1
|
Diagnostics of HNSCC Patients: An Analysis of Cell Lines and Patient-Derived Xenograft Models for Personalized Therapeutical Medicine. Diagnostics (Basel) 2022; 12:diagnostics12051071. [PMID: 35626227 PMCID: PMC9139588 DOI: 10.3390/diagnostics12051071] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/11/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) are very frequent worldwide, and smoking and chronic alcohol use are recognized as the main risk factors. For oropharyngeal cancers, HPV 16 infection is known to be a risk factor as well. By employing next-generation sequencing, both HPV-positive and negative HNSCC patients were detected as positive for PI3K mutation, which was considered an optimal molecular target. We analyzed scientific literature published in the last 5 years regarding the newly available diagnostic platform for targeted therapy of HNSCC HPV+/−, using HNSCC-derived cell lines cultures and HNSCC pdx (patient-derived xenografts). The research results are promising and require optimal implementation in the management of HNSCC patients.
Collapse
|
2
|
Combinatorial approaches targeting the EGFR family and c-Met in SCCHN. Oral Oncol 2020; 112:105074. [PMID: 33142224 DOI: 10.1016/j.oraloncology.2020.105074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/23/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE We aimed to develop novel combinations of inhibitors targeting EGFR family members and c-Met for the treatment of recurrent SCCHN. MATERIALS AND METHODS Three different c-Met inhibitors in combination with a pan-HER inhibitor (crizotinib/afatinib, tivantinib/afatinib and cabozantinib/afatinib) were investigated for their anti-tumor effects on SCCHN cell lines in vitro. In vivo activity of the combinations was tested in SCCHN cell line xenografts and patient-derived xenograft (PDX) animal models generated from patients with recurrent SCCHN. RESULTS Western blot assay indicated that activation of EGFR, HER2, HER3, and c-Met was blocked by all three combinations and the downstream PI3K/AKT and ERK signaling pathways were inhibited. Sulforhodamine B colorimetric assay revealed SCCHN cell growth was more effectively inhibited by the combinations than by single agents, particularly in cell lines with high c-Met expression. Furthermore, the combinations were more potent in inducing apoptosis than each of the single agents. In the PDX models, the combination treatments exhibited significantly better efficacy in tumor growth inhibition compared to the respective single agents. CONCLUSION In conclusion, we demonstrated that the simultaneous targeting of EGFR, HER2, and c-Met is more effective than the individual inhibition of these targets in vitro and in SCCHN cell line xenograft and PDX models. Our findings pave the way for further clinical investigation of such combinations in SCCHN.
Collapse
|
3
|
Organotypic Co-Cultures as a Novel 3D Model for Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12082330. [PMID: 32824777 PMCID: PMC7463661 DOI: 10.3390/cancers12082330] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/09/2020] [Accepted: 08/14/2020] [Indexed: 01/09/2023] Open
Abstract
Background: Head and neck squamous cell carcinomas (HNSCC) are phenotypically and molecularly heterogeneous and frequently develop therapy resistance. Reliable patient-derived 3D tumor models are urgently needed to further study the complex pathogenesis of these tumors and to overcome treatment failure. Methods: We developed a three-dimensional organotypic co-culture (3D-OTC) model for HNSCC that maintains the architecture and cell composition of the individual tumor. A dermal equivalent (DE), composed of healthy human-derived fibroblasts and viscose fibers, served as a scaffold for the patient sample. DEs were co-cultivated with 13 vital HNSCC explants (non-human papillomavirus (HPV) driven, n = 7; HPV-driven, n = 6). Fractionated irradiation was applied to 5 samples (non-HPV-driven, n = 2; HPV-driven n = 3). To evaluate expression of ki-67, cleaved caspase-3, pan-cytokeratin, p16INK4a, CD45, ∝smooth muscle actin and vimentin over time, immunohistochemistry and immunofluorescence staining were performed Patient checkup data were collected for up to 32 months after first diagnosis. Results: All non-HPV-driven 3D-OTCs encompassed proliferative cancer cells during cultivation for up to 21 days. Proliferation indices of primaries and 3D-OTCs were comparable and consistent over time. Overall, tumor explants displayed heterogeneous growth patterns (i.e., invasive, expansive, silent). Cancer-associated fibroblasts and leukocytes could be detected for up to 21 days. HPV DNA was detectable in both primary and 3D-OTCs (day 14) of HPV-driven tumors. However, p16INK4a expression levels were varying. Morphological alterations and radioresistant tumor cells were detected in 3D-OTC after fractionated irradiation in HPV-driven and non-driven samples. Conclusions: Our 3D-OTC model for HNSCC supports cancer cell survival and proliferation in their original microenvironment. The model enables investigation of invasive cancer growth and might, in the future, serve as a platform to perform sensitivity testing upon treatment to predict therapy response.
Collapse
|
4
|
Chen Q, Wei T, Wang J, Zhang Q, Li J, Zhang J, Ni L, Wang Y, Bai X, Liang T. Patient-derived xenograft model engraftment predicts poor prognosis after surgery in patients with pancreatic cancer. Pancreatology 2020; 20:485-492. [PMID: 32113935 DOI: 10.1016/j.pan.2020.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To establish and evaluate a first generation patient-derived xenograft (PDX) model in nude mice using tumors resected from pancreatic cancer (PC) patients for the identification of key factors that influence xenograft success and prediction of patient prognosis. METHODS Primary tumor samples harvested from PC patients who underwent curative resection between May 2016 and April 2018 at our hospital were xenografted into nude mice. Tumor size was evaluated for 2 months. Patients' baseline characteristics and follow-up data were analyzed. RESULTS Tumor xenograft models were generated from 67 patients; 30 (44.8%) were successful and 37 (55.2%) failed. Xenograft models could recapitulate the pathology and genetic information of the primary tumors. Univariate analysis identified tumor engraftment, post-operation CA19-9, tumor size, lymph node status, and lymphovascular invasion as significant predictors (P=0.000, 0.023, 0.004, 0.035 and 0.005, respectively) of disease-free survival (DFS). Multivariate Cox regression analysis confirmed tumor engraftment, tumor size and lymphovascular invasion function as independent risk factors for DFS (P=0.000, 0.039 and 0.025, respectively). The hazard ratio of tumor engraftment for DFS was 0.239 (95% confidence interval, 0.109 to 0.524). Kaplan-Meier analysis of DFS indicated an unfavorable outcome in the engraftment group compared to that in the failed engraftment group (6.2 vs. 12.2 months, log rank P=0.000). CONCLUSION The pathology and genetic information of primary PC tumors are recapitulated in the PDX tumor model in nude mice. Furthermore, engraftment success is an effective predictor of disease recurrence in patients after surgery.
Collapse
Affiliation(s)
- Qi Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, 310003, China; Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310003, China
| | - Tao Wei
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, 310003, China; Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310003, China
| | - Jianxin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, 310003, China; Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310003, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, 310003, China; Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310003, China
| | - Jin Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, 310003, China; Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310003, China
| | - Jingying Zhang
- Department of General Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Lei Ni
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, 310003, China; Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310003, China
| | - Yi Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, 310003, China; Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310003, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, 310003, China; Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310003, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, 310003, China; Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310003, China.
| |
Collapse
|
5
|
Zhang L, Zhou J, Yan Y, Zhou X, Zhou Q, Du R, Hu S, Ge W, Huang Y, Xu H, Kong Y, Zheng H, Ding Y, Shen Y, Wang W. Excipient-free nanodispersion of 7-ethyl-10-hydroxycamptothecin exerts potent therapeutic effects against pancreatic cancer cell lines and patient-derived xenografts. Cancer Lett 2019; 465:36-44. [PMID: 31479691 DOI: 10.1016/j.canlet.2019.08.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 01/28/2023]
Abstract
Irinotecan (CPT-11) is an anti-tumor drug and formulated as nanomedicines to reduce side effects and improve efficacy. In vivo, CPT-11 must be hydrolyzed by carboxylesterase to its active form 7-ethyl-10-hydroxycamptothecin (SN-38) to exert anti-tumor activity, but the lack of this enzyme in humans causes inefficient generation of SN-38. Thus, direct delivery of SN-38, not relying on carboxylesterase, will potentially achieve higher efficacy. However, it is difficult to effectively formulate SN-38 using current excipients due to its hydrophobicity and tendency to crystallize. Herein, we report the nanodispersion of SN-38 with its amphiphilic prodrug, CPT-11, as an effective treatment for pancreatic cancer (PC). SN-38 and CPT-11 formed stable nanoparticles without any other excipients, and showed potent cytotoxicity against PC cells in vitro, slowed tumor growth in vivo, namely subcutaneously and orthotopically xenografted mice, with minimal adverse effects, and prolonged their overall survival. Even in clinically-relevant patient-derived xenograft (PDX) models, the nanodispersion showed greater anti-tumor efficacy than CPT-11. Importantly, the nanodispersion directly released SN-38, resulting in carboxylesterase-independent anti-tumor activity, in contrast to carboxylesterase-dependent CPT-11. These characteristics may enable the excipient-free nanodispersion to exert potent therapeutic effects in patients.
Collapse
Affiliation(s)
- Linshi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Jiarong Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Yingcai Yan
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Xiaohu Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Quan Zhou
- Center for Bio-nanoengineering, Key Laboratory of Biomass Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Rong Du
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, United States
| | - Wenhao Ge
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Yu Huang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Hao Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Yang Kong
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Huilin Zheng
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Diseases of Zhejiang University, Hangzhou, Zhejiang, 310009, China; Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Diseases of Zhejiang University, Hangzhou, Zhejiang, 310009, China; Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Youqing Shen
- Center for Bio-nanoengineering, Key Laboratory of Biomass Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Diseases of Zhejiang University, Hangzhou, Zhejiang, 310009, China; Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
6
|
Liu Y, Wang X, Zeng S, Zhang X, Zhao J, Zhang X, Chen X, Yang W, Yang Y, Dong Z, Zhu J, Xu X, Tian F. The natural polyphenol curcumin induces apoptosis by suppressing STAT3 signaling in esophageal squamous cell carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:303. [PMID: 30518397 PMCID: PMC6280482 DOI: 10.1186/s13046-018-0959-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022]
Abstract
Background We and others have previously shown that the STAT3 signaling pathway is activated in some esophageal squamous cell carcinoma (ESCC) cells and is required for the survival and growth of these primary ESCC-derived xenografts. It has also been shown that the natural polyphenol curcumin is an effective anti-tumor agent. Methods Luciferase assay and immunoblotting were performed to examine whether curcumin suppressed STAT3 signaling. CCK-8 assay and xenografts were utilized for analyzing ESCC cell growth in culture and mice. Soft agar assay was carried out to determine the colony formation ability of ESCC cells in the presence or absence of curcumin. Cell death and cell cycle were assessed by In CELL Analyzer 2000. Immunohistochemistry and TUNEL assay were used for detecting apoptosis in ESCC tisuses. Molecular docking was performed to evaluate the interaction of curcumin with JAK2. JAK2 activity was assessed using an in vitro cell-free system. HE staining was used to evaluate the ESCC tissues. Results The natural polyphenol curcumin inhibited STAT3 phosphorylation rapidly and blocked STAT3-mediated signaling in ESCC cells. It also induced growth arrest and apoptosis in cultured ESCC cells, which were attenuated by enforced expression of STAT3. Furthermore, curcumin preferentially blocked the growth of primary ESCC-derived xenografts that harbored activated STAT3. Conclusions Curcumin is able to exert anti-tumor action through inhibiting the STAT3 signaling pathway. Giving its wide use in traditional medicines with low toxicity and few adverse reactions, it is conceivable that curcumin might be further explored as a unique STAT3 inhibitor for anti-cancer therapies.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, 450001, People's Republic of China.,Clinical Research Center, People's Hospital of Zhengzhou, Zhengzhou, Henan, 450001, People's Republic of China
| | - Xinhua Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Shuang Zeng
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, 450001, People's Republic of China
| | - Xiane Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, 450001, People's Republic of China
| | - Jimin Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, 450001, People's Republic of China
| | - Xiaoyan Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, 450001, People's Republic of China
| | - Xinhuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, 450001, People's Republic of China
| | - Wanjing Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yili Yang
- Suzhou Institute of Systems Medicine, Center for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Ziming Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, 450001, People's Republic of China
| | - Jingyu Zhu
- School of Medicine and Pharmaceutics, Jiangnan University, Wuxi, Jiangsu, 214000, People's Republic of China
| | - Xin Xu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China. .,Suzhou Institute of Systems Medicine, Center for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, Jiangsu, 215123, People's Republic of China.
| | - Fang Tian
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China. .,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, 450001, People's Republic of China.
| |
Collapse
|
7
|
Wang Z, Fu S, Zhao J, Zhao W, Shen Z, Wang D, Duan J, Bai H, Wan R, Yu J, Wang S, Chen H, Chen B, Wang L, Wang J. Transbronchoscopic patient biopsy-derived xenografts as a preclinical model to explore chemorefractory-associated pathways and biomarkers for small-cell lung cancer. Cancer Lett 2018; 440-441:180-188. [PMID: 30347283 DOI: 10.1016/j.canlet.2018.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/29/2018] [Accepted: 10/08/2018] [Indexed: 12/28/2022]
Abstract
Insufficient tumor tissue is a major barrier for cancer biology research in small-cell lung cancer (SCLC) and has driven the development of patient-derived xenografts (PDXs) from biopsy tumor tissues. Here, we utilized transbronchoscopic biopsy specimens from SCLC tumors to establish PDXs and evaluated the genomic profile using next-generation sequencing and an RNA sequencing platform. The PDX establishment rate was 54.1% (40/74). PDXs largely recapitulated the major characteristics of their corresponding primary tumors, such as histopathology, genetic profile, and chemo-responsiveness. Compared with chemosensitive (chemo-S) PDXs, chemorefractory (chemo-R) PDXs demonstrated significant gene aberrances in the mitogen-activated protein kinase (MAPK) pathway and a higher frequency of receptor tyrosine kinase (RTK)-related genes. Phosphorylated ERK (pERK) was associated with chemo-R status. Patients with positive pERK expression demonstrated significantly inferior progression-free survival after first-line chemotherapy compared with that of patients who were negative for pERK (p < 0.001). Collectively, transbronchoscopic biopsy SCLC PDXs can serve as a model for genomic profiling and identifying biomarkers predictive of chemo-R status. Using PDXs, RTK-related gene aberrances and pERK expression were found to be associated with chemo-R SCLC.
Collapse
Affiliation(s)
- Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuai Fu
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong University, Jinan, China
| | - Jun Zhao
- Department of Thoracic Medical Oncology, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing, China
| | - Wei Zhao
- Department of Cell Biology, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhirong Shen
- The BeiGene Pharmaceutical Co. Ltd., Zhongguancun Life Science Park, Beijing, China
| | - Di Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jianchun Duan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hua Bai
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Rui Wan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiangyong Yu
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuhang Wang
- GCP Center, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hanxiao Chen
- Department of Thoracic Medical Oncology, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing, China
| | - Bolu Chen
- CATS Academy Boston, 2001 Washington Street, Braintree, MA, 02184, USA
| | - Lai Wang
- The BeiGene Pharmaceutical Co. Ltd., Zhongguancun Life Science Park, Beijing, China
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|