1
|
Li Y, Yang X, Wang F, Zhao J, Zhang C, Wu D, Yang B, Gao R, Zhao P, Zan Y, Su M, He Z, Liu Y, Wang J, Tang D. Mechanism of action of Asparagus officinalis extract against multiple myeloma using bioinformatics tools, in silico and in vitro study. Front Pharmacol 2023; 14:1076815. [PMID: 37229244 PMCID: PMC10203399 DOI: 10.3389/fphar.2023.1076815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction: Asparagus (Asparagus officinalis) is a perennial flowering plant species. Its main components have tumor-prevention, immune system-enhancement, and anti-inflammation effects. Network pharmacology is a powerful approach that is being applied increasingly to research of herbal medicines. Herb identification, study of compound targets, network construction, and network analysis have been used to elucidate how herbal medicines work. However, the interaction of bioactive substances from asparagus with the targets involved in multiple myeloma (MM) has not been elucidated. We explored the mechanism of action of asparagus in MM through network pharmacology and experimental verification. Methods: The active ingredients and corresponding targets of asparagus were acquired from the Traditional Chinese Medicine System Pharmacology database, followed by identification of MM-related target genes using GeneCards and Online Mendelian Inheritance in Man databases, which were matched with the potential targets of asparagus. Potential targets were identified and a target network of traditional Chinese medicine was constructed. The STRING database and Cytoscape were utilized to create protein-protein interaction (PPI) networks and further screening of core targets. Results: The intersection of target genes and core target genes of the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway was enriched, the top-five core target genes were selected, and the binding affinity of corresponding compounds to the top-five core targets was analyzed using molecular docking. Network pharmacology identified nine active components of asparagus from databases based on oral bioavailability and drug similarity, and predicted 157 potential targets related to asparagus. Enrichment analyses showed that "steroid receptor activity" and the "PI3K/AKT signaling pathway" were the most enriched biological process and signaling pathway, respectively. According to the top-10 core genes and targets of the PPI pathway, AKT1, interleukin (IL)-6, vascular endothelial growth factor (VEGF)A, MYC, and epidermal growth factor receptor (EGFR) were selected for molecular docking. The latter showed that five core targets of the PI3K/AKT signaling pathway could bind to quercetin, among which EGFR, IL-6, and MYC showed strong docking, and the diosgenin ligand could bind to VEGFA. Cell experiments showed that asparagus, through the PI3K/AKT/NF-κB pathway, inhibited the proliferation and migration of MM cells, and caused retardation and apoptosis of MM cells in the G0/G1 phase. Discussion: In this study, the anti-cancer activity of asparagus against MM was demonstrated using network pharmacology, and potential pharmacological mechanisms were inferred using in vitro experimental data.
Collapse
Affiliation(s)
- Yanju Li
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xu Yang
- Clinical Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Feiqing Wang
- Clinical Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin City, China
| | - Jianing Zhao
- Clinical Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Chike Zhang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Dan Wu
- Clinical Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Bo Yang
- Clinical Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Rui Gao
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Peng Zhao
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yun Zan
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Min Su
- Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhixu He
- Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yang Liu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- Clinical Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Dongxin Tang
- Clinical Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| |
Collapse
|
2
|
Lim C, Lee P, Shim S, Jang SW. HS‑1793 inhibits cell proliferation in lung cancer by interfering with the interaction between p53 and MDM2. Oncol Lett 2022; 24:290. [PMID: 35928802 PMCID: PMC9344265 DOI: 10.3892/ol.2022.13410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/16/2022] [Indexed: 12/05/2022] Open
Abstract
The transcription factor or tumor suppressor protein p53 regulates numerous cellular functions, including cell proliferation, invasion, migration, senescence and apoptosis, in various types of cancer. HS-1793 is an analog of resveratrol, which exhibits anti-cancer effects on various types of cancer, including breast, prostate, colon and renal cancer, and multiple myeloma. However, to the best of our knowledge, the role of HS-1793 in lung cancer remains to be examined. The present study aimed to investigate the anti-cancer effect of HS-1793 on lung cancer and to determine its association with p53. The results revealed that HS-1793 reduced cell proliferation in lung cancer and increased p53 stability, thereby elevating the expression levels of the target genes p21 and mouse double minute 2 homolog (MDM2). When the levels of MDM2, a negative regulator of p53, are increased under normal conditions, MDM2 binds and degrades p53; however, HS-1793 inhibited this binding, confirming that p53 protein stability was increased. In conclusion, the findings of the present study provide new evidence that HS-1793 may inhibit lung cancer proliferation by disrupting the p53-MDM2 interaction.
Collapse
Affiliation(s)
- Chungun Lim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138‑736, Republic of Korea
| | - Peter Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138‑736, Republic of Korea
| | - Sungbo Shim
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, North Chungcheong 28644, Republic of Korea
| | - Sung-Wuk Jang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138‑736, Republic of Korea
| |
Collapse
|
3
|
Lind J, Czernilofsky F, Vallet S, Podar K. Emerging protein kinase inhibitors for the treatment of multiple myeloma. Expert Opin Emerg Drugs 2019; 24:133-152. [PMID: 31327278 DOI: 10.1080/14728214.2019.1647165] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Significant advances have been made during the last two decades in terms of new therapeutic options but also of innovative approaches to diagnosis and management of multiple myeloma (MM). While patient survival has been significantly prolonged, most patients relapse. Including the milestone approval of the first kinase inhibitor imatinib mesylate for CML in 2001, 48 small molecule protein kinase (PK) inhibitors have entered clinical practice until now. However, no PK inhibitor has been approved for MM therapy yet. Areas covered: This review article summarizes up-to-date knowledge on the pathophysiologic role of PKs in MM. Derived small molecules targeting receptor tyrosine kinases (RTKs), the Ras/Raf/MEK/MAPK- pathway, the PI3K/Akt/mTOR- pathway as well as Bruton tyrosine kinase (BTK), Aurora kinases (AURK), and cyclin-dependent kinases (CDKs) are most promising. Preclinical as well as early clinical data focusing on these molecules will be presented and critically reviewed. Expert opinion: Current MM therapy is directed against general vulnerabilities. Novel therapeutic strategies, inhibition of PKs in particular, are directed to target tumor-specific driver aberrations such as genetic abnormalities and microenvironment-driven deregulations. Results of ongoing Precision Medicine trials with PK inhibitors alone or in combination with other agents are eagerly awaited and hold the promise of once more improving MM patient outcome.
Collapse
Affiliation(s)
- Judith Lind
- Department of Internal Medicine II, University Hospital Krems, Karl Landsteiner University of Health Sciences , Krems an der Donau , Austria
| | - Felix Czernilofsky
- Department of Internal Medicine II, University Hospital Krems, Karl Landsteiner University of Health Sciences , Krems an der Donau , Austria
| | - Sonia Vallet
- Department of Internal Medicine II, University Hospital Krems, Karl Landsteiner University of Health Sciences , Krems an der Donau , Austria
| | - Klaus Podar
- Department of Internal Medicine II, University Hospital Krems, Karl Landsteiner University of Health Sciences , Krems an der Donau , Austria
| |
Collapse
|
4
|
Feng J, Xie G, Zhan Y, Lu J, Xu L, Fan S, Wang W. Elevated HSP90 associates with expression of HIF‐1α and p‐AKT and is predictive of poor prognosis in nasopharyngeal carcinoma. Histopathology 2019; 75:202-212. [PMID: 30882922 DOI: 10.1111/his.13862] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Juan Feng
- Department of Pathology The Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Guiyuan Xie
- Department of Oncology The Second Xiangya Hospital of Central South University Changsha Hunan China
| | - Yuting Zhan
- Department of Pathology The Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Junmi Lu
- Department of Pathology The Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Lina Xu
- Department of Pathology The Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Songqing Fan
- Department of Pathology The Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Weiyuan Wang
- Department of Pathology The Second Xiangya Hospital, Central South University Changsha Hunan China
| |
Collapse
|