1
|
Gong M, Wang J, Gao W, Liu Q, Chen J, Wang G, Zhang Q. Establishment of an endoplasmic reticulum stress-related signature predicting outcomes of gastric adenocarcinoma patients. Front Genet 2022; 13:944105. [PMID: 36147499 PMCID: PMC9486073 DOI: 10.3389/fgene.2022.944105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Gastric adenocarcinoma (GAC) is a common clinical malignancy with a poor prognosis. Endoplasmic reticulum (ER) stress plays important roles in the progression, immune filtration, and chemoresistance of cancers. However, whether ER stress-related gene signatures can predict the prognosis of GAC patients remains unknown. Methods: GAC patient RNA-seq data downloaded from The Cancer Genome Atlas and gastric cancer patient microarray data from Gene Expression Omnibus datasets were analyzed using LASSO regression to construct an ER stress-related signature. Survival analysis, time-dependent receiver operating characteristic (ROC) curves, and Cox regression analysis were used to verify the efficacy of the signature. Immune infiltration, somatic mutation, immune checkpoint, and copy number variation analyses were utilized to explore the potential biological significance of the signature. Results: In the present study, eight ER stress-related gene signatures were constructed. Survival analysis showed that patients in the high-risk group had a significantly worse prognosis. The area under the time-dependent ROC curves was 0.65, 0.70, and 0.63 at 1, 3, and 5 years, respectively, in the training cohort. Cox regression analysis showed that the signature is an independent prognostic factor. To predict GAC patients’ prognosis meeting individual needs, a nomogram was constructed with good accuracy. In addition, gene set enrichment and immune infiltration analyses showed that the ER stress-related signature is associated with cancer-related pathway activation and an immunosuppressive tumor microenvironment in GAC. Conclusion: In the current study, we established an ER stress-related signature. This prognostic signature has good predictive power and could facilitate the development of novel strategies for the clinical treatment of GAC.
Collapse
Affiliation(s)
- Meiyuan Gong
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jingtao Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenfang Gao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qian Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiaxing Chen
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Guojun Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Guojun Wang, ; Qi Zhang,
| | - Qi Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Guojun Wang, ; Qi Zhang,
| |
Collapse
|
2
|
Dian L, Xu Z, Sun Y, Li J, Lu H, Zheng M, Wang J, Drobot L, Horak I. Berberine alkaloids inhibit the proliferation and metastasis of breast carcinoma cells involving Wnt/β-catenin signaling and EMT. PHYTOCHEMISTRY 2022; 200:113217. [PMID: 35504329 DOI: 10.1016/j.phytochem.2022.113217] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Berberine alkaloids belong to the class of isoquinoline alkaloids that have been shown to possess anticancer potential, berberine exhibits inhibitory effects on breast cancer development. However, the exact mechanisms of action for anti-breast carcinoma of the alkaloids, including epiberberine, berberrubine and dihydroberberine are still unclear. MTT assay, colony formation, wound healing and transwell invasion assays detected these alkaloids suppressed proliferation, migration and invasion of breast cancer cells. Hoechst and Annexin V-FITC/PI staining were used to analyze the apoptosis of breast cancer cells. Western blotting investigated the changes noted in the expression levels of the key proteins involved in the Wnt/β-catenin signaling pathway and epithelial to mesenchymal transition (EMT). The results showed that inhibited the proliferation of breast cancer cells. Berberine alkaloids inhibited the cell cycle at G2/M phase in MCF-7 cells, but in MDA-MB-231 cells berberine alkaloids arrested the cell cycle in G0/G1 and G2/M phases. By decreasing β-catenin expression, increasing GSK-3β expression and decreasing N-cadherin expression, increasing E-cadherin expression, which proved that epiberberine, berberrubine and dihydroberberine inhibited of metastasis of breast cancer cells through Wnt signaling pathway and reversed EMT except berberine. Furthermore, berberine alkaloids exert their anti-breast cancer effects through the synergistic action of intrinsic and extrinsic pathways of apoptosis. These findings highlight the different effects of different berberine alkaloids on breast cancer cells and confirm that berberine alkaloids may be potentially used in the treatment of breast cancer.
Collapse
Affiliation(s)
- Lulu Dian
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhaozhen Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.
| | - Jinhua Li
- Department of Pathology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310015, China
| | - Hongfei Lu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Meng Zheng
- Zhejiang Huisong Pharmaceuticals Co. Ltd., Hangzhou, 310003, China
| | - Juan Wang
- Zhejiang Huisong Pharmaceuticals Co. Ltd., Hangzhou, 310003, China
| | - Liudmyla Drobot
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Leontovicha Street 9, 01030, Kyiv, Ukraine
| | - Iryna Horak
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Leontovicha Street 9, 01030, Kyiv, Ukraine
| |
Collapse
|
3
|
Dai J, Reyimu A, Sun A, Duoji Z, Zhou W, Liang S, Hu S, Dai W, Xu X. Establishment of prognostic risk model and drug sensitivity based on prognostic related genes of esophageal cancer. Sci Rep 2022; 12:8008. [PMID: 35568702 PMCID: PMC9107481 DOI: 10.1038/s41598-022-11760-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/19/2022] [Indexed: 12/13/2022] Open
Abstract
At present, the treatment of esophageal cancer (EC) is mainly surgical and drug treatment. However, due to drug resistance, these therapies can not effectively improve the prognosis of patients with the EC. Therefore, a multigene prognostic risk scoring system was constructed by bioinformatics analysis method to provide a theoretical basis for the prognosis and treatment decision of EC. The gene expression profiles and clinical data of esophageal cancer patients were gathered from the Cancer Genome Atlas TCGA database, and the differentially expressed genes (DEGs) were screened by R software. Genes with prognostic value were screened by Kaplan Meier analysis, followed by functional enrichment analysis. A cox regression model was used to construct the prognostic risk score model of DEGs. ROC curve and survival curve were utilized to evaluate the performance of the model. Univariate and multivariate Cox regression analysis was used to evaluate whether the model has an independent prognostic value. Network tool mirdip was used to find miRNAs that may regulate risk genes, and Cytoscape software was used to construct gene miRNA regulatory network. GSCA platform is used to analyze the relationship between gene expression and drug sensitivity. 41 DEGs related to prognosis were pre-liminarily screened by survival analysis. A prognostic risk scoring model composed of 8 DEGs (APOA2, COX6A2, CLCNKB, BHLHA15, HIST1H1E, FABP3, UBE2C and ERO1B) was built by Cox regression analysis. In this model, the prognosis of the high-risk score group was poor (P < 0.001). The ROC curve showed that (AUC = 0.862) the model had a good performance in predicting prognosis. In Cox regression analysis, the comprehensive risk score can be employed as an independent prognostic factor of the EC. HIST1H1E, UBE2C and ERO1B interacted with differentially expressed miRNAs. High expression of HIST1H1E was resistant to trametinib, selumetinib, RDEA119, docetaxel and 17-AAG, High expression of UBE2C was resistant to masitinib, and Low expression of ERO1B made the EC more sensitive to FK866. We constructed an EC risk score model composed of 8 DEGs and gene resistance analysis, which can provide reference for prognosis prediction, diagnosis and treatment of the EC patients.
Collapse
Affiliation(s)
- Jingjing Dai
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, People's Republic of China
| | - Abdusemer Reyimu
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, People's Republic of China.,Medical College, Anhui University of Science and Technology, Huainan, 232001, Anhui, People's Republic of China
| | - Ao Sun
- Class 11, grade 2018, Clinical Medicine, Nanjing Medical University, Nanjing, 223300, Jiangsu, People's Republic of China
| | - Zaxi Duoji
- Research Center of High Altitude Medicine, Naqu, Tibet, China, People's Hospital of Naqu Affiliated to Dalian Medical University, Tibet, 852000, People's Republic of China
| | - Wubi Zhou
- Department of Pathology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, People's Republic of China.
| | - Song Liang
- Department of Medical Laboratory, Second branch, The Affiliated Huaian No, People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, People's Republic of China
| | - Suxia Hu
- Department of Medical Laboratory, Huainan First People's Hospital, The First Affiliated Hospital of Anhui University of Science and Technology, Huainan, Anhui, People's Republic of China.
| | - Weijie Dai
- Department of Endoscopy Center, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, People's Republic of China.
| | - Xiaoguang Xu
- Research Center of High Altitude Medicine, Naqu, Tibet, China, People's Hospital of Naqu Affiliated to Dalian Medical University, Tibet, 852000, People's Republic of China.
| |
Collapse
|
4
|
Guo J, Zeng H, Shi X, Han T, Liu Y, Liu Y, Liu C, Qu D, Chen Y. A CFH peptide-decorated liposomal oxymatrine inactivates cancer-associated fibroblasts of hepatocellular carcinoma through epithelial–mesenchymal transition reversion. J Nanobiotechnology 2022; 20:114. [PMID: 35248071 PMCID: PMC8898522 DOI: 10.1186/s12951-022-01311-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
AbstractCancer-associated fibroblasts (CAFs) deteriorate tumor microenvironment (TME) and hinder intra-tumoral drug delivery. Direct depleting CAFs exists unpredictable risks of tumor metastasis. Epithelial–mesenchymal transition (EMT) is a critical process of CAFs converted from hepatic stellate cells during hepatocellular tumorigenesis; however, until now the feasibility of reversing EMT to battle hepatocellular carcinoma has not been comprehensively explored. In this study, we report a CFH peptide (CFHKHKSPALSPVGGG)-decorated liposomal oxymatrine (CFH/OM-L) with a high affinity to Tenascin-C for targeted inactivating CAFs through reversing EMT, which is verified by the upregulation of E-cadherin and downregulation of vimentin, N-cadherin, and snail protein in vivo and in vitro. After the combination with icaritin-loaded lipid complex, CFH/OM-L obviously boosts the comprehensive anticancer efficacy in both 3D tumor spheroids and stromal-rich tumor xenograft nude mouse models. The combinational therapy not only effectively reversed the in vivo EMT process but also significantly lowered the collagen, creating favorable conditions for deep penetration of nanoparticles. More importantly, CFH/OM-L does not kill but inactivates CAFs, resulting in not only a low risk of tumor metastasis but also a reprogramming TME, such as M1 tumor-associated macrophages polarization and natural killer cells activation. Such strategy paves a moderate way to remold TME without depleting CAFs and provides a powerful tool to design strategies of combinational hepatocellular carcinoma therapy.
Graphical Abstract
Collapse
|
5
|
Xu H, Chen R, Shen Q, Yang D, Peng H, Tong J, Fu Q. Overexpression of Circular RNA circ_0013587 Reverses Erlotinib Resistance in Pancreatic Cancer Cells Through Regulating the miR-1227/E-Cadherin Pathway. Front Oncol 2021; 11:754146. [PMID: 34552882 PMCID: PMC8450525 DOI: 10.3389/fonc.2021.754146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
Background Erlotinib, a small-molecule epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, demonstrated therapeutic efficacy against pancreatic cancer. However, acquired resistance to erlotinib in pancreatic cancer is widely observed, and the exact mechanisms have not been fully explored until now. We examined the role of circular RNA circ_0013587 in the acquired resistance to erlotinib in pancreatic cancer cells and explored the underlying mechanisms. Methods We selected erlotinib-resistant pancreatic cancer cells from the AsPC-1 cell line. The expression of circ_0013587 was examined by qRT-PCR assays. The effects of circ_0013587 on pancreatic cancer cell proliferation, invasion, and erlotinib resistance were assessed by cell functional assays. Bioinformatic analysis and dual-luciferase reporter assays identified circ_0013587 and E-cadherin as direct targets of miR-1227. Mouse xenograft models were employed to investigate the function of circ_0013587 in erlotinib resistance of tumors in vivo. Results Circ_0013587 expression was significantly reduced in erlotinib-resistant AsPC-1 cells. We found that increasing circ_0013587 levels in erlotinib-resistant AsPC-1 cells re-sensitized them, whereas reducing circ_0013587 levels in erlotinib-sensitive AsPC-1 cells made them resistant. Mechanically, circ_0013587 released E-cadherin from the suppression of miR-1227, leading to E-cadherin up-regulation. Rescue assays highlighted that circ_0013587 reversed erlotinib resistance in pancreatic cancer cells by increasing E-cadherin levels through reducing the expression of miR-1227. Furthermore, circ_0013587 overexpression sensitized erlotinib-resistant AsPC-1 cells to erlotinib in xenograft models. Conclusions Our results demonstrated that down-regulation of circ_0013587 contributes to acquired resistance to erlotinib in pancreatic cancer cells through mediating the miR-1227/E-cadherin pathway and that circ_0013587 is a potential target molecular to overcome erlotinib resistance.
Collapse
Affiliation(s)
- Huiting Xu
- Department of Abdominal Oncology, Hubei Cancer Hospital, Wuhan, China
| | - Runzhi Chen
- Department of Abdominal Oncology, Hubei Cancer Hospital, Wuhan, China
| | - Qian Shen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongmei Yang
- Department of Abdominal Oncology, Hubei Cancer Hospital, Wuhan, China
| | - Hui Peng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Tong
- Department of PICC, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Fu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Feng Y, Jiang Y, Hao F. GSK2126458 has the potential to inhibit the proliferation of pancreatic cancer uncovered by bioinformatics analysis and pharmacological experiments. J Transl Med 2021; 19:373. [PMID: 34461940 PMCID: PMC8406597 DOI: 10.1186/s12967-021-03050-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/24/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Pancreatic cancer is one of the most serious digestive malignancies. At present, there is an extreme lack of effective strategies in clinical treatment. The purpose of this study is to identify key genes and pathways in the development of pancreatic cancer and provide targets for the treatment of pancreatic cancer. METHODS GSE15471 and GSE62165 were used to screen differentially expressed genes by GEO2R tool. Hub genes prognostic potential assessed using the GEPIA and Kaplan-Meier plotter databases. The drug susceptibility data of pan-cancer cell lines is provided by The Genomics of Drug Sensitivity in Cancer Project (GDSC). Finally, the effects of PI3K-Akt signaling pathway inhibitors on cell viability of pancreatic cancer cells were detected by cell proliferation and invasion assays. RESULTS A total of 609 differentially expressed genes were screened and enriched in the focal adhesion, phagosome and PI3K-Akt signaling pathway. Of the 15 hub genes we found, four were primarily associated with the PI3K-Akt signaling pathway, including COL3A1, EGF, FN1 and ITGA2. GDSC analysis showed that mTOR inhibitors are very sensitive to pancreatic cancer cells with mutations in EWSR1.FLI1 and RNF43. Cell proliferation and invasion results showed that mTOR inhibitors (GSK2126458) can inhibit the proliferation of pancreatic cancer cells. CONCLUSIONS This study suggested that the PI3K-Akt signaling pathway may be a key pathway for pancreatic cancer, our study uncovered the potential therapeutic potential of GSK2126458, a specific mTOR inhibitor, for pancreatic cancer.
Collapse
Affiliation(s)
- Yueqin Feng
- Department of Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, 110022, Liaoning, China.
| | - Yuguan Jiang
- School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning, China
| | - Fengjin Hao
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122, Liaoning, China
| |
Collapse
|
7
|
Jin W, Yin H, Li H, Yu X, Xu H, Liu L. Neutrophil extracellular DNA traps promote pancreatic cancer cells migration and invasion by activating EGFR/ERK pathway. J Cell Mol Med 2021; 25:5443-5456. [PMID: 33955688 PMCID: PMC8184670 DOI: 10.1111/jcmm.16555] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 12/18/2022] Open
Abstract
Neutrophil extracellular DNA traps (NETs) are newly discovered forms of activated neutrophils. Increasing researches have shown that NETs play important roles in cancer progression. Our previous study has proved that tumour-infiltrating NETs could predict postsurgical survival in patients with pancreatic ductal adenocarcinoma (PDAC). However, the roles of NETs on the progression of pancreatic cancer are unknown. Here, we investigated the effects of NETs on pancreatic cancer cells. Results showed that both PDAC patients' and normal individuals' neutrophils-derived NETs could promote migration and invasion of pancreatic cancer cells with epithelial-mesenchymal transition. Further, study confirmed that EGFR/ERK pathway played an important role in this progression. The addition of neutralizing antibodies for IL-1β could effectively block the activation of EGFR/ERK companied with reduction of EMT, migration and invasion. Taken together, NETs facilitated EMT, migration and invasion via IL-1β/EGFR/ERK pathway in pancreatic cancer cells. Our study suggests that NETs may provide promising therapeutic targets for pancreatic cancer.
Collapse
Affiliation(s)
- Wei Jin
- Shanghai Institute of ImmunologyDepartment of Immunology and MicrobiologyKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Pancreatic SurgeryPancreatic Cancer InstituteFudan UniversityShanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeShanghaiChina
| | - Huijing Yin
- Translational Medicine CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hao Li
- Department of Pancreatic SurgeryPancreatic Cancer InstituteFudan UniversityShanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeShanghaiChina
| | - Xian‐Jun Yu
- Department of Pancreatic SurgeryPancreatic Cancer InstituteFudan UniversityShanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeShanghaiChina
| | - Hua‐Xiang Xu
- Department of Pancreatic SurgeryPancreatic Cancer InstituteFudan UniversityShanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeShanghaiChina
| | - Liang Liu
- Department of Pancreatic SurgeryPancreatic Cancer InstituteFudan UniversityShanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeShanghaiChina
| |
Collapse
|
8
|
Xie X, Zhou Z, Song Y, Zhang X, Dang C, Zhang H. Mist1 Inhibits Epithelial-Mesenchymal Transition in Gastric Adenocarcinoma via Downregulating the Wnt/β-catenin Pathway. J Cancer 2021; 12:4574-4584. [PMID: 34149921 PMCID: PMC8210560 DOI: 10.7150/jca.59138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/19/2021] [Indexed: 12/24/2022] Open
Abstract
As a secretory cell transcription factor, muscle intestine stomach expression 1 (Mist1) is associated with serous secretory cell development and gastric chief cell maturation. Here, we focus on the function of Mist1 in gastric adenocarcinoma carcinogenesis. Based on clinical data and a mouse model of gastric cancer, we found that Mist1 expression was reduced in gastric cancer. Then, we overexpressed Mist1 using a lentivirus system and found that overexpression of Mist1 could inhibit gastric cancer cell proliferation, migration and invasion in vitro. Additionally, in vivo, we assessed the function of Mist1 in a gastric cancer xenograft model and distant pulmonary metastasis model. Overexpression of Mist1 decreased tumour growth and distant metastasis in vivo, suggesting that Mist1 acts as a tumour suppressor in gastric carcinogenesis. Furthermore, Mist1 overexpression inhibited epithelial-mesenchymal transition (EMT) in gastric cancer by suppressing β-catenin transcription activity and then the Wingless and INT-1 (Wnt)/β-catenin signalling pathway, which could be reversed by a Wnt/β-catenin-specific agonist. In conclusion, this study indicated that overexpression of Mist1 could reverse EMT in gastric carcinogenesis by inhibiting the Wnt/β-catenin signalling pathway and that Mist1 might be a novel marker for early gastric cancer screening.
Collapse
Affiliation(s)
- Xin Xie
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zhangjian Zhou
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Yongchun Song
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xin Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Chengxue Dang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Hao Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
9
|
Liu H, Zhou Y, Qiu H, Zhuang R, Han Y, Liu X, Qiu X, Wang Z, Xu L, Tan R, Hong W, Wang T. Rab26 suppresses migration and invasion of breast cancer cells through mediating autophagic degradation of phosphorylated Src. Cell Death Dis 2021; 12:284. [PMID: 33731709 PMCID: PMC7969620 DOI: 10.1038/s41419-021-03561-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 02/08/2023]
Abstract
Rab proteins play crucial roles in membrane trafficking. Some Rab proteins are implicated in cancer development through regulating protein sorting or degradation. In this study, we found that the expression of Rab26 is suppressed in the aggressive breast cancer cells as compared to the levels in non-invasive breast cancer cells. Over-expression of Rab26 inhibits cell migration and invasion, while Rab26 knockdown significantly promotes the migration and invasion of breast cancer cells. Rab26 reduces focal adhesion association of Src kinase and induces endosomal translocation of Src. Further experiments revealed that Rab26 mediates the autophagic degradation of phosphorylated Src through interacting with ATG16L1, consequently, resulting in the suppression of the migration and invasion ability of breast cancer cells.
Collapse
Affiliation(s)
- Huiying Liu
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China
| | - Yuxia Zhou
- grid.413458.f0000 0000 9330 9891School of Basic Medical Sciences, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, 550025 Guiyang, China
| | - Hantian Qiu
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China
| | - Ruijuan Zhuang
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China
| | - Yang Han
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China
| | - Xiaoqing Liu
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China
| | - Xi Qiu
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China
| | - Ziyan Wang
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China
| | - Liju Xu
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China
| | - Ran Tan
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China
| | - Wanjin Hong
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China ,grid.185448.40000 0004 0637 0221Institute of Molecular and Cell Biology, A STAR (Agency of ScienceTechnology and Research), 61 Biopolis Drive, Singapore, 138673 Singapore
| | - Tuanlao Wang
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China
| |
Collapse
|
10
|
Huang D, Wang R. Exploring the mechanism of pancreatic cell fate decisions via cell-cell communication. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:2401-2424. [PMID: 33892552 DOI: 10.3934/mbe.2021122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The endocrine and exocrine cells in pancreas originate initially from a group of apparently identical endoderm cells in the early gut. The endocrine and exocrine tissues are composed of islet/acinar and duct cells respectively. To explore the mechanism of pancreas cell fate decisions, we first construct a minimal mathematical model related to pancreatic regulations. The regulatory mechanism of acinar-to-islet cell conversion is revealed by bifurcation analysis of the model. In addition, Notch signaling is critical in determining the fate of endocrine and exocrine in the developing pancreas and it is a typical mediator of lateral inhibition which instructs adjacent cells to make different fate decisions. Next, we construct a multicellular model of cell-cell communication mediated by Notch signaling with trans-activation and cis-inhibition. The roles of Notch signaling in regulating fate decisions of endocrine and exocrine cells during the differentiation of pancreatic cells are explored. The results indicate that high (or low) level of Notch signaling drive cells to select the fate of exocrine (or endocrine) progenitor cells. The networks and the models presented here might be good candidates for providing qualitative mechanisms of pancreatic cell fate decisions. These results can also provide some insight on choosing perturbation strategies for further experimental analysis.
Collapse
Affiliation(s)
- Dasong Huang
- Department of Mathematics, Shanghai University, Shanghai 200444, China
| | - Ruiqi Wang
- Department of Mathematics, Shanghai University, Shanghai 200444, China
| |
Collapse
|
11
|
Xie X, Xiong G, Chen W, Fu H, Li M, Cui X. FOXD3 inhibits cell proliferation, migration, and invasion in nasopharyngeal carcinoma through regulation of the PI3K-Akt pathway. Biochem Cell Biol 2020; 98:653-660. [PMID: 32459973 DOI: 10.1139/bcb-2020-0011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
FOXD3 has been found previously to positively regulate miR-26b, a tumor inhibitor of nasopharyngeal carcinoma (NPC). However, FOXD3's precise function and associated mechanism of action in NPC have not yet been investigated. In this study, the expression of FOXD3 mRNA and protein was evaluated using RT-qPCR, western blotting, and immunohistochemistry. Protein levels involved in the phosphoinositide 3-kinase - protein kinase B (PI3K-Akt) pathway were assessed by western blot, and cell proliferation was determined by MTT and colony forming assays. Additionally, cell apoptosis was assessed by flow cytometric assay. Finally, the migration and invasion capabilities of the NPC cells were determined using wound healing and Transwell assays. We found that FOXD3 levels were relatively low in NPC tissue and cells, while an increase caused the inhibition of the PI3K-Akt pathway. Functional experiments found that overexpression of FOXD3 suppressed cell proliferation, migration, and invasion and enhanced cell apoptosis in NPC C6661 cells. IGF-1, an activator of the PI3K-Akt pathway, reversed the inhibitory effect of FOXD3. Furthermore, we found upregulation of the PI3K-Akt pathway and upregulation of the inhibitory effects of FOXD3 on C6661 cellular activities. In conclusion, FOXD3 negatively affected the PI3K-Akt pathway to restrain the processes involved in C6661 cell pathology. These findings further exposed the function and downstream axis of FOXD3 in NPC and displayed a promising new target for NPC therapy.
Collapse
Affiliation(s)
- Xiaoxing Xie
- Department of Otolaryngology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Gaoyun Xiong
- Department of Otolaryngology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Wenjun Chen
- Department of Otolaryngology, The Traditional Chinese Medicine Hospital of Haiyan County, Jiaxing, Zhejiang 314300, P.R. China
| | - Hongdan Fu
- Department of Otolaryngology, The Traditional Chinese Medicine Hospital of Haiyan County, Jiaxing, Zhejiang 314300, P.R. China
| | - Mingqian Li
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Xiaoying Cui
- Department of Anesthesiology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| |
Collapse
|
12
|
Zheng F, Li J, Ma C, Tang X, Tang Q, Wu J, Chai X, Xie J, Yang XB, Hann SS. Novel regulation of miR-34a-5p and HOTAIR by the combination of berberine and gefitinib leading to inhibition of EMT in human lung cancer. J Cell Mol Med 2020; 24:5578-5592. [PMID: 32248643 PMCID: PMC7214156 DOI: 10.1111/jcmm.15214] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/14/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
HOTAIR is an important carcinogenic lncRNA and involves in tumorigenesis, and invasion. MiR-34a-5p functions as a tumour suppressor. However, the underlying mechanism of HOTAIR regulation especially in association with miR-34a-5p in non-small-cell lung cancer (NSCLC) has not been explored. Herein, we performed series of in vitro experiments, including viability, migration, invasion, apoptosis and in vivo xenograft model, and identified that HOTAIR was remarkably elevated in NSCLC cells. Enforced HOTAIR expression promoted migration and invasion, while depleted HOTAIR diminished the ability of migration and invasion of NSCLC cells. We also observed that miR-34a-5p was dramatically inhibited in NSCLC cells and the binding correlation between HOTAIR and miR-34a-5p was confirmed by dual-luciferase reporter and RNA immunoprecipitation assays. We also showed that induction of miR-34a-5p and reduction of HOTAIR, and the interaction between miR-34a-5p and HOTAIR resulted in the suppression of epithelial-mesenchymal transition (EMT) as illustrated by induction of key epithelial markers E-cadherin expression, reduction of vimentin and EMT-inducing transcription factor snail. Excessive expression of snail resisted miR-34a-5p-inhibited cell growth. Snail binds to E-cadherin promoter and regulates E-cadherin expression. There was a synergy in combination of berberine and gefinitib in this process. Similar findings were also observed in a tumour xenograft model. Collectively, this is the first report demonstrating reciprocal interaction of miR-34a-5p- and HOTAIR-mediated regulation of snail resulting in inhibition of EMT process by the combination of berberine and gefitinib suggesting that regulation of miR-34a-5p- and HOTAIR-mediated inhibition of EMT may provide novel treatment paradigms for lung cancer.
Collapse
Affiliation(s)
- Fang Zheng
- Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Li
- Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Human Resource, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - ChangJu Ma
- Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - XiaoJuan Tang
- Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing Tang
- Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - JingJing Wu
- Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - XiaoSu Chai
- Department of Medical Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianhui Xie
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Bo Yang
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Swei Sunny Hann
- Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
13
|
Li J, Li H, Zhu W, Zhou B, Ying J, Wu J, Zhang H, Sun H, Gao S. Deubiquitinase inhibitor degrasyn suppresses metastasis by targeting USP5-WT1-E-cadherin signalling pathway in pancreatic ductal adenocarcinoma. J Cell Mol Med 2020; 24:1370-1382. [PMID: 31845546 PMCID: PMC6991651 DOI: 10.1111/jcmm.14813] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/05/2019] [Accepted: 10/26/2019] [Indexed: 12/18/2022] Open
Abstract
Wilm's tumour-1 (WT1) is overexpressed in pancreatic ductal adenocarcinoma (PDAC) and enhances metastasis. Deubiquitination stabilizes target proteins, and inhibiting deubiquitination facilitates the degradation of target proteins. However, whether inhibiting deubiquitination of WT1 facilitates its degradation and presents anti-cancer ability in PDAC is unknown. Here, we found that deubiquitinase inhibitor degrasyn rapidly induced the degradation of endogenous and exogenous WT1 through enhancing ubiquitination of WT1 followed by the up-regulation of E-cadherin. Knockdown of WT1 by short hairpin RNAs (shRNAs) inhibited metastasis and overexpression of WT1 partially prevented degrasyn-induced anti-metastasis activity, suggesting that degrasyn presents anti-metastasis activity partially through degrading WT1 protein. We further identified that USP5 deubiquitinated WT1 and stabilized its expression. The higher expressions of USP5 and WT1 are associated with tumour metastasis. More importantly, degrasyn inhibited the activity of USP5 and overexpression of USP5 partially prevented degrasyn-induced degradation of WT1 protein, suggesting that degrasyn degraded WT1 protein through inhibiting the activity of USP5. Finally, degrasyn reduced the tumorigenicity in a xenograft mouse model and reduced the metastasis in vivo. Our results indicate that degrasyn presents strong anti-cancer activity through USP5-WT1-E-cadherin signalling in PDAC. Therefore, degrasyn holds promise as cancer therapeutic agent in PDAC with high expressions of USP5 and WT1.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cadherins/antagonists & inhibitors
- Cadherins/genetics
- Cadherins/metabolism
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/secondary
- Cell Proliferation
- Cyanoacrylates/pharmacology
- Deubiquitinating Enzymes/antagonists & inhibitors
- Endopeptidases/chemistry
- Endopeptidases/genetics
- Endopeptidases/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Mice
- Mice, Nude
- Neoplasm Invasiveness
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Prognosis
- Pyridines/pharmacology
- Tumor Cells, Cultured
- WT1 Proteins/antagonists & inhibitors
- WT1 Proteins/genetics
- WT1 Proteins/metabolism
- Xenograft Model Antitumor Assays
- Pancreatic Neoplasms
Collapse
Affiliation(s)
- Jiajia Li
- Department of Gastroenterologythe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Haiying Li
- Laboratory of Internal Medicinethe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Weijian Zhu
- Laboratory of Internal Medicinethe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Bin Zhou
- Laboratory of Internal Medicinethe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Jianchao Ying
- Laboratory of Internal Medicinethe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Jiansheng Wu
- Department of Gastroenterologythe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Huxiang Zhang
- Pathology Departmentthe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Hongwei Sun
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Shenmeng Gao
- Laboratory of Internal Medicinethe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| |
Collapse
|
14
|
Qiu JJ, Lin XJ, Tang XY, Zheng TT, Zhang XY, Hua KQ. Long noncoding RNA TC0101441 induces epithelial-mesenchymal transition in epithelial ovarian cancer metastasis by downregulating KiSS1. Int J Cancer 2019; 146:2588-2598. [PMID: 31577838 DOI: 10.1002/ijc.32692] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/23/2019] [Accepted: 09/02/2019] [Indexed: 12/17/2022]
Abstract
Peritoneal metastasis is a critical feature and clinical challenge in epithelial ovarian cancer (EOC). We previously identified a novel long noncoding RNA (lncRNA, TC0101441) in epithelial ovarian cancer (EOC) using microarrays. However, the impact of TC0101441 on EOC metastasis and prognosis remains unclear. TC0101441 expression in EOC tissues and its correlation with clinicopathological factors and prognosis were examined. A series of in vitro and in vivo assays were performed to elucidate the roles and mechanism of TC0101441 in EOC metastasis. We found that TC0101441 levels were elevated in EOC tissues compared with those in normal controls and significantly correlated with an advanced clinical stage and lymph node metastasis. TC0101441 was determined to be an independent prognostic predictor of overall survival (OS) and disease-free survival (DFS). Furthermore, loss-of-function assays showed that TC0101441 promoted the invasive and metastatic capacities of EOC cells both in vitro and in vivo. Mechanistically, the prometastatic effects of TC0101441 were linked to the induction of epithelial-mesenchymal transition (EMT). Importantly, KiSS1 was identified as a downstream target gene of TC0101441 and was downregulated by TC0101441 in EOC cells. After TC0101441 was silenced, the corresponding phenotypes of EOC cell invasion and EMT were reversed by the overexpression of KiSS1. Taken together, our data suggest that TC0101441 functions as a potential promigratory/invasive oncogene by promoting EMT and metastasis in EOC through downregulation of KiSS1, which may represent a novel prognostic marker and therapeutic target in EOC.
Collapse
Affiliation(s)
- Jun-Jun Qiu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Obstetrics and Gynecology Department of Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Xiao-Jing Lin
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Obstetrics and Gynecology Department of Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Xiao-Yan Tang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Obstetrics and Gynecology Department of Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Ting-Ting Zheng
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Obstetrics and Gynecology Department of Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Xu-Yin Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Obstetrics and Gynecology Department of Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Ke-Qin Hua
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Obstetrics and Gynecology Department of Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| |
Collapse
|
15
|
Monkman JH, Thompson EW, Nagaraj SH. Targeting Epithelial Mesenchymal Plasticity in Pancreatic Cancer: A Compendium of Preclinical Discovery in a Heterogeneous Disease. Cancers (Basel) 2019; 11:E1745. [PMID: 31703358 PMCID: PMC6896204 DOI: 10.3390/cancers11111745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is a particularly insidious and aggressive disease that causes significant mortality worldwide. The direct correlation between PDAC incidence, disease progression, and mortality highlights the critical need to understand the mechanisms by which PDAC cells rapidly progress to drive metastatic disease in order to identify actionable vulnerabilities. One such proposed vulnerability is epithelial mesenchymal plasticity (EMP), a process whereby neoplastic epithelial cells delaminate from their neighbours, either collectively or individually, allowing for their subsequent invasion into host tissue. This disruption of tissue homeostasis, particularly in PDAC, further promotes cellular transformation by inducing inflammatory interactions with the stromal compartment, which in turn contributes to intratumoural heterogeneity. This review describes the role of EMP in PDAC, and the preclinical target discovery that has been conducted to identify the molecular regulators and effectors of this EMP program. While inhibition of individual targets may provide therapeutic insights, a single 'master-key' remains elusive, making their collective interactions of greater importance in controlling the behaviours' of heterogeneous tumour cell populations. Much work has been undertaken to understand key transcriptional programs that drive EMP in certain contexts, however, a collaborative appreciation for the subtle, context-dependent programs governing EMP regulation is needed in order to design therapeutic strategies to curb PDAC mortality.
Collapse
Affiliation(s)
- James H. Monkman
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Erik W. Thompson
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Shivashankar H. Nagaraj
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| |
Collapse
|
16
|
Zhao X, Jiang X, Liu Z, Zhou M, Zhang J, Wang X, Li X. Long Noncoding RNA VIM Antisense RNA 1 (VIM-AS1) Plays an Important Role in Development of Preeclampsia by Regulation of Epithelial Mesenchymal Transition. Med Sci Monit 2019; 25:8306-8314. [PMID: 31685789 PMCID: PMC6857443 DOI: 10.12659/msm.916601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Long noncoding RNAs play important roles in the development of various diseases. This study aimed to evaluate the effects and mechanism of VIM antisense RNA 1 (VIM-AS1) in the development of preeclampsia. Material/Methods HTR-8/SVneo cells were divided into normal control (NC), Model, Blank, and VIM-AS1 groups. These groups were analyzed for their VIM-AS1 gene expressions by RT-PCR, HTR-8/SVneo cell invasion was assessed by transwell and migration by wound healing, cell morphology was assessed by microscopy examination, and E-cadherin, Snail, and Vimentin genes expressions were assessed by RT-PCR and WB assay. Results VIM-AS1 gene expression was significantly different among normal placenta tissue, mild preeclampsia tissues, and severe preeclampsia tissues (P<0.001 or P<0.01). VIM-AS1 gene expressions, cell invasions, and wound healing rates in the Model and Blank groups were significantly suppressed compared with that of NC group (P<0.001, all). With VIM-AS1 supplementation, VIM-AS1 gene expression, cell invasion, and wound healing rate in the VIM-AS1 group were significantly increased compared with that in the Model group (P<0.001). RT-PCR and WB assay showed that E-cadherin gene and protein expressions in Model and Blank groups were significantly upregulated compared with the NC group (P<0.001); Snail and Vimentin gene and protein expressions in the Model and Blank groups were significantly downregulated compared with the NC group (P<0.001). With VIM-AS1 supplementation, E-cadherin, Snail, and Vimentin gene and proteins expression levels in the VIM-AS1 group were significantly different compared with that in the Model group (P<0.001). Conclusions VIM-AS1 promotes preeclampsia via inducing epithelial-to-mesenchymal transition (EMT).
Collapse
Affiliation(s)
- Xuehui Zhao
- Department of Obstetrics and Gynecology, Baoji Maternal and Child Health Care Hospital, Baoji, Shaanxi, China (mainland)
| | - Xiaoying Jiang
- Department of Obstetrics and Gynecology, Baoji Maternal and Child Health Care Hospital, Baoji, Shaanxi, China (mainland)
| | - Zongyin Liu
- Department of Obstetrics and Gynecology, Baoji Maternal and Child Health Care Hospital, Baoji, Shaanxi, China (mainland)
| | - Mi Zhou
- Department of Obstetrics and Gynecology, Baoji Maternal and Child Health Care Hospital, Baoji, Shaanxi, China (mainland)
| | - Juan Zhang
- Department of Obstetrics and Gynecology, Baoji Maternal and Child Health Care Hospital, Baoji, Shaanxi, China (mainland)
| | - Xiaojing Wang
- Department of Obstetrics and Gynecology, Baoji Maternal and Child Health Care Hospital, Baoji, Shaanxi, China (mainland)
| | - Xiaowen Li
- Department of Obstetrics and Gynecology, Baoji Maternal and Child Health Care Hospital, Baoji, Shaanxi, China (mainland)
| |
Collapse
|
17
|
Huang H, Nie C, Qin X, Zhou J, Zhang L. Diosgenin inhibits the epithelial-mesenchymal transition initiation in osteosarcoma cells via the p38MAPK signaling pathway. Oncol Lett 2019; 18:4278-4287. [PMID: 31579425 DOI: 10.3892/ol.2019.10780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 06/13/2019] [Indexed: 01/01/2023] Open
Abstract
Diosgenin is an important basic raw material for the production of steroid hormone drugs. It can be isolated and purified from a variety of traditional Chinese medicines or plants. Modern molecular biological studies have shown that diosgenin inhibits various tumor cells migration and invasion ability to varying degrees in vitro and in vivo. The aim of the present study was to observe the inhibitory effects of diosgenin on the invasive and metastatic capabilities of osteosarcoma cells and to determine the association between the effects of diosgenin on the epithelial-mesenchymal transition (EMT). Wound healing and Transwell assays were used to observe the inhibitory effects of diosgenin on the invasion and migration of two osteosarcoma cell lines. Immunofluorescence was used to observe changes in transforming growth factor β1 (TGF-β1) protein expression levels in the osteosarcoma cells following drug administration. EMT-associated proteins, including TGFβ1, E-cadherin and vimentin were detected by western blotting, which demonstrated that the drug may inhibit the initiation of EMT in osteosarcoma cells. Western blot analysis of the expression of all the proteins in the mitogen-activated protein kinase (MAPK) pathway demonstrated that the drug inhibited the MAPK signaling pathway. The primary mechanism of action of diosgenin was the inhibition of the phosphorylated p38 (pP38) protein. Through a combination of inhibitors of the p38MAPK signaling pathway and detection of the downstream EMT marker protein E-cadherin by quantitative PCR, pP38 was confirmed to be a target of diosgenin in the inhibition of EMT in the osteosarcoma cells via the MAPK molecular signaling pathway. Diosgenin may exhibit utility as an auxiliary drug for the clinical reduction of metastasis in patients with osteosarcoma.
Collapse
Affiliation(s)
- Huaming Huang
- Department of Research Office, Jiangsu Health Vocational College, Nanjing, Jiangsu 211800, P.R. China.,Department of Orthopedics, Xishan People's Hospital of Wuxi, Wuxi, Jiangsu 214015, P.R. China
| | - Chao Nie
- Department of Research Office, Jiangsu Health Vocational College, Nanjing, Jiangsu 211800, P.R. China
| | - Xiaokang Qin
- Jiangsu KeyGEN BioTECH Co., Ltd., Nanjing, Jiangsu 211100, P.R. China
| | - Jie Zhou
- Department of Research Office, Jiangsu Health Vocational College, Nanjing, Jiangsu 211800, P.R. China
| | - Lei Zhang
- Department of Research Office, Jiangsu Health Vocational College, Nanjing, Jiangsu 211800, P.R. China
| |
Collapse
|
18
|
Wang WD, Shang Y, Li Y, Chen SZ. Honokiol inhibits breast cancer cell metastasis by blocking EMT through modulation of Snail/Slug protein translation. Acta Pharmacol Sin 2019; 40:1219-1227. [PMID: 31235819 DOI: 10.1038/s41401-019-0240-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023] Open
Abstract
Honokiol (HNK), an active compound isolated from traditional Chinese medicine Magnolia officinalis, has shown potent anticancer activities. In the present study, we investigated the effects of HNK on breast cancer metastasis in vitro and in vivo, as well as the underlying molecular mechanisms. We showed that HNK (10-70 μmol/L) dose-dependently inhibited the viability of human mammary epithelial tumor cell lines MCF7, MDA-MB-231, and mouse mammary tumor cell line 4T1. In the transwell and scratch migration assays, HNK (10, 20, 30 μmol/L) dose-dependently suppressed the invasion and migration of the breast cancer cells. We demonstrated that HNK (10-50 μmol/L) dose-dependently upregulated the epithelial marker E-cadherin and downregulated the mesenchymal markers such as Snail, Slug, and vimentin at the protein level in breast cancer cells. Using a puromycin incorporation assay, we showed that HNK decreased the Snail translation efficiency in the breast cancer cells. In a mouse model of tumor metastasis, administration of HNK (50 mg/kg every day, intraperitoneal (i.p.), 6 times per week for 30 days) significantly decreased the number of metastatic 4T1 cell-derived nodules and ameliorated the histological alterations in the lungs. In addition, HNK-treated mice showed decreased Snail expression and increased E-cadherin expression in metastatic nodules. In conclusion, HNK inhibits EMT in the breast cancer cells by downregulating Snail and Slug protein expression at the mRNA translation level. HNK has potential as an integrative medicine for combating breast cancer by targeting EMT.
Collapse
|
19
|
Liu M, Qu Y, Teng X, Xing Y, Li D, Li C, Cai L. PADI4‑mediated epithelial‑mesenchymal transition in lung cancer cells. Mol Med Rep 2019; 19:3087-3094. [PMID: 30816464 PMCID: PMC6423585 DOI: 10.3892/mmr.2019.9968] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 02/14/2019] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is a complex disease involving multiple genetic and phenotypic alterations. As a histone modification enzyme, protein-arginine deiminase type-4 (PADI4) and its downstream signaling have been studied in the progression of a variety of types of human cancer, but data on PADI4-mediated posttranslational modification in lung cancer are lacking. The aim of present study was to evaluate the expression of PADI4 and its associated molecular signaling in lung cancer metastasis. The results of the present study indicated that PADI4 was overexpressed in lung cancer cells, while knockdown of PADI4 could lead to attenuation of the lung cancer cell invasion and migration phenotype, which was further verified by determining the epithelial-mesenchymal transition (EMT) marker proteins. Additionally, it was demonstrated that stable knockdown of PADI4 in A549 lung cancer cells resulted in a striking reduction of the EMT-associated Snail1/mothers against decapentaplegic homolog 3/4 transcriptional complex, which was consistent with alterations in migratory and invasive phenotypes of A549 lung cancer cells. Therefore, PADI4-mediated EMT transition is proposed to represent a novel mechanism underlying the epigenetic and phenotypic alterations in lung cancer cells, and the PADI4 associated signaling pathway may be a therapeutic target for treating lung cancer in a clinical setting.
Collapse
Affiliation(s)
- Meiyan Liu
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Yang Qu
- Department of Internal Medicine, The Second Hospital of Heilongjiang Province, Harbin, Heilongjiang 150010, P.R. China
| | - Xue Teng
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Ying Xing
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Dandan Li
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Chunhong Li
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Li Cai
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|
20
|
Li Z, Huang J, Shen S, Ding Z, Luo Q, Chen Z, Lu S. SIRT6 drives epithelial-to-mesenchymal transition and metastasis in non-small cell lung cancer via snail-dependent transrepression of KLF4. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:323. [PMID: 30577808 PMCID: PMC6303940 DOI: 10.1186/s13046-018-0984-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 11/29/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Epithelial-to-mesenchymal transition (EMT) contributes to the invasion and metastasis of epithelial tumors. Sirtuin 6 (SIRT6), an NAD-dependent deacetylase, is known to promote metastasis of non-small cell lung cancer (NSCLC). METHODS In this work, we determined the role of SIRT6 in the EMT of NSCLC cells and identified the key EMT-related genes involved in the oncogenic activity of SIRT6. RESULTS We report that depletion of SIRT6 inhibits transforming growth factor-β1 (TGF-β1)-induced EMT in A549 and H1299 NSCLC cells, which is rescued by ectopic expression of SIRT6. Knockdown of SIRT6 leads to a reduction in Snail protein without affecting the mRNA level. Immunoprecipitation experiments demonstrate a physical association between SIRT6 and Snail. SIRT6 deacetylates Snail and prevents its proteasomal degradation. Silencing of Snail blunts SIRT6-induced NSCLC cell migration and invasion, while overexpression of Snail restores the invasion and EMT in SIRT6-depleted NSCLC cells. SIRT6 depletion leads to an upregulation of kruppel-like factor 4 (KLF4) and reduced Snail binding to the promoter of Klf4 in NSCLC cells. Knockdown of KLF4 rescues the invasive capacity in SIRT6-depleted NSCLC cells. Conversely, co-expression of KLF4 impairs SIRT6-induced aggressive behavior. In vivo data further demonstrate that SIRT6-induced NSCLC metastasis is antagonized by overexpression of KLF4. CONCLUSIONS These findings provide mechanistic insights into the pro-metastatic activity of SIRT6 and highlight the role of the SIRT6/Snail/KLF4 axis in regulating EMT and invasion of NSCLC cells.
Collapse
Affiliation(s)
- Ziming Li
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Huang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shengping Shen
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenping Ding
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qingquan Luo
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhiwei Chen
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|