1
|
DeTemple VK, Ritter C, Srinivas N, Spassova I, Gambichler T, Hüning S, Gräger N, Gutzmer R, Bröcker EB, Ugurel S, Schrama D, Becker JC. Short- and long-term immunosuppressive effects of melanoma influence the prognostic value of the sentinel lymph node status. Eur J Cancer 2024; 212:115054. [PMID: 39388865 DOI: 10.1016/j.ejca.2024.115054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/06/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Presence of micrometastases in the sentinel lymph node (SLN) is currently used to assess prognosis of melanoma patients. The immunoactivity within the SLN is known to be influenced by the primary tumor (PT), which may in turn impact the SLNs' metastatic state. AIM We characterize the temporal dependence and underlying mechanisms of the immunological effects of the PT on the SLN. METHODS The prognostic value of SLN state as a function of PT removal time was evaluated. To put the results into a functional context, selected PTs and corresponding SLNs were analyzed for gene and protein expression patterns. RESULTS In a cohort of 202 patients with known distant metastasis and similar PT prognostic characteristics, SLNs removed before or within one week after the PT (IM-SLN) had a higher incidence of micrometastases than those removed at least one week after the PT (DEL-SLN). The immunoactivity in IM-SLN was found to be lower than in DEL-SLN. Specifically, in IM-SLNs, T helper 17 / regulatory T-cells were predominant, whereas in DEL-SLNs, cytotoxic γδT-cells were more frequent. The higher immune activity in DEL-SLNs was probably facilitated by CD209+ antigen-presenting cells. Indeed, in PT with high TGFβ expression CD209+ cells appear to be trapped and no increased immunoactivity was observed in DEL-SLN. CONCLUSIONS Presence of micrometastases in DEL-SLNs have a higher negative prognostic value as in IM-SLNs since they indicate not only a melanoma's propensity to metastasize, but possibly also its capacity to escape immune responses.
Collapse
Affiliation(s)
- Viola K DeTemple
- Department of Translational Skin Cancer Research (TSCR), German Cancer Consortium (DKTK), partner site Essen, University Duisburg-Essen, Universitätsstr. 1, 45141 Essen, Germany; Department of Dermatology, University Medicine Essen, Hufelandstraße 55, 45147 Essen, Germany; Department of Dermatology, Johannes Wesling Medical Center, Ruhr University Bochum, Minden, Hans-Nolte-Str. 1, 32429 Minden, Germany.
| | - Cathrin Ritter
- Department of Translational Skin Cancer Research (TSCR), German Cancer Consortium (DKTK), partner site Essen, University Duisburg-Essen, Universitätsstr. 1, 45141 Essen, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Nalini Srinivas
- Department of Translational Skin Cancer Research (TSCR), German Cancer Consortium (DKTK), partner site Essen, University Duisburg-Essen, Universitätsstr. 1, 45141 Essen, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Ivelina Spassova
- Department of Translational Skin Cancer Research (TSCR), German Cancer Consortium (DKTK), partner site Essen, University Duisburg-Essen, Universitätsstr. 1, 45141 Essen, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Thilo Gambichler
- Skin Cancer Center, Department of Dermatology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstraße 56, 44791 Bochum, Germany; Department of Dermatology, Hospital Dortmund, Beurhausstraße 40, 44137 Dortmund, Germany; Department of Dermatology, Christian Hospital Unna, Obere Husemannstraße 2, 59423 Unna, Germany.
| | - Svea Hüning
- Department of Dermatology, Hospital Dortmund, Beurhausstraße 40, 44137 Dortmund, Germany.
| | - Nikolai Gräger
- Department of Visceral and Minimal Invasive Surgery, KRH Siloah Hospital, Stadionbrücke 4, 30459 Hannover, Germany.
| | - Ralf Gutzmer
- Department of Dermatology, Johannes Wesling Medical Center, Ruhr University Bochum, Minden, Hans-Nolte-Str. 1, 32429 Minden, Germany.
| | - Eva-Bettina Bröcker
- Department of Dermatology, University Hospital Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany.
| | - Selma Ugurel
- Department of Dermatology, University Medicine Essen, Hufelandstraße 55, 45147 Essen, Germany.
| | - David Schrama
- Department of Dermatology, University Hospital Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany.
| | - Jürgen C Becker
- Department of Translational Skin Cancer Research (TSCR), German Cancer Consortium (DKTK), partner site Essen, University Duisburg-Essen, Universitätsstr. 1, 45141 Essen, Germany; Department of Dermatology, University Medicine Essen, Hufelandstraße 55, 45147 Essen, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
2
|
Gardani CFF, Diz FM, Dondé LB, Rockenbach L, Laufer S, Morrone FB. The potential role of purinergic signaling in cancer therapy: perspectives on anti-CD73 strategies for prostate cancer. Front Immunol 2024; 15:1455469. [PMID: 39355246 PMCID: PMC11442216 DOI: 10.3389/fimmu.2024.1455469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/12/2024] [Indexed: 10/03/2024] Open
Abstract
Purines and pyrimidines are signaling molecules in the tumor microenvironment that affect cancer immunity. The purinergic signaling pathways have been shown to play an important role in the development and progression of cancer. CD39 and CD73 are ectonucleotidases responsible for breaking down ATP or ADP into adenosine, which regulates immunosuppression in various types of cancer. These enzymes have been studied as a potential therapeutic target in immunotherapy, and recent research suggests a correlation between ectonucleotidases and clinical outcomes in cancer.Prostate cancer is the most diagnosed cancer in men, after non-melanoma skin tumors, and is the second leading cause of death in men in the world. Despite having long survival periods, patients often receive excessive or insufficient treatment. Within this complex landscape, the adenosine/CD73 pathway plays a crucial role. Therefore, this review aims to highlight new findings on the potential role of purinergic signaling in cancer treatment and emphasizes the importance of anti-CD73 as a pharmacological strategy for prostate cancer therapy.
Collapse
Affiliation(s)
- Carla Fernanda Furtado Gardani
- Escola de Medicina, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernando Mendonça Diz
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Centro de Pesquisa Pré-Clínica, Instituto do Cerebro do Rio Grande do Sul (InsCer), Pontíficia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luísa Brandalise Dondé
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Liliana Rockenbach
- Escola de Medicina, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Fernanda Bueno Morrone
- Escola de Medicina, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
- Escola de Ciências da Saúde e da Vida, Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
3
|
Wang B, Zhou A, Pan Q, Li Y, Xi Z, He K, Li D, Li B, Liu Y, Liu Y, Xia Q. Adenosinergic metabolism pathway: an emerging target for improving outcomes of solid organ transplantation. Transl Res 2024; 263:93-101. [PMID: 37678756 DOI: 10.1016/j.trsl.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/25/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
Extracellular nucleotides are widely recognized as crucial modulators of immune responses in peripheral tissues. Adenosine triphosphate (ATP) and adenosine are key components of extracellular nucleotides, the balance of which contributes to immune homeostasis. Under tissue injury, ATP exerts its pro-inflammatory function, while the adenosinergic pathway rapidly degrades ATP to immunosuppressive adenosine, thus inhibiting excessive and uncontrolled inflammatory responses. Previous reviews have explored the immunoregulatory role of extracellular adenosine in various pathological conditions, especially inflammation and malignancy. However, current knowledge regarding adenosine and adenosinergic metabolism in the context of solid organ transplantation remains fragmented. In this review, we summarize the latest information on adenosine metabolism and the mechanisms by which it suppresses the effector function of immune cells, as well as highlight the protective role of adenosine in all stages of solid organ transplantation, including reducing ischemia reperfusion injury during organ procurement, alleviating rejection, and promoting graft regeneration after transplantation. Finally, we discuss the potential for future clinical translation of adenosinergic pathway in solid organ transplantation.
Collapse
Affiliation(s)
- Bingran Wang
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Aiwei Zhou
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Qi Pan
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Yanran Li
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Zhifeng Xi
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Kang He
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Dan Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongbo Liu
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Yuan Liu
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China.
| | - Qiang Xia
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| |
Collapse
|
4
|
Lasorsa F, di Meo NA, Rutigliano M, Milella M, Ferro M, Pandolfo SD, Crocetto F, Tataru OS, Autorino R, Battaglia M, Ditonno P, Lucarelli G. Immune Checkpoint Inhibitors in Renal Cell Carcinoma: Molecular Basis and Rationale for Their Use in Clinical Practice. Biomedicines 2023; 11:biomedicines11041071. [PMID: 37189689 DOI: 10.3390/biomedicines11041071] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Renal cell carcinoma (RCC) is the seventh most common cancer in men and the ninth most common cancer in women worldwide. There is plenty of evidence about the role of the immune system in surveillance against tumors. Thanks to a better understanding of immunosurveillance mechanisms, immunotherapy has been introduced as a promising cancer treatment in recent years. Renal cell carcinoma (RCC) has long been thought chemoresistant but highly immunogenic. Considering that up to 30% of the patients present metastatic disease at diagnosis, and around 20–30% of patients undergoing surgery will suffer recurrence, we need to identify novel therapeutic targets. The introduction of immune checkpoint inhibitors (ICIs) in the clinical management of RCC has revolutionized the therapeutic approach against this tumor. Several clinical trials have shown that therapy with ICIs in combination or ICIs and the tyrosine kinase inhibitor has a very good response rate. In this review article we summarize the mechanisms of immunity modulation and immune checkpoints in RCC and discuss the potential therapeutic strategies in renal cancer treatment.
Collapse
Affiliation(s)
- Francesco Lasorsa
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Nicola Antonio di Meo
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Monica Rutigliano
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Martina Milella
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Savio Domenico Pandolfo
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Felice Crocetto
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Octavian Sabin Tataru
- The Institution Organizing University Doctoral Studies (I.O.S.U.D.), George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 540139 Târgu Mureș, Romania
| | - Riccardo Autorino
- Department of Urology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Michele Battaglia
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Pasquale Ditonno
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| |
Collapse
|
5
|
Wei Q, Zhang L, Zhao N, Cheng Z, Xin H, Ding J. Immunosuppressive adenosine-targeted biomaterials for emerging cancer immunotherapy. Front Immunol 2022; 13:1012927. [PMID: 36389700 PMCID: PMC9641176 DOI: 10.3389/fimmu.2022.1012927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/29/2022] [Indexed: 12/28/2024] Open
Abstract
Immunotherapy has paved the way for the future of cancer therapy, but there are still significant challenges to be overcome, such as the occurrence of immune escape or suppression. Adenosine is essential in modulating the immune responses of immune cells and maintaining immune tolerance. Emerging adenosine pathway inhibitors are considered a breakthrough in cancer immunotherapy, with emphasis first being placed on the top-down blockade of adenosine signaling axis, followed by combination therapy. However, these therapeutic strategies rely on adenosine inhibitors, mainly small molecules or antibody proteins, which are limited by a single route of administration and off-target toxicity. Therefore, synergistic nanomedicine with accurate delivery targeting deeper tumors is focused on in preclinical studies. This review discusses how adenosine reshapes immunosuppressive microenvironments through its effects on immune cells, including lymphocytes and myeloid cells. Additionally, it will be the first discussion of a comprehensive strategy of biomaterials in modulating the adenosine signaling pathway, including inhibition of adenosine production, inhibition of adenosine binding to immune cells, and depletion of adenosine in the microenvironments. Furthermore, biomaterials integrating multiple therapeutic modalities with adenosine blocking are also discussed as a promising strategy for promoting cancer immunotherapy.
Collapse
Affiliation(s)
- Qi Wei
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Lening Zhang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Nan Zhao
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhihua Cheng
- Department of Vascular Surgery, General Surgery Center, the First Hospital of Jilin University, Changchun, China
| | - Hua Xin
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
6
|
Tolerogenic IDO1 +CD83 - Langerhans Cells in Sentinel Lymph Nodes of Patients with Melanoma. Int J Mol Sci 2022; 23:ijms23073441. [PMID: 35408802 PMCID: PMC8998685 DOI: 10.3390/ijms23073441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023] Open
Abstract
Langerhans cells (LCs) are crucial regulators of anti-cancer immune responses. Cancer, however, can alter DCs functions leading to tolerance. The enzyme indoleamine 2,3-dioxygenase (IDO1) plays a crucial role in this process. In sentinel lymph nodes (SLNs) of patients with melanoma, LCs show phenotypical and functional alterations favoring tolerance. Herein we aimed to investigate IDO1 expression in SLN LCs from patients with melanoma. We showed by immunofluorescence analysis that a portion of Langerin+ LCs, located in the SLN T cell-rich area, displayed the typical dendritic morphology and expressed IDO1. There was no significant difference in the expression of IDO between SLN with or without metastases. Double IDO1/CD83 staining identified four LCs subsets: real mature IDO1−CD83+ LCs; real immature IDO1−CD83− LCs; tolerogenic mature IDO1+CD83+ LCs; tolerogenic immature IDO1+CD83− LCs. The latter subset was significantly increased in metastatic SLNs as compared to negative ones (p < 0.05), and in SLN LCs of patients with mitotic rate (MR) > 1 in primary melanoma, as compared to MR ≤ 1 (p < 0.05). Finally, immature SLN LCs, after in vitro stimulation by inflammatory cytokines, acquired a maturation profile by CD83 up-regulation. These results provide new input for immunotherapeutic approaches targeting in vivo LC of patients with melanoma.
Collapse
|
7
|
Kaltschmidt B, Witte KE, Greiner JFW, Weissinger F, Kaltschmidt C. Targeting NF-κB Signaling in Cancer Stem Cells: A Narrative Review. Biomedicines 2022; 10:biomedicines10020261. [PMID: 35203471 PMCID: PMC8869483 DOI: 10.3390/biomedicines10020261] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/14/2022] Open
Abstract
Among the cell populations existing within a tumor, cancer stem cells are responsible for metastasis formation and chemotherapeutic resistance. In the present review, we focus on the transcription factor NF-κB, which is present in every cell type including cancer stem cells. NF-κB is involved in pro-tumor inflammation by its target gene interleukin 1 (IL1) and can be activated by a feed-forward loop in an IL1-dependent manner. Here, we summarize current strategies targeting NF-κB by chemicals and biologicals within an integrated cancer therapy. Specifically, we start with a tyrosine kinase inhibitor targeting epidermal growth factor (EGF)-receptor-mediated phosphorylation. Furthermore, we summarize current strategies of multiple myeloma treatment involving lenalidomide, bortezomib, and dexamethasone as potential NF-κB inhibitors. Finally, we discuss programmed death-ligand 1 (PD-L1) as an NF-κB target gene and its role in checkpoint therapy. We conclude, that NF-κB inhibition by specific inhibitors of IκB kinase was of no clinical use but inhibition of upstream and downstream targets with drugs or biologicals might be a fruitful way to treat cancer stem cells.
Collapse
Affiliation(s)
- Barbara Kaltschmidt
- Molecular Neurobiology, Faculty of Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany;
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Maraweg 21, 33617 Bielefeld, Germany; (K.E.W.); (J.F.W.G.); (F.W.)
| | - Kaya E. Witte
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Maraweg 21, 33617 Bielefeld, Germany; (K.E.W.); (J.F.W.G.); (F.W.)
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Johannes F. W. Greiner
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Maraweg 21, 33617 Bielefeld, Germany; (K.E.W.); (J.F.W.G.); (F.W.)
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Florian Weissinger
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Maraweg 21, 33617 Bielefeld, Germany; (K.E.W.); (J.F.W.G.); (F.W.)
- Department of Hematology, Oncology, Internal Medicine, Bone Marrow and Stem Cell Transplantation, Palliative Medicine, and Tumor Center, Protestant Hospital of Bethel Foundation, University Hospital OWL of Bielefeld University, Schildescher Str. 99, 33611 Bielefeld, Germany
| | - Christian Kaltschmidt
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Maraweg 21, 33617 Bielefeld, Germany; (K.E.W.); (J.F.W.G.); (F.W.)
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Correspondence: ; Tel.: +49-521-106-5625
| |
Collapse
|
8
|
Motofei IG. Nobel Prize for immune checkpoint inhibitors, understanding the immunological switching between immunosuppression and autoimmunity. Expert Opin Drug Saf 2021; 21:599-612. [PMID: 34937484 DOI: 10.1080/14740338.2022.2020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) are a revolutionary form of immunotherapy in cancer. However, the percentage of patients responding to therapy is relatively low, while adverse effects occur in a large number of patients. In addition, the therapeutic mechanisms of ICIs are not yet completely described. AREAS COVERED The initial view (articles published in PubMed, Scopus, Web of Science, etc.) was that ICIs increase tumor-specific immunity. Recent data (collected from the same databases) suggest that the ICIs pharmacotherapy actually extends beyond the topic of immune reactivity, including additional immune pathways, such as disrupting immunosuppression and increasing tumor-specific autoimmunity. Unfortunately, there is no clear delimitation between these specific autoimmune reactions that are therapeutically beneficial, and nonspecific autoimmune reactions/toxicity that can be extremely severe side effects. EXPERT OPINION Immune checkpoint mechanisms perform a non-selective immune regulation, maintaining a dynamic balance between immunosuppression and autoimmunity. By blocking these mechanisms, ICIs actually perform an immunological reset, decreasing immunosuppression and increasing tumor-specific immunity and predisposition to autoimmunity. The predisposition to autoimmunity induces both side effects and beneficial autoimmunity. Consequently, further studies are necessary to maximize the beneficial tumor-specific autoimmunity, while reducing the counterproductive effect of associated autoimmune toxicity.
Collapse
Affiliation(s)
- Ion G Motofei
- Department of Surgery/ Oncology, Carol Davila University, Bucharest, Romania.,Department of Surgery/ Oncology, St. Pantelimon Hospital, Bucharest, Romania
| |
Collapse
|
9
|
Tengesdal IW, Dinarello A, Powers NE, Burchill MA, Joosten LAB, Marchetti C, Dinarello CA. Tumor NLRP3-Derived IL-1β Drives the IL-6/STAT3 Axis Resulting in Sustained MDSC-Mediated Immunosuppression. Front Immunol 2021; 12:661323. [PMID: 34531850 PMCID: PMC8438323 DOI: 10.3389/fimmu.2021.661323] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 08/09/2021] [Indexed: 01/05/2023] Open
Abstract
Tumors evade the immune system by inducing inflammation. In melanoma, tumor-derived IL-1β drives inflammation and the expansion of highly immunosuppressive myeloid-derived suppressor cells (MDSCs). Similar in many tumors, melanoma is also linked to the downstream IL-6/STAT3 axis. In this study, we observed that both recombinant and tumor-derived IL-1β specifically induce pSTAT3(Y705), creating a tumor-autoinflammatory loop, which amplifies IL-6 signaling in the human melanoma cell line 1205Lu. To disrupt IL-1β/IL-6/STAT3 axis, we suppressed IL-1β-mediated inflammation by inhibiting the NOD-like receptor protein 3 (NLRP3) using OLT1177, a safe-in-humans specific NLRP3 oral inhibitor. In vivo, using B16F10 melanoma, OLT1177 effectively reduced tumor progression (p< 0.01); in primary tumors, OLT1177 decreased pSTAT3(Y705) by 82% (p<0.01) and II6 expression by 53% (p<0.05). Disruption of tumor-derived NLRP3, either pharmacologically or genetically, reduced STAT3 signaling in bone marrow cells. In PMN-MDSCs isolated from tumor-bearing mice treated with OLT1177, we observed significant reductions in immunosuppressive genes such as Pdcd1l1, Arg1, Il10 and Tgfb1. In conclusion, the data presented here show that the inhibition of NLRP3 reduces IL-1β induction of pSTAT3(Y705) preventing expression of immunosuppressive genes as well as activity in PMN-MDSCs.
Collapse
Affiliation(s)
- Isak W. Tengesdal
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, Netherlands
| | - Alberto Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
- Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
| | - Nicholas E. Powers
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Matthew A. Burchill
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Leo A. B. Joosten
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, Netherlands
| | - Carlo Marchetti
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Charles A. Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
10
|
Roh M, Wainwright DA, Wu JD, Wan Y, Zhang B. Targeting CD73 to augment cancer immunotherapy. Curr Opin Pharmacol 2020; 53:66-76. [PMID: 32777746 DOI: 10.1016/j.coph.2020.07.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 01/05/2023]
Abstract
CD73 (ecto-5'-nucleotidase) is a novel immunoinhibitory protein that plays a key role for tumor growth and metastasis. Its main function is to convert extracellular ATP to immunosuppressive adenosine in concert with CD39 in normal tissues to limit excessive immune response. However, tumors take advantage of the CD73-mediated adenosinergic mechanism to protect them from immune attack. In particular, inducible expression of CD73 along with other adenosinergic molecules on both cancer cells and host cells sustains immunosuppressive tumor microenvironment by affecting multiple aspects of the immune response. Owing to its multifaceted capacity to tumor promotion as an emerging immune checkpoint, CD73 is an ideal therapeutic target for cancer treatment especially in combination with conventional therapy and/or other immune checkpoint inhibitors. In this review, we will discuss the roles of CD73 on tumor and immune cells and will highlight the therapeutic value of CD73 for combination therapy.
Collapse
Affiliation(s)
- Meejeon Roh
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Derek A Wainwright
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jennifer D Wu
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yong Wan
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Bin Zhang
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
11
|
Mechanisms of immune escape in the cancer immune cycle. Int Immunopharmacol 2020; 86:106700. [PMID: 32590316 DOI: 10.1016/j.intimp.2020.106700] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022]
Abstract
Cancer is a critical issue globally with high incidence and mortality, imposing great burden on the society. Although great progress has been made in immunotherapy based on immune checkpoint, only a subset of patients responds to this treatment, suggesting that cancer immune evasion is still a major barrier in current immunotherapy. There are a series of factors contributing to immune evasion despite in an immunocompetent environment. Given that these factors are involved in different steps of the cancer immune cycle. In this review, we discuss the mechanisms of immune escape in each step of the cancer immune cycle and then present therapeutic strategies for overcoming immune escape, with the potential to better understand the determinants of immune escape and make anti-tumor immunity more effective.
Collapse
|
12
|
Shan Z, Liu S, Yang L, Liu Z, Hu Y, Yao Z, Tang Z, Fang L, Quan H. Repertoire of peripheral T cells in patients with oral squamous cell carcinoma. Oral Dis 2020; 26:885-893. [PMID: 32097519 DOI: 10.1111/odi.13311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/14/2019] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The establishment of adaptive immune responses to neoplasms involves not only the tumour tissue, but also the peripheral blood. We aimed to conduct a preliminary exploration to understand the immune response of T lymphocytes of peripheral blood mononuclear cells (PBMC-Ts) in oral squamous cell carcinoma (OSCC). METHODS A total of 103 blood samples from OSCC patients and 18 blood samples from healthy donors (HD) were analysed by flow cytometry. RESULTS Compared to those in HD, a series of unique features of PBMC-Ts were observed in OSCC patients including a significant increase in CD4+ T cells, a shift from naïve to memory/effector phenotype, an increased frequency of exhausted phenotypes (programmed death-1 [PD-1], T cell Ig and mucin protein-3 [Tim-3] and Tregs), an abundance of Th17s and Tc17s and an imbalance in Th17/Tc17 and Th17/Treg ratios. Furthermore, in OSCC patients, we also found that CD4+ T cells were significantly increased in patients with larger tumours than smaller tumours, memory/effector phenotype and exhausted phenotypes were significantly associated with advanced clinical stage and lymph node metastasis, and the Th17/Treg ratio was associated with early clinical stage and no lymph node metastasis. CONCLUSION PBMC-Ts may be involved in the development and progression of OSCC, which suggested to be a manifestation of an immune response between host and tumour neoantigens.
Collapse
Affiliation(s)
- Zhongyan Shan
- Research Institution of Stomatology, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China.,Department of Oral Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China
| | - Sixuan Liu
- Research Institution of Stomatology, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China.,Department of Oral Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China
| | - Liu Yang
- Research Institution of Stomatology, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China.,Department of Oral Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China
| | - Ziyi Liu
- Research Institution of Stomatology, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China.,Department of Oral Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China
| | - Yanjia Hu
- Research Institution of Stomatology, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China.,Department of Oral Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China
| | - Zhigang Yao
- Research Institution of Stomatology, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China.,Department of Oral Pathology, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China
| | - Zhangui Tang
- Research Institution of Stomatology, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China.,Department of Oral Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China
| | - Liangjuan Fang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Hongzhi Quan
- Research Institution of Stomatology, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China.,Department of Oral Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China
| |
Collapse
|
13
|
Quan H, Shan Z, Liu Z, Liu S, Yang L, Fang X, Li K, Wang B, Deng Z, Hu Y, Yao Z, Huang J, Yu J, Xia K, Tang Z, Fang L. The repertoire of tumor-infiltrating lymphocytes within the microenvironment of oral squamous cell carcinoma reveals immune dysfunction. Cancer Immunol Immunother 2020; 69:465-476. [PMID: 31950224 DOI: 10.1007/s00262-020-02479-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 01/04/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND The role of tumor-infiltrating lymphocytes (TILs) in the immune remodeling of tumor microenvironments (TME) in oral squamous cell carcinoma (OSCC) remains controversial. In this study, we pursued a comprehensive characterization of the repertoire of TILs and then analyzed its clinical significance and potential prognostic value. METHODS Fresh tumor tissue samples and peripheral blood from 83 OSCC patients were collected to comprehensively characterize the phenotypes and frequencies of TILs by flow cytometry. Archived paraffin-embedded tissues derived from 159 OSCC patients were analyzed by immunohistochemistry to further assess the TIL repertoire. The clinical significance of TILs and their potential prognostic value were further analyzed. RESULTS A series of unique features of TILs were observed. IL-17 was highly expressed in betel nut chewers, and CD20 was abundantly expressed in patients who did not drink alcohol; high expression of CD138, PD-L1, and Foxp3 was associated with poor prognosis. The Th17/Treg ratio was an independent prognostic factor for patient survival with greater predictive accuracy for overall survival. CONCLUSIONS Our results suggest an antigen-driven immune response; however, the immune dysfunction within the microenvironment in OSCC and the Th17/Treg balance may play important roles in the modulation of antitumor immunity.
Collapse
Affiliation(s)
- Hongzhi Quan
- Research Institution of Stomatology, Xiangya Stomatological Hospital and School of Stomatology, Central South University, 72 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China. .,Department of Oral Maxillofacial Surgery, Xiangya Stomatological Hospital and School of Stomatology, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Zhongyan Shan
- Research Institution of Stomatology, Xiangya Stomatological Hospital and School of Stomatology, Central South University, 72 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.,Department of Oral Maxillofacial Surgery, Xiangya Stomatological Hospital and School of Stomatology, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Ziyi Liu
- Research Institution of Stomatology, Xiangya Stomatological Hospital and School of Stomatology, Central South University, 72 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.,Department of Oral Maxillofacial Surgery, Xiangya Stomatological Hospital and School of Stomatology, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Sixuan Liu
- Research Institution of Stomatology, Xiangya Stomatological Hospital and School of Stomatology, Central South University, 72 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.,Department of Oral Maxillofacial Surgery, Xiangya Stomatological Hospital and School of Stomatology, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Liu Yang
- Research Institution of Stomatology, Xiangya Stomatological Hospital and School of Stomatology, Central South University, 72 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.,Department of Oral Maxillofacial Surgery, Xiangya Stomatological Hospital and School of Stomatology, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Xiaodan Fang
- Research Institution of Stomatology, Xiangya Stomatological Hospital and School of Stomatology, Central South University, 72 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.,Department of Oral Maxillofacial Surgery, Xiangya Stomatological Hospital and School of Stomatology, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Kun Li
- Research Institution of Stomatology, Xiangya Stomatological Hospital and School of Stomatology, Central South University, 72 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.,Department of Oral Maxillofacial Surgery, Xiangya Stomatological Hospital and School of Stomatology, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Baisheng Wang
- Research Institution of Stomatology, Xiangya Stomatological Hospital and School of Stomatology, Central South University, 72 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.,Department of Oral Maxillofacial Surgery, Xiangya Stomatological Hospital and School of Stomatology, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Zhiyuan Deng
- Research Institution of Stomatology, Xiangya Stomatological Hospital and School of Stomatology, Central South University, 72 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.,Department of Oral Maxillofacial Surgery, Xiangya Stomatological Hospital and School of Stomatology, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Yanjia Hu
- Research Institution of Stomatology, Xiangya Stomatological Hospital and School of Stomatology, Central South University, 72 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.,Department of Oral Maxillofacial Surgery, Xiangya Stomatological Hospital and School of Stomatology, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Zhigang Yao
- Research Institution of Stomatology, Xiangya Stomatological Hospital and School of Stomatology, Central South University, 72 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.,Department of Oral Pathology, Xiangya Stomatological Hospital and School of Stomatology, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Junhui Huang
- Research Institution of Stomatology, Xiangya Stomatological Hospital and School of Stomatology, Central South University, 72 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.,Department of Oral Pathology, Xiangya Stomatological Hospital and School of Stomatology, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Jianjun Yu
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Kun Xia
- Center for Medical Genetics, School of Life Science, Central South University, Changsha, 410013, People's Republic of China
| | - Zhangui Tang
- Research Institution of Stomatology, Xiangya Stomatological Hospital and School of Stomatology, Central South University, 72 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.,Department of Oral Maxillofacial Surgery, Xiangya Stomatological Hospital and School of Stomatology, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Liangjuan Fang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China. .,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
14
|
Inhibition of the Adenosinergic Pathway in Cancer Rejuvenates Innate and Adaptive Immunity. Int J Mol Sci 2019; 20:ijms20225698. [PMID: 31739402 PMCID: PMC6888217 DOI: 10.3390/ijms20225698] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
Abstract
The adenosine pathway plays a key role in modulating immune responses in physiological and pathological conditions. Physiologically, anti-inflammatory effects of adenosine balance pro-inflammatory adenosine 5'-triphosphate (ATP), protecting tissues from damage caused by activated immune cells. Pathologically, increased adenosine monophosphatase (AMPase) activity in tumors leads to increased adenosine production, generating a deeply immunosuppressed microenvironment and promoting cancer progression. Adenosine emerges as a promising target for cancer therapy. It mediates protumor activities by inducing tumor cell proliferation, angiogenesis, chemoresistance, and migration/invasion by tumor cells. It also inhibits the functions of immune cells, promoting the formation of a tumor-permissive immune microenvironment and favoriting tumor escape from the host immune system. Pharmacologic inhibitors, siRNA or antibodies specific for the components of the adenosine pathway, or antagonists of adenosine receptors have shown efficacy in pre-clinical studies in various in vitro and in vivo tumor models and are entering the clinical arena. Inhibition of the adenosine pathway alone or in combination with classic immunotherapies offers a potentially effective therapeutic strategy in cancer.
Collapse
|
15
|
Arab S, Hadjati J. Adenosine Blockage in Tumor Microenvironment and Improvement of Cancer Immunotherapy. Immune Netw 2019; 19:e23. [PMID: 31501711 PMCID: PMC6722273 DOI: 10.4110/in.2019.19.e23] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/30/2019] [Accepted: 07/07/2019] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy has been introduced into cancer treatment methods, but different problems have restricted the efficacy of these protocols in clinical trials such as the presence of various immunomodulatory factors in the tumor microenvironment. Adenosine is an immunosuppressive metabolite produced by the tumor to promote growth, invasion, metastasis, and immune evasion. Many studies about adenosine and its metabolism in cancer have heightened interest in pursuing this treatment approach. It seems that targeting the adenosine pathway in combination with immunotherapy may lead to efficient antitumor response. In this review, we provide information on the roles of both adenosine and CD73 in the immune system and tumor development. We also describe recent studies about combination therapy with both purinergic inhibitors and other immunotherapeutic methods.
Collapse
Affiliation(s)
- Samaneh Arab
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Science, Semnan, Iran
| | - Jamshid Hadjati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Chen S, Wainwright DA, Wu JD, Wan Y, Matei DE, Zhang Y, Zhang B. CD73: an emerging checkpoint for cancer immunotherapy. Immunotherapy 2019; 11:983-997. [PMID: 31223045 PMCID: PMC6609898 DOI: 10.2217/imt-2018-0200] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 06/07/2019] [Indexed: 02/07/2023] Open
Abstract
CD73 is a novel immune checkpoint associated with adenosine metabolism that promotes tumor progression by suppressing antitumor immune response and promoting angiogenesis. The inhibition of CD73, in combination with immune checkpoint blockade, targeted therapy or conventional therapy, improves antitumor effects in numerous preclinical mouse models of cancer. Emerging evidence suggests that the combination of anti-CD73 and immune checkpoint blockade has promising clinical activity in patients with advanced solid tumors. In this review, we will discuss the specific role of CD73 on both tumor cells and nontumor cells in regulating tumor immunity and tumorigenesis and provide an update on the current view of the antitumor activity of targeting CD73 by mAb or small molecule selective inhibitors in preclinical and clinical settings.
Collapse
Affiliation(s)
- Siqi Chen
- Robert H Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Derek A Wainwright
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jennifer D Wu
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yong Wan
- Department of Obstetrics & Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Daniela E Matei
- Department of Obstetrics & Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Bin Zhang
- Robert H Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
17
|
Allard D, Chrobak P, Allard B, Messaoudi N, Stagg J. Targeting the CD73-adenosine axis in immuno-oncology. Immunol Lett 2018; 205:31-39. [PMID: 29758241 DOI: 10.1016/j.imlet.2018.05.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 12/14/2022]
Abstract
The ectonucleotidases CD39 and CD73 are cell surface enzymes that catabolize the breakdown of extracellular ATP into adenosine. As such, they constitute critical components of the extracellular purinergic pathway and play important roles in maintaining tissue and immune homeostasis. With the coming of age of cancer immunotherapy, ectonucleotidases and adenosine receptors have emerged as novel therapeutic targets to enhance antitumor immune responses. With early-phase clinical trials showing promising results, it is becoming increasingly important to decipher the distinct mechanisms-of-action of adenosine-targeting agents, identify patients that will benefit from these agents and rationally develop novel synergistic combinations. Given the broad expression of ectonucleotidases and adenosine receptors, a better understanding of cell-specific roles will also be key for successful implementation of this new generation of immuno-oncology therapeutics. We here review the latest studies on the roles of CD73 and adenosine in cancer with a focus on cell-specific function. We also discuss ongoing clinical trials and future avenues for adenosine-targeting agents.
Collapse
Affiliation(s)
- David Allard
- Centre de Recherche du Centre, Hospitalier l'Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montréal, QC, Canada; Faculté de Pharmacie de l'Université de Montréal, Montréal, QC, Canada
| | - Pavel Chrobak
- Centre de Recherche du Centre, Hospitalier l'Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montréal, QC, Canada; Faculté de Pharmacie de l'Université de Montréal, Montréal, QC, Canada
| | - Bertrand Allard
- Centre de Recherche du Centre, Hospitalier l'Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montréal, QC, Canada; Faculté de Pharmacie de l'Université de Montréal, Montréal, QC, Canada
| | - Nouredin Messaoudi
- Centre de Recherche du Centre, Hospitalier l'Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montréal, QC, Canada; University of Antwerp, Antwerp, Belgium
| | - John Stagg
- Centre de Recherche du Centre, Hospitalier l'Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montréal, QC, Canada; Faculté de Pharmacie de l'Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|