. Deciphering the possible reciprocal loop between hepatic stellate cells and cancer cells in the tumor microenvironment of the liver. Crit Rev Oncol Hematol 2023; 182:103902. [PMID: 36621514 DOI: 10.1016/j.critrevonc.2022.103902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023] Open
Abstract
Activated hepatic stellate cells (HSCs)/myofibroblasts are the important sources of cancer-associated fibroblasts in the liver tumor microenvironment (TME). The crosstalk between activated HSCs and tumor cells mediates HCC progression, metastasis, tumor cell survival, angiogenesis and chemoresistance. In TME, HCC cells secrete various soluble factors responsible for the phenotypic activation of quiescent HSCs. Tumor cells use activated HSC-derived extracellular matrix (ECM) for migration and invasion. Further, in liver TME, activated HSCs and sinusoidal endothelial cells engage in a crosstalk that causes the secretion of angiogenesis and metastasis-related growth factors and cytokines. Activated HSCs and immune cells crosstalk to decrease immune surveillance in the liver TME by increasing the population of T regulatory cells and M2 macrophages or myeloid-derived suppressor cells. Thus, HSCs play a vital role in liver TME cell interactions. Therefore, a deep understanding of HSCs activation and their crosstalk with cancer and immune cells in TME may lead to the development of novel therapeutic strategies to target HCC.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India.
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels 1200, Belgium
| |
Collapse
|
23
|
He YX, Shen H, Ji YZ, Hua HR, Zhu Y, Zeng XF, Wang F, Wang KX. N-myc downstream regulated gene 1 inhibition of tumor progression in Caco2 cells. World J Gastrointest Oncol 2022; 14:2313-2328. [PMID: 36568939 PMCID: PMC9782617 DOI: 10.4251/wjgo.v14.i12.2313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/17/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Invasion and migration are the irreversible stages of colorectal cancer (CRC). The key is to find a sensitive, reliable molecular marker that can predict the migration of CRC at an early stage. N-myc downstream regulated gene 1 (NDRG1) is a multifunctional gene that has been tentatively reported to have a strong relationship with tumor invasion and migration, however the current molecular role of NDRG1 in CRC remains unknown.
AIM To explore the role of NDRG1 in the development of CRC.
METHODS NDRG1 stably over-expressed Caco2 cell line was established by lentiviral infection and NDRG1 knock-out Caco2 cell line was established by CRISPR/Cas9. Furthermore, the mRNA and protein levels of NDRG1 in Caco2 cells after NDRG1 over-expression and knockout were detected by real-time polymerase chain reaction and western blot. The cell proliferation rate was measured by the cell counting kit-8 method; cell cycle and apoptosis were detected by flow cytometry; invasion and migration ability were detected by the 24-transwell method.
RESULTS NDRG1 over-expression inhibited Caco2 proliferation and the cell cycle could be arrested at the G1/S phase when NDRG1 was over-expressed, while the number of cells in the G2 phase was significantly increased when NDRG1 was knocked out. This suggests that NDRG1 inhibited the proliferation of Caco2 cells by arresting the cell cycle in the G1/S phase. Our data also demonstrated that NDRG1 promotes early cell apoptosis. Invasion and migration of cells were extensively inhibited when NDRG1 was over-expressed.
CONCLUSION NDRG1 inhibits tumor progression in Caco2 cells which may represent a potential novel therapeutic strategy for the treatment of CRC.
Collapse
Affiliation(s)
- Yi-Xiao He
- Department of Pathology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621000, Sichuan Province, China
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan Province, China
| | - Hong Shen
- Department of Pathology, Zhaotong First People’s Hospital, Zhaotong 657000, Yunnan Province, China
| | - Yu-Zhu Ji
- Department of Pathology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621000, Sichuan Province, China
| | - Hai-Rong Hua
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan Province, China
| | - Yu Zhu
- School of Nursing, Henan Vocational College of Applied Technology, Kaifeng 450000, Henan Province, China
| | - Xiang-Fei Zeng
- Department of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610000, Sichuan Province, China
| | - Fang Wang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan Province, China
| | - Kai-Xin Wang
- Department of Pathology, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen 518052, Guangdong Province, China
| |
Collapse
|
24
|
Mitchell AV, Wu L, James Block C, Zhang M, Hackett J, Craig DB, Chen W, Zhao Y, Zhang B, Dang Y, Zhang X, Zhang S, Wang C, Gibson H, Pile LA, Kidder B, Matherly L, Yang Z, Dou Y, Wu G. FOXQ1 recruits the MLL complex to activate transcription of EMT and promote breast cancer metastasis. Nat Commun 2022; 13:6548. [PMID: 36319643 PMCID: PMC9626503 DOI: 10.1038/s41467-022-34239-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
Aberrant expression of the Forkhead box transcription factor, FOXQ1, is a prevalent mechanism of epithelial-mesenchymal transition (EMT) and metastasis in multiple carcinoma types. However, it remains unknown how FOXQ1 regulates gene expression. Here, we report that FOXQ1 initiates EMT by recruiting the MLL/KMT2 histone methyltransferase complex as a transcriptional coactivator. We first establish that FOXQ1 promoter recognition precedes MLL complex assembly and histone-3 lysine-4 trimethylation within the promoter regions of critical genes in the EMT program. Mechanistically, we identify that the Forkhead box in FOXQ1 functions as a transactivation domain directly binding the MLL core complex subunit RbBP5 without interrupting FOXQ1 DNA binding activity. Moreover, genetic disruption of the FOXQ1-RbBP5 interaction or pharmacologic targeting of KMT2/MLL recruitment inhibits FOXQ1-dependent gene expression, EMT, and in vivo tumor progression. Our study suggests that targeting the FOXQ1-MLL epigenetic axis could be a promising strategy to combat triple-negative breast cancer metastatic progression.
Collapse
Affiliation(s)
- Allison V Mitchell
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Ling Wu
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - C James Block
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Mu Zhang
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Justin Hackett
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Douglas B Craig
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Wei Chen
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Yongzhong Zhao
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn Mount Sinai School of Medicine, New York, NY, 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn Mount Sinai School of Medicine, New York, NY, 10029, USA
| | - Yongjun Dang
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiaohong Zhang
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Shengping Zhang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Songjiang District, Shanghai, 201620, China
| | - Chuangui Wang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Songjiang District, Shanghai, 201620, China
| | - Heather Gibson
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Lori A Pile
- The Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Benjamin Kidder
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Larry Matherly
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Zhe Yang
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Yali Dou
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Guojun Wu
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA.
| |
Collapse
|
25
|
Wu G, Yang Y, Ye R, Yue H, Zhang H, Huang T, Liu M, Zheng Y, Wang Y, Zhou Y, Guo Q. Development and validation of an ECM-related prognostic signature to predict the immune landscape of human hepatocellular carcinoma. BMC Cancer 2022; 22:1036. [PMID: 36195857 PMCID: PMC9531523 DOI: 10.1186/s12885-022-10049-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/31/2022] [Indexed: 12/24/2022] Open
Abstract
Background The global burden of hepatocellular carcinoma (HCC) is increasing, negatively impacting social health and economies. The discovery of novel and valuable biomarkers for the early diagnosis and therapeutic guidance of HCC is urgently needed. Methods Extracellular matrix (ECM)-related gene sets, transcriptome data and mutation profiles were downloaded from the Matrisome Project and The Cancer Genome Atlas (TCGA)-LIHC datasets. Coexpression analysis was initially performed with the aim of identifying ECM-related lncRNAs (r > 0.4, p < 0.001). The screened lncRNAs were subjected to univariate analysis to obtain a series of prognosis-related lncRNA sets, which were incorporated into least absolute selection and shrinkage operator (LASSO) regression for signature establishment. Following the grouping of LIHC samples according to risk score, the correlations between the signature and clinicopathological, tumour immune infiltration, and mutational characteristics as well as therapeutic response were also analysed. lncRNA expression levels used for modelling were finally examined at the cellular and tissue levels by real-time PCR. All analyses were based on R software. Results AL031985.3 and MKLN1-AS were ultimately identified as signature-related lncRNAs, and both were significantly upregulated in HCC tissue samples and cell lines. The prognostic value of the signature reflected by the AUC value was superior to that of age, sex, grade and stage. Correlation analysis results demonstrated that high-risk groups exhibited significant enrichment of immune cells (DCs, macrophages and Tregs) and increased expression levels of all immune checkpoint genes. Prominent differences in clinicopathological profiles, immune functions, tumour mutation burden (TMB) and drug sensitivity were noted between the two risk groups. Conclusions Our signature represents a valuable predictive tool in the prognostic management of HCC patients. Further validation of the mechanisms involved is needed. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10049-w.
Collapse
Affiliation(s)
- Guozhi Wu
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, Gansu, China.,Department of Gastroenterology, The First Hospital of Lanzhou University, No.1 West Donggang Road, Lanzhou, 730000, Gansu, China.,Gansu Key Laboratory of Gastroenterology, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yuan Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, Gansu, China.,Department of Gastroenterology, The First Hospital of Lanzhou University, No.1 West Donggang Road, Lanzhou, 730000, Gansu, China.,Gansu Key Laboratory of Gastroenterology, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Rong Ye
- Department of Radiology, the First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Hanxun Yue
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, Gansu, China.,Department of Gastroenterology, The First Hospital of Lanzhou University, No.1 West Donggang Road, Lanzhou, 730000, Gansu, China.,Gansu Key Laboratory of Gastroenterology, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Huiyun Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, Gansu, China.,Department of Gastroenterology, The First Hospital of Lanzhou University, No.1 West Donggang Road, Lanzhou, 730000, Gansu, China.,Gansu Key Laboratory of Gastroenterology, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Taobi Huang
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, Gansu, China.,Department of Gastroenterology, The First Hospital of Lanzhou University, No.1 West Donggang Road, Lanzhou, 730000, Gansu, China.,Gansu Key Laboratory of Gastroenterology, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Min Liu
- Department of Gastroenterology, The First Hospital of Lanzhou University, No.1 West Donggang Road, Lanzhou, 730000, Gansu, China.,Gansu Key Laboratory of Gastroenterology, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Ya Zheng
- Department of Gastroenterology, The First Hospital of Lanzhou University, No.1 West Donggang Road, Lanzhou, 730000, Gansu, China.,Gansu Key Laboratory of Gastroenterology, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, No.1 West Donggang Road, Lanzhou, 730000, Gansu, China.,Gansu Key Laboratory of Gastroenterology, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, No.1 West Donggang Road, Lanzhou, 730000, Gansu, China. .,Gansu Key Laboratory of Gastroenterology, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Qinghong Guo
- Department of Gastroenterology, The First Hospital of Lanzhou University, No.1 West Donggang Road, Lanzhou, 730000, Gansu, China. .,Gansu Key Laboratory of Gastroenterology, Lanzhou University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
26
|
The immunosuppressive tumor microenvironment in hepatocellular carcinoma-current situation and outlook. Mol Immunol 2022; 151:218-230. [PMID: 36179604 DOI: 10.1016/j.molimm.2022.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/05/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most severe malignant tumors that threaten human health, and its incidence is still on the rise recently. In spite of the current emerging treatment strategies, the overall prognosis of liver cancer remains worrying. Currently, immunotherapy has become a new research-active spot. The emergence of immune checkpoints and targeted immune cell therapy can significantly improve the prognosis of HCC. To a large extent, the effect of this immunotherapy depends on the tumor immune microenvironment (TME), an intricate system in which cancer cells and other non-cancer cells display various interactions. Understanding the immunosuppressive situation of these cells, along with the malignant behavior of cancer cells, can assist us to design new therapeutic approaches against tumors. Therefore, it is necessary to clarify the TME of HCC for further improvement of clinical treatment. This review discussed the functions of several immunosuppressive cells and exosomes in the latest research progress of HCC, including cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs) and tumor-associated neutrophils (TANs) interacted actively to facilitate tumor progression. It further describes the treatment methods targeting them and the potential that needs to be explored in the future.
Collapse
|
27
|
Non-Coding RNAs in Hepatocellular Carcinoma. LIVERS 2022. [DOI: 10.3390/livers2030017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Liver cancer ranks as the fourth leading cause of cancer-related deaths. Despite extensive research efforts aiming to evaluate the biological mechanisms underlying hepatocellular carcinoma (HCC) development, little has been translated towards new diagnostic and treatment options for HCC patients. Historically, the focus has been centered on coding RNAs and their respective proteins. However, significant advances in sequencing and RNA detection technologies have shifted the research focus towards non-coding RNAs (ncRNA), as well as their impact on HCC development and progression. A number of studies reported complex post-transcriptional interactions between various ncRNA and coding RNA molecules. These interactions offer insights into the role of ncRNAs in both the known pathways leading to oncogenesis, such as dysregulation of p53, and lesser-known mechanisms, such as small nucleolar RNA methylation. Studies investigating these mechanisms have identified prevalent ncRNA changes in microRNAs, snoRNAs, and long non-coding RNAs that can both pre- and post-translationally regulate key factors in HCC progression. In this review, we present relevant publications describing ncRNAs to summarize the impact of different ncRNA species on liver cancer development and progression and to evaluate recent attempts at clinical translation.
Collapse
|
28
|
Xia H, Huang Z, Xu Y, Yam JWP, Cui Y. Reprogramming of central carbon metabolism in hepatocellular carcinoma. Biomed Pharmacother 2022; 153:113485. [DOI: 10.1016/j.biopha.2022.113485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 11/02/2022] Open
|
29
|
Peng H, Zhu E, Zhang Y. Advances of cancer-associated fibroblasts in liver cancer. Biomark Res 2022; 10:59. [PMID: 35971182 PMCID: PMC9380339 DOI: 10.1186/s40364-022-00406-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Liver cancer is one of the most common malignant tumors worldwide, it is ranked sixth in incidence and fourth in mortality. According to the distinct origin of malignant tumor cells, liver cancer is mainly divided into hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). Since most cases are diagnosed at an advanced stage, the prognosis of liver cancer is poor. Tumor growth depends on the dynamic interaction of various cellular components in the tumor microenvironment (TME). As the most abundant components of tumor stroma, cancer-associated fibroblasts (CAFs) have been involved in the progression of liver cancer. The interplay between CAFs and tumor cells, immune cells, or vascular endothelial cells in the TME through direct cell-to-cell contact or indirect paracrine interaction, affects the initiation and development of tumors. Additionally, CAFs are not a homogeneous cell population in liver cancer. Recently, single-cell sequencing technology has been used to help better understand the diversity of CAFs in liver cancer. In this review, we mainly update the knowledge of CAFs both in HCC and CCA, including their cell origins, chemoresistance, tumor stemness induction, tumor immune microenvironment formation, and the role of tumor cells on CAFs. Understanding the context-dependent role of different CAFs subsets provides new strategies for precise liver cancer treatment.
Collapse
Affiliation(s)
- Hao Peng
- Medical School, Southeast University, Nanjing, 210009, China
| | - Erwei Zhu
- The Second People's Hospital of Lianyungang (The Oncology Hospital of Lianyungang), Lianyungang, 222006, China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China.
| |
Collapse
|
30
|
Cai Q, Duan J, Ding L. Prognostic model of immune-related genes for patients with hepatocellular carcinoma. Front Surg 2022; 9:819491. [PMID: 35937592 PMCID: PMC9349350 DOI: 10.3389/fsurg.2022.819491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 06/30/2022] [Indexed: 11/30/2022] Open
Abstract
Background Immune-related genes (IRGs) are closely connected to the occurrence and development of tumors. Their influence on the prognosis of patients with HCC, however, remains unclear. Methods From the TCGA database, we integrated 365 liver cancer tissues and 50 normal tissues to identify differential immune genes related to prognosis. Multivariate COX analysis was used to establish a new prognostic index on account of IRGs, whereby risk score = (Expression level of HSPA4*0.022) + (Expression level of PSMD14*0.042) + (Expression level of RBP2*0.019) + (Expression level of MAPT*0.197) + (Expression level of TRAF3*0.146) + (Expression level of NDRG1*(0.006) + (Expression level of NRAS*0.027) + (Expression level of IL17D*0.075). Results The risk score was clearly correlated with an unfavorable survival rate and with clinical characteristics. By integrating the immune-related risk score model with clinical features, a nomogram was constructed to predict the survival rate of HCC patients (1-, 3- and 5-year AUC of 0.721, 0.747 and 0.781, respectively). Conclusion We have established a valuable prognostic risk score for HCC patients that may be a better predictor of survival than the present method. With the risk score's strong predictive value for immune cells and functions, it may provide clinical guidance for the diagnosis and prognosis of different immunophenotypes, and provide multiple therapeutic targets for the treatment of HCC patients based on subtype-specific immune molecules.
Collapse
Affiliation(s)
- Qun Cai
- Department of Infectious Diseases and Liver Diseases, Ningbo Medical Center Lihuili Hospital, Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
- Correspondence: Qun Cai
| | - Jinnan Duan
- Department of Infectious Diseases, Shaoxing People's Hospital, Shaoxing, China
| | - Liang Ding
- Department of Infectious Diseases, Shaoxing People's Hospital, Shaoxing, China
| |
Collapse
|
31
|
You GR, Chang JT, Li HF, Cheng AJ. Multifaceted and Intricate Oncogenic Mechanisms of NDRG1 in Head and Neck Cancer Depend on Its C-Terminal 3R-Motif. Cells 2022; 11:cells11091581. [PMID: 35563887 PMCID: PMC9104279 DOI: 10.3390/cells11091581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
N-Myc downstream-regulated 1 (NDRG1) has inconsistent oncogenic functions in various cancers. We surveyed and characterized the role of NDRG1 in head and neck cancer (HNC). Cellular methods included spheroid cell formation, clonogenic survival, cell viability, and Matrigel invasion assays. Molecular techniques included transcriptomic profiling, RT-qPCR, immunoblotting, in vitro phosphorylation, immunofluorescent staining, and confocal microscopy. Prognostic significance was assessed by Kaplan–Meier analysis. NDRG1 participated in diverse oncogenic functions in HNC cells, mainly stress response and cell motility. Notably, NDRG1 contributed to spheroid cell growth, radio-chemoresistance, and upregulation of stemness-related markers (CD44 and Twist1). NDRG1 facilitated cell migration and invasion, and was associated with modulation of the extracellular matrix molecules (fibronectin, vimentin). Characterizing the 3R-motif in NDRG1 revealed its mechanism in the differential regulation of the phenotypes. The 3R-motif displayed minimal effect on cancer stemness but was crucial for cell motility. Phosphorylating the motif by GSK3b at serine residues led to its nuclear translocation to promote motility. Clinical analyses supported the oncogenic function of NDRG1, which was overexpressed in HNC and associated with poor prognosis. The data elucidate the multifaceted and intricate mechanisms of NDRG1 in HNC. NDRG1 may be a prognostic indicator or therapeutic target for refractory HNC.
Collapse
Affiliation(s)
- Guo-Rung You
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Joseph T. Chang
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 33302, Taiwan;
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hsiao-Fan Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Ann-Joy Cheng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 33302, Taiwan;
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Correspondence: ; Tel.: +886-3-211-8800
| |
Collapse
|
32
|
Yang J, Qi M, Fei X, Wang X, Wang K. Hsa_circRNA_0088036 acts as a ceRNA to promote bladder cancer progression by sponging miR-140-3p. Cell Death Dis 2022; 13:322. [PMID: 35396504 PMCID: PMC8993833 DOI: 10.1038/s41419-022-04732-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 02/17/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022]
Abstract
Circular RNAs (circRNAs) are a class of non-coding RNAs that play vital roles in cancer biology. However, the potential role of hsa_circRNA_0088036 in bladder cancer (BCa) remains unknown. Hsa_circRNA_0088036 was identified by microarray analysis and validated by quantitative real-time polymerase chain reaction. Functional assays were conducted to confirm the effects of hsa_circRNA_0088036 on the growth, migration, invasion, tumorigenesis, and metastasis of BCa cells. The luciferase reporter assay and RNA pull down assay were performed to investigate the interactions between hsa_circRNA_0088036, miR-140-3p, and forkhead box protein Q1 (FOXQ1). Upregulated expression of hsa_circRNA_0088036 in BCa tissues and cell lines was positively correlated with overall survival and clinicopathologic characteristics. Knockdown of hsa_circRNA_0088036 inhibited the growth, migration, and invasion of BCa cells both in vivo and in vitro. Mechanistically, hsa_circRNA_0088036 could directly interact with miR-140-3p and act as a miRNA sponge to modulate FOXQ1 expression. Knockdown of hsa_circRNA_0088036 inhibited the proliferation, migration, and metastasis of BCa cells via miR-140-3p/FOXQ1 signaling, suggesting that hsa_circRNA_0088036 is a potential biomarker and therapeutic target for BCa.
Collapse
Affiliation(s)
- Jun Yang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Manlong Qi
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xiang Fei
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
33
|
A comprehensive analysis of FOX family in HCC and experimental evidence to support the oncogenic role of FOXH1. Aging (Albany NY) 2022; 14:2268-2286. [PMID: 35255005 PMCID: PMC8954963 DOI: 10.18632/aging.203934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/09/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) remains the second leading cause of cancer related deaths worldwide. Understanding about the molecular biology of HCC and development of targeted therapies are still the main focuses of this type of disease. Here, by connecting the expression levels of FOX proteins with their associated clinical characteristics using TCGA LIHC dataset, we found that 27/40 FOX proteins were highly expressed in HCC tumors compared to normal liver tissues and their expression levels were tightly associated with HCC tumor stage, tumor grade and overall survival. Our experimental results also confirmed that FOXH1 indeed played an oncogenic role in HCC development by promoting cell growth and cell migration/invasion. Mechanistic dissection demonstrated that FOXH1-induced cell growth and cell migration/invasion relied on mTOR signaling because inhibition of mTOR signaling by rapamycin could attenuate FOXH1-mediated phenotypic alterations of HCC cells. The results from orthotopic mouse model also validated that FOXH1 promoted HA22T tumor growth via triggering mTOR activation. Overall, this study not only comprehensively examines the clinical values of FOX proteins in HCC but also provides experimental evidence to support the role of FOXH1 in HCC development, building rationale to develop more effective therapies to treat HCC patients.
Collapse
|
34
|
Song L, Li Q, Lu Y, Feng X, Yang R, Wang S. Cancer Progression Mediated by CAFs Relating to HCC and Identification of Genetic Characteristics Influencing Prognosis. JOURNAL OF ONCOLOGY 2022; 2022:2495361. [PMID: 36299502 PMCID: PMC9590114 DOI: 10.1155/2022/2495361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/09/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignancies, and although there are several treatment options, the overall results are not satisfactory. Cancer-associated fibroblasts (CAFs) can promote cancer progression through various mechanisms. METHODS HCC-associated mRNA data were sourced from The Cancer Genome Atlas database (TCGA) and International Cancer Genome Consortium (ICGC) database. First, the differentially expressed CAF-related genes (CAF-DEGs) were acquired by difference analysis and weighted gene coexpression network analysis (WGCNA). Moreover, a CAF-related risk model was built by Cox analysis. Kaplan-Meier (K-M) curves and receiver operating characteristic (ROC) curves were utilized to evaluate the validity of this risk model. Furthermore, enrichment analysis of differentially expressed genes (DEGs) between the high- and low-risk groups was executed to explore the functions relevant to the risk model. Furthermore, this study compared the differences in immune infiltration, immunotherapy, and drug sensitivity between the high- and low-risk groups. Finally, we verified the mRNA expression levels of selected prognostic genes by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS 107 CAF-DEGs were identified in the HCC samples, and five prognosis-related genes (ACTA2, IGJ, CTHRC1, CXCL12, and LAMB1) were obtained by Cox analysis and utilized to build a CAF-related risk model. K-M analysis illustrated a low survival in the high-risk group, and ROC curves revealed that the risk model could accurately predict the 1-, 3-, and 5-year overall survival (OS) of HCC patients. In addition, Cox analysis demonstrated that the risk score was an independent prognostic factor. Enrichment analysis illustrated that DEGs between the high- and low-risk groups were related to immune response, amino acid metabolism, and fatty acid metabolism. Furthermore, risk scores were correlated with the tumor microenvironment, CAF scores, and TIDE scores, and CAF-related marker genes were positively correlated with all five model genes. Notably, the risk model was relevant to the sensitivity of chemotherapy drugs. Finally, the results of qRT-PCR demonstrated that the expression levels of 5 model genes were in accordance with the analysis. CONCLUSION A CAF-related risk model based on ACTA2, IGJ, CTHRC1, CXCL12, and LAMB1 was built and could be utilized to predict the prognosis and treatment of HCC.
Collapse
Affiliation(s)
- Li Song
- Academy of Advanced Interdisciplinary Studies, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, China
| | - Qiankun Li
- Department of Tissue Repair and Regeneration, The First Medical Center of Chinese PLA General Hospital, Beijing, Beijing 250353, China
| | - Yao Lu
- Department of Tissue Repair and Regeneration, The First Medical Center of Chinese PLA General Hospital, Beijing, Beijing 250353, China
| | - Xianqi Feng
- Academy of Advanced Interdisciplinary Studies, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, China
| | - Rungong Yang
- Department of Tissue Repair and Regeneration, The First Medical Center of Chinese PLA General Hospital, Beijing, Beijing 250353, China
| | - Shouguo Wang
- Academy of Advanced Interdisciplinary Studies, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, China
| |
Collapse
|
35
|
Wei M, Zhang Y, Yang X, Ma P, Li Y, Wu Y, Chen X, Deng X, Yang T, Mao X, Qiu L, Meng W, Zhang B, Wang Z, Han J. Claudin-2 promotes colorectal cancer growth and metastasis by suppressing NDRG1 transcription. Clin Transl Med 2021; 11:e667. [PMID: 34965023 PMCID: PMC8715829 DOI: 10.1002/ctm2.667] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumours, with multiple driving factors and biological transitions involved in its development. Claudin-2 (CLDN2), a well-defined component of cellular tight junction, has been indicated to associate with CRC progression. However, the function of CLDN2 and the underlying mechanism whereby the downstream signalling transduction is regulated in CRC remains largely unclear. In this study, we demonstrated that CLDN2 is upregulated in CRC samples and associated with poor survival. And CLDN2 depletion significantly promotes N-myc downstream-regulated gene 1 (NDRG1) transcription, leading to termination of the CRC growth and metastasis in vitro and in vivo. Mechanistically, this process promotes CLDN2/ZO1/ZONAB complex dissociation and ZONAB shuttle into nucleus to enrich in the promoter of NDRG1. Thus, this study reveals a novel CLDN2/ZO1/ZONAB-NDRG1 axis in CRC by regulating the expression of EMT-related genes and CDKIs, suggesting CLDN2 may serve as a promising target for CRC treatment.
Collapse
Affiliation(s)
- Mingtian Wei
- Department of Gastrointestinal SurgeryFrontiers Science Center for Disease‐related Molecular Network and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yaguang Zhang
- Research Laboratory of Tumors Epigenetics and GenomicsDepartment of General SurgeryFrontiers Science Center for Disease‐related Molecular NetworkState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduChina
| | - Xuyang Yang
- Department of Gastrointestinal SurgeryFrontiers Science Center for Disease‐related Molecular Network and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Pingfan Ma
- Research Laboratory of Tumors Epigenetics and GenomicsDepartment of General SurgeryFrontiers Science Center for Disease‐related Molecular NetworkState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduChina
| | - Yan Li
- Research Laboratory of Tumors Epigenetics and GenomicsDepartment of General SurgeryFrontiers Science Center for Disease‐related Molecular NetworkState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduChina
| | - Yangping Wu
- Department of Respiratory and Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
- Department of Clinical Research ManagementWest China HospitalSichuan UniversityChengduChina
| | - Xiangzheng Chen
- Department of Liver Surgery & Liver Transplantation CenterWest China HospitalSichuan UniversityChengduChina
| | - Xiangbing Deng
- Department of Gastrointestinal SurgeryFrontiers Science Center for Disease‐related Molecular Network and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Tinghan Yang
- Department of Gastrointestinal SurgeryFrontiers Science Center for Disease‐related Molecular Network and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Xiaobing Mao
- Research Laboratory of Tumors Epigenetics and GenomicsDepartment of General SurgeryFrontiers Science Center for Disease‐related Molecular NetworkState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduChina
| | - Lei Qiu
- Research Laboratory of Tumors Epigenetics and GenomicsDepartment of General SurgeryFrontiers Science Center for Disease‐related Molecular NetworkState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduChina
| | - Wenjian Meng
- Department of Gastrointestinal SurgeryFrontiers Science Center for Disease‐related Molecular Network and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Bo Zhang
- Department of Gastrointestinal SurgeryFrontiers Science Center for Disease‐related Molecular Network and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
- Research Laboratory of Tumors Epigenetics and GenomicsDepartment of General SurgeryFrontiers Science Center for Disease‐related Molecular NetworkState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduChina
| | - Ziqiang Wang
- Department of Gastrointestinal SurgeryFrontiers Science Center for Disease‐related Molecular Network and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Junhong Han
- Research Laboratory of Tumors Epigenetics and GenomicsDepartment of General SurgeryFrontiers Science Center for Disease‐related Molecular NetworkState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
36
|
Zhang Y, Zuo Z, Liu B, Yang P, Wu J, Han L, Han T, Chen T. FAT10 promotes hepatocellular carcinoma (HCC) carcinogenesis by mediating P53 degradation and acts as a prognostic indicator of HCC. J Gastrointest Oncol 2021; 12:1823-1837. [PMID: 34532131 DOI: 10.21037/jgo-21-374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/05/2021] [Indexed: 11/06/2022] Open
Abstract
Background With the advancement of hepatocellular carcinoma (HCC) treatment technology, the treatment options for HCC patients have increased. However, due to high heterogeneity, among other reasons, the five-year survival rate of patients is still very low. Currently, gene expression prognostic models can suggest more appropriate strategies for the treatment of HCC. This study investigates the role of FAT10 in hepatocarcinogenesis and its underlying mechanism. Methods The expression of FAT10 was detected by immunohistochemical method using tissue arrays containing 4 specimens of patients with digestive cancer. The expression of FAT10 was determined by a tissue microarray which included 286 pairs of HCC samples and corresponding normal mucosae and was further confirmed by real-time polymerase chain reaction (PCR) and western blot. The Kaplan-Meier survival curve was used to determine the correlation of FAT10 expression with patients' recurrence and overall survival (OS) rate. In vivo, liver fibrosis, cirrhosis, and HCC models were established to assess the FAT10 expression. Moreover, FAT10 over-expressing cell lines were used to determine the molecular mechanism underlying the FAT10-induced cell proliferation and hepatocarcinogenesis by reporter gene measure, real-time PCR, and western blot. Based on TCGA database, signal pathways associated with FAT10 and HCC invasion and metastasis were analyzed by KEGG enrichment analyze. Results Overexpression of FAT10 in HCC was observed in this study compared with its expression in other digestive tumors. Clinicopathological analysis revealed that FAT10 expression levels were closely associated with tumor diameters and poor prognosis of HCC. This study also confirmed through in vivo experiments that the expression of FAT10 in liver fibrosis, cirrhosis, and HCC gradually increases. Further study revealed that forced FAT10 expression enhanced the growth ability of HCC cells and mediated the degradation of the critical anti-cancer protein p53, which led to carcinogenesis. Finally, 9 signal pathways related to HCC metastasis were obtained through bioinformatics analysis. Conclusions FAT10 may act as a proto-oncogene that facilitates HCC carcinogenesis by mediating p53 degradation, and the expression of FAT10 is negatively correlated with the prognosis of HCC patients. FAT10 is expected to become a potential combined target and prognostic warning marker for HCC treatment.
Collapse
Affiliation(s)
- Yue Zhang
- The Second Department of Oncology, the Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhifan Zuo
- China Medical University, General Hospital of Northern Theater Command Training Base for Graduate, Shenyang, China
| | - Bo Liu
- Department of Laboratory Medicine, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Pinghua Yang
- The Fourth Department of Biliary Tract, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Jun Wu
- China Medical University, General Hospital of Northern Theater Command Training Base for Graduate, Shenyang, China
| | - Lei Han
- Department of Hepatobiliary Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Tao Han
- Department of Oncology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Tingsong Chen
- The Second Department of Oncology, the Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
37
|
Analysis of the signal cross talk via CCL26 in the tumor microenvironment in osteosarcoma. Sci Rep 2021; 11:18099. [PMID: 34518591 PMCID: PMC8438066 DOI: 10.1038/s41598-021-97153-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/20/2021] [Indexed: 11/08/2022] Open
Abstract
Interaction with surrounding healthy cells plays a major role in the growth and metastasis of osteosarcoma. In this study, we hypothesized that humoral factors, which do not require direct contact with cells, are involved in the interaction between osteosarcoma and the surrounding cells. We identified the humoral factor involved in the association between tumor cells and surrounding normal cells using a co-culture model and investigated the significance of our findings. When human osteosarcoma cells (MG63) and human mesenchymal stem cells (hMSCs) were co-cultured and comprehensively analyzed for changes in each culture group, we found that the expression of chemokine (CC motif) ligand 26 (CCL26) was significantly enhanced. We also analyzed the changes in cell proliferation in co-culture, enhanced interaction with administration of recombinant CCL26 (rCCL26), reduced interaction with administration of anti-CCL26 antibodies, changes in invasive and metastatic abilities. CCL26 levels, motility, and invasive capability increased in the co-culture group and the group with added rCCL26, compared to the corresponding values in the MG63 single culture group. In the group with added CCL26 neutralizing antibodies, CCL26 level decreased in both the single and co-culture groups, and motility and invasive ability were also reduced. In a nude mice lung metastasis model, the number of lung metastases increased in the co-culture group and the group with added rCCL26, whereas the number of tumors were suppressed in the group with added neutralizing antibodies compared to those in the MG63 alone. This study identified a possible mechanism by which osteosarcoma cells altered the properties of normal cells to favorably change the microenvironment proximal to tumors and to promote distant metastasis.
Collapse
|
38
|
Tang T, Wang H, Han Y, Huang H, Niu W, Fei M, Zhu Y. The Role of N-myc Downstream-Regulated Gene Family in Glioma Based on Bioinformatics Analysis. DNA Cell Biol 2021; 40:949-968. [PMID: 34115542 DOI: 10.1089/dna.2020.6216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glioma is the most common type of primary tumor in the central nervous system, and the molecular mechanisms remain elusive. N-myc downstream-regulated gene (NDRG) family is reported to take part in the pathogenesis of various diseases, including some preliminary exploration in glioma. However, there has been no bioinformatics analysis of NDRG family in glioma yet. Herein, we focused on the expression changes of NDRGs with their value in predicting patients' prognoses, upstream regulatory mechanisms (DNA mutation, DNA methylation, transcription factors, and microRNA regulation) and gene enrichment analysis based on co-expressed genes with data from public databases. Furthermore, the expression pattern of NDRGs was verified by the paired glioma and peritumoral samples in our institute. It was suggested that NDRGs were differentially expressed genes in glioma. In particular, the lower expression of NDRG2 or NDRG4 could serve as a predictor of higher grade tumor and poorer prognosis. Also, NDRGs might play a crucial role in signal transduction, energy metabolism, and cross-talk among cells in glioma, under the control of a complex regulatory network. This study enables us to better understand the role of NDRGs in glioma and with further research, it may contribute to the development of glioma treatment.
Collapse
Affiliation(s)
- Ting Tang
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, P.R. China
| | - Handong Wang
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, P.R. China
| | - Yanling Han
- Department of Neurosurgery, Jinling Hospital, Nanjing, P.R. China
| | - Hanyu Huang
- Department of Neurosurgery, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, P.R. China
| | - Wenhao Niu
- Department of Neurosurgery, Jinling Hospital, Nanjing, P.R. China
| | - Maoxing Fei
- Department of Neurosurgery, Jinling Hospital, Nanjing, P.R. China
| | - Yihao Zhu
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, P.R. China
| |
Collapse
|
39
|
Zeng F, Zhang Y, Han X, Zeng M, Gao Y, Weng J. Employing hypoxia characterization to predict tumour immune microenvironment, treatment sensitivity and prognosis in hepatocellular carcinoma. Comput Struct Biotechnol J 2021; 19:2775-2789. [PMID: 34093992 PMCID: PMC8134035 DOI: 10.1016/j.csbj.2021.03.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
The hypoxic microenvironment was recognized as a major driving force of the malignant phenotype in hepatocellular carcinoma (HCC), which contributes to tumour immune microenvironment (TIM) remodeling and tumor progression. Dysregulated hypoxia-related genes (HRGs) result in treatment resistance and poor prognosis by reshaping tumor cellular activities and metabolism. Approaches to identify the relationship between hypoxia and tumor progression provided new sight for improving tumor treatment and prognosis. But, few practical tools, forecasting relationship between hypoxia, TIM, treatment sensitivity and prognosis in HCC were reported. Here, we pooled mRNA transcriptome and clinical pathology data from the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), and later developed a hypoxia risk model including four HRGs (DCN, DDIT4, PRKCA and NDRG1). The high-risk group displayed poor clinical characteristics, a malignant phenotype with carcinogenesis/proliferation pathways activation (MTORC1 and E2F) and immunosuppressive TIM (decreased immune cell infiltrations and upregulated immunosuppressive cytokines). Meanwhile, activated B cells, effector memory CD8 T cells and EZH2 deregulation were associated with patient’s survival, which might be the core changes of HCC hypoxia. Finally, we validated the ability of the hypoxia risk model to predict treatment sensitivity and found high hypoxia risk patients had poor responses to HCC treatment, including surgical resection, Sorafenib, Transarterial Chemoembolization (TACE) and immunotherapy. In conclusion, based on 4 HRGs, we developed and validated a hypoxia risk model to reflect pathological features, evaluate TIM landscape, predict treatment sensitivity and compounds specific to hypoxia signatures in HCC patients.
Collapse
Affiliation(s)
- Fanhong Zeng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Yue Zhang
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Xu Han
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Min Zeng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Jun Weng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| |
Collapse
|
40
|
Wang C, Shang C, Gai X, Song T, Han S, Liu Q, Zheng X. Sulfatase 2-Induced Cancer-Associated Fibroblasts Promote Hepatocellular Carcinoma Progression via Inhibition of Apoptosis and Induction of Epithelial-to-Mesenchymal Transition. Front Cell Dev Biol 2021; 9:631931. [PMID: 33889573 PMCID: PMC8056031 DOI: 10.3389/fcell.2021.631931] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Background Sulfatase 2 (SULF2) removes the 6-O-sulfate groups from heparan sulfate proteoglycans (HSPG) and consequently alters the binding sites for various signaling molecules. Here, we elucidated the role of SULF2 in the differentiation of hepatic stellate cells (HSCs) into carcinoma-associated fibroblasts (CAFs) in the hepatocellular carcinoma (HCC) microenvironment and the mechanism underlying CAF-mediated HCC growth. Methods The clinical relevance of SULF2 and CAFs was examined using in silico and immunohistochemical (IHC) analyses. Functional studies were performed to evaluate the role of SULF2 in the differentiation of HSCs into CAFs and elucidate the mechanism underlying CAF-mediated HCC growth. Mechanistic studies were performed using the chromatin immunoprecipitation, luciferase reporter, and RNA immunoprecipitation assays. The in vitro findings were verified using the nude HCC xenograft mouse model. Results The Cancer Genome Atlas (TCGA) database and IHC analyses revealed that the expression of CAF markers, which was positively correlated with that of SULF2 in the HCC tissues, predicted unfavorable postsurgical outcomes. Co-culturing HSCs with HCC cells expressing SULF2 promoted CAF differentiation. Additionally, CAFs repressed HCC cell apoptosis by activating the SDF-1/CXCR4/PI3K/AKT signaling pathway. Meanwhile, SULF2-induced CAFs promoted epithelial-to-mesenchymal transition (EMT) of HCC cells by modulating the SDF-1/CXCR4/OIP5-AS1/miR-153-3p/SNAI1 axis. Studies using HCC xenograft mouse models demonstrated that OIP5-AS1 induced EMT by upregulating SNAI1 and promoted HCC growth in vivo. Conclusion These data indicated that SULF2 secreted by the HCC cells induced the differentiation of HSCs into CAFs through the TGFβ1/SMAD3 signaling pathway. SULF2-induced CAFs attenuated HCC apoptosis by activating the SDF-1/CXCR4/PI3K/AKT signaling pathway and induced EMT through the SDF-1/CXCR4/OIP5-AS1/miR-153-3p/SNAI1 axis. This study revealed a novel mechanism involved in the crosstalk between HCC cells and CAFs in the tumor microenvironment, which can aid in the development of novel and efficient therapeutic strategies for primary liver cancer.
Collapse
Affiliation(s)
- Cong Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chuzhi Shang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaohong Gai
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tao Song
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shaoshan Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Zheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
41
|
Chen H, Li Y, Xiao SY, Guo J. Identification of a five-immune gene model as an independent prognostic factor in hepatocellular carcinoma. BMC Cancer 2021; 21:278. [PMID: 33726698 PMCID: PMC7962305 DOI: 10.1186/s12885-021-08012-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/04/2021] [Indexed: 01/15/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a common malignant tumor with a poor prognosis. We aimed to identify a new prognostic model of HCC based on differentially expressed (DE) immune genes. Methods The DE immune genes were identified based on an analysis of 374 cases of HCC and 50 adjacent non-tumor specimens from the Cancer Genome Atlas (TCGA) database. Univariate Cox analysis, Lasso regression, and multivariate Cox analysis were used to construct the model based on the training group. Survival analysis and the receiver operating characteristic (ROC) curves were used to evaluate model performance. The testing group and the entire group were subsequently used for validation of the model. Results A five-immune gene model consisted of HSPA4, ISG20L2, NDRG1, EGF, and IL17D was identified. Based on the model, the overall survival was significantly different between the high-risk and low-risk groups (P = 7.953e-06). The AUCs for the model at 1- and 3-year were 0.849 and 0.74, respectively. The reliability of the model was confirmed using the validation groups. The risk score was identified as an independent prognostic parameter and closely related to the content of immune cells from human HCC specimens. Conclusion We identified a five-immune gene model that can be used as an independent prognostic marker for HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08012-2.
Collapse
Affiliation(s)
- Haitao Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yueying Li
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Wuhan University Center for Pathology and Molecular Diagnostics, Wuhan, 430071, China
| | - Shu-Yuan Xiao
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China. .,Wuhan University Center for Pathology and Molecular Diagnostics, Wuhan, 430071, China. .,Department of Pathology, University of Chicago Medicine, Chicago, IL, USA.
| | - Jianchun Guo
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China. .,Wuhan University Center for Pathology and Molecular Diagnostics, Wuhan, 430071, China.
| |
Collapse
|
42
|
Shi Y, Sun L, Zhang R, Hu Y, Wu Y, Dong X, Dong D, Chen C, Geng Z, Li E, Fan Y. Thrombospondin 4/integrin α2/HSF1 axis promotes proliferation and cancer stem-like traits of gallbladder cancer by enhancing reciprocal crosstalk between cancer-associated fibroblasts and tumor cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:14. [PMID: 33407730 PMCID: PMC7789630 DOI: 10.1186/s13046-020-01812-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022]
Abstract
Background Cancer-associated fibroblasts (CAFs), the primary component of tumor stroma in tumor microenvironments, are well-known contributors to the malignant progression of gallbladder cancer (GBC). Thrombospondins (THBSs or TSPs) comprise a family of five adhesive glycoproteins that are overexpressed in many types of cancers. However, the expression and potential roles of TSPs in the crosstalk between CAFs and GBC cells has remained unclear. Methods Peritumoral fibroblasts (PTFs) and CAFs were extracted from GBC tissues. Thrombospondin expression in GBC was screened by RT-qPCR. MTT viability assay, colony formation, EdU incorporation assay, flow cytometry analysis, Transwell assay, tumorsphere formation and western blot assays were performed to investigate the effects of CAF-derived TSP-4 on GBC cell proliferation, EMT and cancer stem-like features. Subcutaneous tumor formation models were established by co-implanting CAFs and GBC cells or GBC cells overexpressing heat shock factor 1 (HSF1) to evaluate the roles of TSP-4 and HSF1 in vivo. To characterize the mechanism by which TSP-4 is involved in the crosstalk between CAFs and GBC cells, the levels of a variety of signaling molecules were detected by coimmunoprecipitation, immunofluorescence staining, and ELISA assays. Results In the present study, we showed that TSP-4, as the stromal glycoprotein, is highly expressed in CAFs from GBC and that CAF-derived TSP-4 induces the proliferation, EMT and cancer stem-like features of GBC cells. Mechanistically, CAF-secreted TSP-4 binds to the transmembrane receptor integrin α2 on GBC cells to induce the phosphorylation of HSF1 at S326 and maintain the malignant phenotypes of GBC cells. Moreover, the TSP-4/integrin α2 axis-induced phosphorylation of HSF1 at S326 is mediated by Akt activation (p-Akt at S473) in GBC cells. In addition, activated HSF1 signaling increased the expression and paracrine signaling of TGF-β1 to induce the transdifferentiation of PTFs into CAFs, leading to their recruitment into GBC and increased TSP-4 expression in CAFs, thereby forming a positive feedback loop to drive the malignant progression of GBC. Conclusions Our data indicate that a complex TSP-4/integrin α2/HSF1/TGF-β cascade mediates reciprocal interactions between GBC cells and CAFs, providing a promising therapeutic target for gallbladder cancer patients.
Collapse
Affiliation(s)
- Yu Shi
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Liankang Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Rui Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Yuan Hu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Yinying Wu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Xuyuan Dong
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Danfeng Dong
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Chen Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Zhimin Geng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Enxiao Li
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China.
| | - Yangwei Fan
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China.
| |
Collapse
|
43
|
Du X, Zhang Y. Integrated Analysis of Immunity- and Ferroptosis-Related Biomarker Signatures to Improve the Prognosis Prediction of Hepatocellular Carcinoma. Front Genet 2020; 11:614888. [PMID: 33391356 PMCID: PMC7775557 DOI: 10.3389/fgene.2020.614888] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a common malignant tumor with high mortality and poor prognoses around the world. Ferroptosis is a new form of cell death, and some studies have found that it is related to cancer immunotherapy. The aim of our research was to find immunity- and ferroptosis-related biomarkers to improve the treatment and prognosis of HCC by bioinformatics analysis. Methods First, we obtained the original RNA sequencing (RNA-seq) expression data and corresponding clinical data of HCC from The Cancer Genome Atlas (TGCA) database and performed differential analysis. Second, we used immunity- and ferroptosis-related differentially expressed genes (DEGs) to perform a computational difference algorithm and Cox regression analysis. Third, we explored the potential molecular mechanisms and properties of immunity- and ferroptosis-related DEGs by computational biology and performed a new prognostic index based on immunity- and ferroptosis-related DEGs by multivariable Cox analysis. Finally, we used HCC data from International Cancer Genome Consortium (ICGC) data to perform validation. Results We obtained 31 immunity (p < 0.001)- and 14 ferroptosis (p < 0.05)-related DEGs correlated with overall survival (OS) in the univariate Cox regression analysis. Then, we screened five immunity- and two ferroptosis-related DEGs (HSPA4, ISG20L2, NRAS, IL17D, NDRG1, ACSL4, and G6PD) to establish a predictive model by multivariate Cox regression analysis. Receiver operating characteristic (ROC) and Kaplan–Meier (K–M) analyses demonstrated a good performance of the seven-biomarker signature. Functional enrichment analysis including Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that the seven-biomarker signature was mainly associated with HCC-related biological processes such as nuclear division and the cell cycle, and the immune status was different between the two risk groups. Conclusion Our results suggest that this specific seven-biomarker signature may be clinically useful in the prediction of HCC prognoses beyond conventional clinicopathological factors. Moreover, it also brings us new insights into the molecular mechanisms of HCC.
Collapse
Affiliation(s)
- Xuanlong Du
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yewei Zhang
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
44
|
Zhang J, Gu C, Song Q, Zhu M, Xu Y, Xiao M, Zheng W. Identifying cancer-associated fibroblasts as emerging targets for hepatocellular carcinoma. Cell Biosci 2020; 10:127. [PMID: 33292459 PMCID: PMC7603733 DOI: 10.1186/s13578-020-00488-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
The tumor microenvironment (TME) is a complex multicellular functional compartment that includes fibroblasts, myofibroblasts, endothelial cells, immune cells, and extracellular matrix (ECM) elements. The microenvironment provides an optimum condition for the initiation, growth, and dissemination of hepatocellular carcinoma (HCC). As one of the critical and abundant components in tumor microenvironment, cancer-associated fibroblasts (CAFs) have been implicated in the progression of HCC. Through secreting various growth factors and cytokines, CAFs contribute to the ECM remodeling, stem features, angiogenesis, immunosuppression, and vasculogenic mimicry (VM), which reinforce the initiation and development of HCC. In order to restrain the CAFs-initiated HCC progression, current strategies include targeting specific markers, engineering CAFs with tumor-suppressive phenotype, depleting CAFs’ precursors, and repressing the secretions or downstream signaling. In this review, we update the emerging understanding of CAFs in HCC, with particular emphasis on cellular origin, phenotypes, biological functions and targeted strategies. It provides insights into the targeting CAFs for HCC treatment.
Collapse
Affiliation(s)
- Jie Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Chaoyu Gu
- School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Qianqian Song
- Department of Radiology, Wake Forest School of Medicine, One Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Mengqi Zhu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Yuqing Xu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Mingbing Xiao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China.
| | - Wenjie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
45
|
Wang Y, Chen J, Wang X, Wang K. miR-140-3p inhibits bladder cancer cell proliferation and invasion by targeting FOXQ1. Aging (Albany NY) 2020; 12:20366-20379. [PMID: 33098639 PMCID: PMC7655201 DOI: 10.18632/aging.103828] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022]
Abstract
Upregulation of the forkhead box protein Q1 (FOXQ1) promotes bladder cancer (BCa) cell growth and metastasis. Factors affecting FOXQ1 expression at the post-transcriptional level have not yet been identified. We performed cell proliferation, cell invasion, and tumorigenesis experiments to characterize the relationship between FOXQ1 and miR-140-3p. We found that FOXQ1 was significantly upregulated and miR-140-3p was significantly downregulated in BCa tissues. We also identified an inverse correlation between miR-140-3p and FOXQ1 expression in BCa tissues. Overexpression of miR-140-3p reduced FOXQ1 expression, suppressing BCa cell proliferation and invasion. A luciferase assay confirmed that miR-140-3p bound to the 3’-UTR of FOXQ1 mRNA and decreased its expression. In addition, we used a mouse xenograft model to demonstrate that miR-140-3p suppressed tumor cell growth in vivo. Our findings suggest that miR-140-3p suppresses BCa cell proliferation and invasion by directly decreasing FOXQ1 expression.
Collapse
Affiliation(s)
- Yuan Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Junwen Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
46
|
Park KC, Paluncic J, Kovacevic Z, Richardson DR. Pharmacological targeting and the diverse functions of the metastasis suppressor, NDRG1, in cancer. Free Radic Biol Med 2020; 157:154-175. [PMID: 31132412 DOI: 10.1016/j.freeradbiomed.2019.05.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/24/2019] [Accepted: 05/16/2019] [Indexed: 12/18/2022]
Abstract
N-myc downstream regulated gene-1 (NDRG1) is a potent metastasis suppressor that is regulated by hypoxia, metal ions including iron, the free radical nitric oxide (NO.), and various stress stimuli. This intriguing molecule exhibits diverse functions in cancer, inhibiting epithelial-mesenchymal transition (EMT), cell migration and angiogenesis by modulation of a plethora of oncogenes via cellular signaling. Thus, pharmacological targeting of NDRG1 signaling in cancer is a promising therapeutic strategy. Of note, novel anti-tumor agents of the di-2-pyridylketone thiosemicarbazone series, which exert the "double punch" mechanism by binding metal ions to form redox-active complexes, have been demonstrated to markedly up-regulate NDRG1 expression in cancer cells. This review describes the mechanisms underlying NDRG1 modulation by the thiosemicarbazones and the diverse effects NDRG1 exerts in cancer. As a major induction mechanism, iron depletion appears critical, with NO. also inducing NDRG1 through its ability to bind iron and generate dinitrosyl-dithiol iron complexes, which are then effluxed from cells. Apart from its potent anti-metastatic role, several studies have reported a pro-oncogenic role of NDRG1 in a number of cancer-types. Hence, it has been suggested that NDRG1 plays pleiotropic roles depending on the cancer-type. The molecular mechanism(s) underlying NDRG1 pleiotropy remain elusive, but are linked to differential regulation of WNT signaling and potentially differential interaction with the tumor suppressor, PTEN. This review discusses NDRG1 induction mechanisms by metal ions and NO. and both the anti- and possible pro-oncogenic functions of NDRG1 in multiple cancer-types and compares the opposite effects this protein exerts on cancer progression.
Collapse
Affiliation(s)
- Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Jasmina Paluncic
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia.
| |
Collapse
|
47
|
Li J, Yan Y, Ang L, Li X, Liu C, Sun B, Lin X, Peng Z, Zhang X, Zhang Q, Wu H, Zhao M, Su C. Extracellular vesicles-derived OncomiRs mediate communication between cancer cells and cancer-associated hepatic stellate cells in hepatocellular carcinoma microenvironment. Carcinogenesis 2020; 41:223-234. [PMID: 31140556 DOI: 10.1093/carcin/bgz096] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/08/2019] [Accepted: 05/28/2019] [Indexed: 01/10/2023] Open
Abstract
Tumor microenvironment (TME) is a critical determinant for hepatocellular carcinoma (HCC). Hepatic stellate cells (HSCs) are main interstitial cells in TME and play a vital role in early intrahepatic invasion and metastasis of HCC. The potential mechanism on the interactions between HSCs and HCC cells remains unclear. In this study, the effects of extracellular vesicles (EVs)-derived OncomiRs that mediate communication between HCC cells and cancer-associated hepatic stellate cells (caHSCs) and remold TME were investigated. The results found that the HCC cells-released EVs contained more various OncomiRs, which could activate HSCs (LX2 cells) and transform them to caHSCs, the caHSCs in turn exerted promotion effects on HCC cells through HSCs-released EVs. To further simulate the effects of OncomiRs in EVs on construction of pro-metastatic TME, a group of OncomiRs, miR-21, miR-221 and miR-151 was transfected into HCC cells and LX2 cells. These microRNAs in the EVs from OncomiRs-enhanced cells were demonstrated to have oncogenic effects on HCC cells by upregulating the activities of protein kinase B (AKT)/extracellular signal-regulated kinase (ERK) signal pathways. Equivalent results were also found in HCC xenografted tumor models. The findings suggested that the OncomiR secretion and transference by cancer cells-released EVs can mediate the communication between HCC cells and HSCs. HCC cells and caHSCs, as well as their secreted EVs, jointly construct a pro-metastatic TME suitable for invasion and metastasis of cancer cells, all these TME components form a positive feedback loop to promote HCC progression and metastasis.
Collapse
Affiliation(s)
- Jiang Li
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and National Center for Liver Cancer, Second Military Medical University, Shanghai, China
| | - Yan Yan
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and National Center for Liver Cancer, Second Military Medical University, Shanghai, China
| | - Lin Ang
- Department of Pathology, The Second People's Hospital of Hefei, Hefei, Anhui Province, China
| | - Xiaoya Li
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and National Center for Liver Cancer, Second Military Medical University, Shanghai, China
| | - Chunying Liu
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and National Center for Liver Cancer, Second Military Medical University, Shanghai, China
| | - Bin Sun
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and National Center for Liver Cancer, Second Military Medical University, Shanghai, China
| | - Xuejing Lin
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and National Center for Liver Cancer, Second Military Medical University, Shanghai, China
| | - Zhangxiao Peng
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and National Center for Liver Cancer, Second Military Medical University, Shanghai, China
| | - Xiaofeng Zhang
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and National Center for Liver Cancer, Second Military Medical University, Shanghai, China
| | - Qin Zhang
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and National Center for Liver Cancer, Second Military Medical University, Shanghai, China
| | - Hongping Wu
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and National Center for Liver Cancer, Second Military Medical University, Shanghai, China
| | - Min Zhao
- Department of Pathology, The Second People's Hospital of Hefei, Hefei, Anhui Province, China
| | - Changqing Su
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and National Center for Liver Cancer, Second Military Medical University, Shanghai, China
| |
Collapse
|
48
|
Insights into Aflatoxin B1 Toxicity in Cattle: An In Vitro Whole-Transcriptomic Approach. Toxins (Basel) 2020; 12:toxins12070429. [PMID: 32610656 PMCID: PMC7404968 DOI: 10.3390/toxins12070429] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
Aflatoxins, and particularly aflatoxin B1 (AFB1), are toxic mycotoxins to humans and farm animal species, resulting in acute and chronic toxicities. At present, AFB1 is still considered a global concern with negative impacts on health, the economy, and social life. In farm animals, exposure to AFB1-contaminated feed may cause several untoward effects, liver damage being one of the most devastating ones. In the present study, we assessed in vitro the transcriptional changes caused by AFB1 in a bovine fetal hepatocyte-derived cell line (BFH12). To boost the cellular response to AFB1, cells were pre-treated with the co-planar PCB 3,3′,4,4′,5-pentachlorobiphenyl (PCB126), a known aryl hydrocarbon receptor agonist. Three experimental groups were considered: cells exposed to the vehicle only, to PCB126, and to PCB126 and AFB1. A total of nine RNA-seq libraries (three replicates/group) were constructed and sequenced. The differential expression analysis showed that PCB126 induced only small transcriptional changes. On the contrary, AFB1 deeply affected the cell transcriptome, the majority of significant genes being associated with cancer, cellular damage and apoptosis, inflammation, bioactivation, and detoxification pathways. Investigating mRNA perturbations induced by AFB1 in cattle BFH12 cells will help us to better understand AFB1 toxicodynamics in this susceptible and economically important food-producing species.
Collapse
|
49
|
Dang H, Chen L, Tang P, Cai X, Zhang W, Zhang R, Huang A, Tang H. LINC01419 promotes cell proliferation and metastasis in hepatocellular carcinoma by enhancing NDRG1 promoter activity. Cell Oncol (Dordr) 2020; 43:931-947. [PMID: 32557341 DOI: 10.1007/s13402-020-00540-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2020] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Emerging evidence indicates that dysfunction of long non-coding RNAs (lncRNAs) plays an essential role in the initiation and progression of hepatocellular carcinoma (HCC). In this study we investigated the potential roles and molecular mechanisms involving LINC01419 in HCC. METHODS The expression of LINC01419 in 40 pairs of HCC/normal tissues and 6 HCC cell lines was detected by qRT-PCR. MTS, EdU, colony formation, scratch wound-healing and transwell assays were performed to assess the role of LINC01419 in HCC cell (SMMC7721 and SK-Hep1) proliferation, migration and invasion in vitro. Artificial modulation of LINC01419 (up- and downregulation) was performed to explore the role of LINC01419 in tumor growth and metastasis in vivo. Interaction of LINC01419 with NDRG1 was assessed using qRT-PCR, RNA sequencing, Western blotting and immunohistochemistry. Physical interaction of LINC01419 with the NDRG1 promoter was assessed using a dual-luciferase reporter assay. RESULTS We observed LINC01419 overexpression in primary HCC tissues and HCC cell lines and that this overexpression positively correlated with large tumor size, increased vascular invasion and advanced TNM stage in 40 HCC patients. Exogenous LINC01419 expression significantly promoted HCC cell proliferation, migration and invasion in vitro, as well as tumorigenesis and metastasis in vivo. Conversely, we found that LINC01419 expression knockdown elicited opposite effects. Mechanistic investigations revealed that LINC01419 exerted its biological effects by regulating NDRG1. A dual-luciferase reporter assay revealed that LINC01419 interacts with a specific region within the NDRG1 promoter, resulting in its activation. CONCLUSIONS From our data we conclude that LINC01419 acts clinically, functionally and mechanistically oncogenic in HCC. LINC01419 may, therefore, serve as a promising prognostic indicator and therapeutic target for HCC.
Collapse
Affiliation(s)
- Hao Dang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Yi Xue Yuan Road, Chongqing, 400016, China.,Department of Clinical Laboratory, The Third Hospital of Mianyang (Sichuan mental health center), Mianyang, Sichuan, China
| | - Ling Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Yi Xue Yuan Road, Chongqing, 400016, China
| | - Ping Tang
- Department of Head and Neck Surgery, The Third Hospital of Mianyang (Sichuan mental health center), Mianyang, Sichuan, China
| | - Xuefei Cai
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Yi Xue Yuan Road, Chongqing, 400016, China
| | - Wenlu Zhang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Yi Xue Yuan Road, Chongqing, 400016, China
| | - Renfei Zhang
- Department of Clinical Laboratory, The Third Hospital of Mianyang (Sichuan mental health center), Mianyang, Sichuan, China
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Yi Xue Yuan Road, Chongqing, 400016, China
| | - Hua Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Yi Xue Yuan Road, Chongqing, 400016, China.
| |
Collapse
|
50
|
Gong Z, Yu J, Yang S, Lai PBS, Chen GG. FOX transcription factor family in hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2020; 1874:188376. [PMID: 32437734 DOI: 10.1016/j.bbcan.2020.188376] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/13/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023]
Abstract
The pathogenesis of hepatocellular carcinoma (HCC) is a multistep process, involving the progressive accumulation of molecular alterations and transcriptomic alterations. The Forkhead-box (FOX) transcription factor family is characterized by its unique DNA binding domain (FKH or winged-helix domain). Human FOX family consists of about 17 subfamilies, at least 43 members. Some of them are liver-enriched transcription factors, suggesting that they may play a crucial role in the development or/and functions of the liver. Dysregulation of FOX transcription factors may contribute to the pathogenesis of HCC because they can activate or suppress the expression of various tumor-related molecules, and pinpoint different molecular and cellular events. Here we summarized, analyzed and discussed the status and the functions of the human FOX family of transcription factors in HCC, aiming to help the further development of them as potential therapeutic targets or/and diagnostic/prognostic markers for HCC.
Collapse
Affiliation(s)
- Zhongqin Gong
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jianqing Yu
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Shucai Yang
- Department of Clinical Laboratory, Pingshan District people's Hospital of Shenzhen, Shenzhen, China
| | - Paul B S Lai
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
| | - George G Chen
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|