1
|
Tang S, Chen F, Zhang J, Chang F, Lv Z, Li K, Li S, Hu Y, Yeh S. LncRNA-SERB promotes vasculogenic mimicry (VM) formation and tumor metastasis in renal cell carcinoma. J Biol Chem 2024; 300:107297. [PMID: 38641065 PMCID: PMC11126803 DOI: 10.1016/j.jbc.2024.107297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/03/2024] [Accepted: 03/31/2024] [Indexed: 04/21/2024] Open
Abstract
A growing body of evidence shows that vasculogenic mimicry (VM) is closely related to the invasion and metastasis of many tumor cells. Although the estrogen receptor (ER) can promote initiation and progression of renal cell carcinoma (RCC), how the downstream biomolecules are involved, and the detailed mechanisms of how ER expression is elevated in RCC remain to be further elucidated. Here, we discovered that long noncoding RNA (LncRNA)-SERB is highly expressed in tumor cells of RCC patients. We used multiple RCC cells and an in vivo mouse model for our study, and results indicated that LncRNA-SERB could boost RCC VM formation and cell invasion in vitro and in vivo. Although a previous report showed that ERβ can affect the VM formation in RCC, it is unclear which factor could upregulate ERβ. This is the first study to show LncRNA-SERB can be the upstream regulator of ERβ to control RCC progression. Mechanistically, LncRNA-SERB may increase ERβ via binding to the promoter area, and ERβ functions through transcriptional regulation of zinc finger E-box binding homeobox 1 (ZEB1) to regulate VM formation. These results suggest that LncRNA-SERB promotes RCC cell VM formation and invasion by upregulating the ERβ/ZEB1 axis and that therapeutic targeting of this newly identified pathway may better inhibit RCC progression.
Collapse
MESH Headings
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Humans
- Kidney Neoplasms/pathology
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/genetics
- Animals
- Mice
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Gene Expression Regulation, Neoplastic
- Estrogen Receptor beta/metabolism
- Estrogen Receptor beta/genetics
- Cell Line, Tumor
- Zinc Finger E-box-Binding Homeobox 1/metabolism
- Zinc Finger E-box-Binding Homeobox 1/genetics
- Neoplasm Metastasis
- Mice, Nude
- Male
- Female
- Neoplasm Invasiveness
Collapse
Affiliation(s)
- Shuai Tang
- College of Medicine, Nankai University, Tianjin, China; Department of Urology, Nankai University Affinity The Third Central Hospital, Tianjin, China; Department of Urology, The Third Central Hospital of Tianjin, Tianjin, China; Departments of Urology, Pathology, and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Fangmin Chen
- College of Medicine, Nankai University, Tianjin, China; Department of Urology, Nankai University Affinity The Third Central Hospital, Tianjin, China; Department of Urology, The Third Central Hospital of Tianjin, Tianjin, China.
| | - Jianghui Zhang
- Department of Urology, Nankai University Affinity The Third Central Hospital, Tianjin, China; Department of Urology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Fan Chang
- Department of Urology, Nankai University Affinity The Third Central Hospital, Tianjin, China; Department of Urology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Zheng Lv
- Department of Urology, Nankai University Affinity The Third Central Hospital, Tianjin, China; Department of Urology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Kai Li
- Department of Urology, Nankai University Affinity The Third Central Hospital, Tianjin, China; Department of Urology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Song Li
- Department of Urology, Nankai University Affinity The Third Central Hospital, Tianjin, China; Department of Urology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Yixi Hu
- Departments of Urology, Pathology, and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Shuyuan Yeh
- Departments of Urology, Pathology, and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA; The Sex Hormone Research Center and Department of Urology, China Medical University/Hospital, Taichung, Taiwan.
| |
Collapse
|
2
|
Gocuk SA, Jolly JK, Edwards TL, Ayton LN. Female carriers of X-linked inherited retinal diseases - Genetics, diagnosis, and potential therapies. Prog Retin Eye Res 2023; 96:101190. [PMID: 37406879 DOI: 10.1016/j.preteyeres.2023.101190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023]
Abstract
Inherited retinal diseases (IRDs) are a group of heterogeneous conditions that cause progressive vision loss, typically due to monogenic mutations. Female carriers of X-linked IRDs have a single copy of the disease-causing gene, and therefore, may exhibit variable clinical signs that vary from near normal retina to severe disease and vision loss. The relationships between individual genetic mutations and disease severity in X-linked carriers requires further study. This review summarises the current literature surrounding the spectrum of disease seen in female carriers of choroideremia and X-linked retinitis pigmentosa. Various classification systems are contrasted to accurately grade retinal disease. Furthermore, genetic mechanisms at the early embryonic stage are explored to potentially explain the variability of disease seen in female carriers. Future research in this area will provide insight into the association between genotype and retinal phenotypes of female carriers, which will guide in the management of these patients. This review acknowledges the importance of identifying which patients may be at high risk of developing severe symptoms, and therefore should be considered for emerging treatments, such as retinal gene therapy.
Collapse
Affiliation(s)
- Sena A Gocuk
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Victoria, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jasleen K Jolly
- Vision and Eye Research Institute, Anglia Ruskin University, Cambridge, UK
| | - Thomas L Edwards
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| | - Lauren N Ayton
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Victoria, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
3
|
Dwivedi NV, Datta S, El-Kersh K, Sadikot RT, Ganti AK, Batra SK, Jain M. GPCRs and fibroblast heterogeneity in fibroblast-associated diseases. FASEB J 2023; 37:e23101. [PMID: 37486603 PMCID: PMC10916681 DOI: 10.1096/fj.202301091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest and most diverse class of signaling receptors. GPCRs regulate many functions in the human body and have earned the title of "most targeted receptors". About one-third of the commercially available drugs for various diseases target the GPCRs. Fibroblasts lay the architectural skeleton of the body, and play a key role in supporting the growth, maintenance, and repair of almost all tissues by responding to the cellular cues via diverse and intricate GPCR signaling pathways. This review discusses the dynamic architecture of the GPCRs and their intertwined signaling in pathological conditions such as idiopathic pulmonary fibrosis, cardiac fibrosis, pancreatic fibrosis, hepatic fibrosis, and cancer as opposed to the GPCR signaling of fibroblasts in physiological conditions. Understanding the dynamics of GPCR signaling in fibroblasts with disease progression can help in the recognition of the complex interplay of different GPCR subtypes in fibroblast-mediated diseases. This review highlights the importance of designing and adaptation of next-generation strategies such as GPCR-omics, focused target identification, polypharmacology, and effective personalized medicine approaches to achieve better therapeutic outcomes for fibrosis and fibrosis associated malignancies.
Collapse
Affiliation(s)
- Nidhi V Dwivedi
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Souvik Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Karim El-Kersh
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ruxana T Sadikot
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- VA Nebraska Western Iowa Health Care System
| | - Apar K. Ganti
- VA Nebraska Western Iowa Health Care System
- Division of Oncology and Hematology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
4
|
Zheng D, Bashir M, Li Z. ERα prevents tumorigenesis of both liver and breast cancer cells through CCN5. Biochem Biophys Res Commun 2023; 672:103-112. [PMID: 37343316 DOI: 10.1016/j.bbrc.2023.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/29/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023]
Abstract
Estrogen receptor alpha (ERα)-mediated estrogen signaling has also shown to prevent hepatic tumorigenesis in mice. Consistent with this, hormone replacement therapy with estrogen supplementation dramatically reduced the risk of hepatocellular carcinoma. Silencing of ERα is also a key event for the transformation of ERα-positive breast cancer cells into malignant triple-negative breast cancer cells. However, the mechanisms underlying ERα-mediated prevention of both hepatic and mammary tumorigenesis in humans are still unclear. Here, we present a functional genomics study of ERα targeting by comparing human liver cancer cells with human breast cancer cells using "loss or gain of function" genetic assays of ERα in vitro and in vivo. We discover that cellular communication network factor 5 (CCN5) is a direct downstream target of ERα; ERα suppresses growth and prevents tumorigenesis and malignant transformation of both liver and breast cancer cells through CCN5 in humans. The ERα-CCN5 regulatory axis functions as suppressors for both hepatic and mammary tumors, which is a common mechanism of preventing tumorigenesis for both liver cancer and breast cancer in humans.
Collapse
Affiliation(s)
- Daoshan Zheng
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, No. 1 Xuefu North Road, University Town, Fuzhou, Fujian Province, 350112, China
| | - Muniba Bashir
- School of Biomedical Sciences, University of Western Australia, QE II, M Block 225C, Crawley, WA, 6009, Australia
| | - Zhaoyu Li
- School of Biomedical Sciences, University of Western Australia, QE II, M Block 225C, Crawley, WA, 6009, Australia.
| |
Collapse
|
5
|
Leo J, Dondossola E, Basham KJ, Wilson NR, Alhalabi O, Gao J, Kurnit KC, White MG, McQuade JL, Westin SN, Wellberg EA, Frigo DE. Stranger Things: New Roles and Opportunities for Androgen Receptor in Oncology Beyond Prostate Cancer. Endocrinology 2023; 164:bqad071. [PMID: 37154098 PMCID: PMC10413436 DOI: 10.1210/endocr/bqad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
The androgen receptor (AR) is one of the oldest therapeutic targets in oncology and continues to dominate the treatment landscape for advanced prostate cancer, where nearly all treatment regimens include some form of AR modulation. In this regard, AR remains the central driver of prostate cancer cell biology. Emerging preclinical and clinical data implicate key roles for AR in additional cancer types, thereby expanding the importance of this drug target beyond prostate cancer. In this mini-review, new roles for AR in other cancer types are discussed as well as their potential for treatment with AR-targeted agents. Our understanding of these additional functions for AR in oncology expand this receptor's potential as a therapeutic target and will help guide the development of new treatment approaches.
Collapse
Affiliation(s)
- Javier Leo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Eleonora Dondossola
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kaitlin J Basham
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Nathaniel R Wilson
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Omar Alhalabi
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Katherine C Kurnit
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, The University of Chicago, Chicago, IL 60637, USA
| | - Michael G White
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer L McQuade
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elizabeth A Wellberg
- Department of Pathology, Harold Hamm Diabetes Center, and Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX 77204, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
6
|
Hases L, Birgersson M, Indukuri R, Archer A, Williams C. Colitis Induces Sex-Specific Intestinal Transcriptomic Responses in Mice. Int J Mol Sci 2022; 23:ijms231810408. [PMID: 36142324 PMCID: PMC9499483 DOI: 10.3390/ijms231810408] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/26/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
There are significant sex differences in colorectal cancer (CRC), including in incidence, onset, and molecular characteristics. Further, while inflammatory bowel disease (IBD) is a risk factor for CRC in both sexes, men with IBD have a 60% higher risk of developing CRC compared to women. In this study, we investigated sex differences during colitis-associated CRC (CAC) using a chemically induced CAC mouse model. The mice were treated with azoxymethane (AOM) and dextran sodium sulfate (DSS) and followed for 9 and 15 weeks. We performed RNA-sequencing of colon samples from males (n = 15) and females (n = 15) to study different stages of inflammation and identify corresponding transcriptomic sex differences in non-tumor colon tissue. We found a significant transcriptome response to AOM/DSS treatment in both sexes, including in pathways related to inflammation and cell proliferation. Notably, we found a stronger response in males and that male-specific differentially expressed genes were involved in NFκB signaling and circadian rhythm. Further, an overrepresented proportion of male-specific gene regulations were predicted to be targets of Stat3, whereas for females, targets of the glucocorticoid receptor (Gr/Nr3c1) were overrepresented. At 15 weeks, the most apparent sex difference involved genes with functions in T cell proliferation, followed by the regulation of demethylases. The majority of sex differences were thus related to inflammation and the immune system. Our novel data, profiling the transcriptomic response to chemically induced colitis and CAC, indicate clear sex differences in CRC initiation and progression.
Collapse
Affiliation(s)
- Linnea Hases
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 171 21 Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - Madeleine Birgersson
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 171 21 Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - Rajitha Indukuri
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 171 21 Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - Amena Archer
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 171 21 Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - Cecilia Williams
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 171 21 Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden
- Correspondence:
| |
Collapse
|
7
|
Giovannelli P, Ramaraj P, Williams C. Editorial: Role of Sex Steroids and Their Receptor in Cancers. Front Endocrinol (Lausanne) 2022; 13:883229. [PMID: 35464052 PMCID: PMC9018976 DOI: 10.3389/fendo.2022.883229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Pia Giovannelli
- Department of Precision Medicine, University of Campania “L.Vanvitelli”, Naples, Italy
- *Correspondence: Pia Giovannelli,
| | - Pandurangan Ramaraj
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO, United States
| | - Cecilia Williams
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
8
|
ERβ and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:213-225. [DOI: 10.1007/978-3-031-11836-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Hormone-Dependent Tumors and Sexuality in the Neuro-Oncology of Women (N.O.W.): Women's Brain Tumors, Gaps in Sexuality Considerations, and a Need for Evidence-Based Guidelines. Curr Oncol Rep 2021; 23:127. [PMID: 34453233 DOI: 10.1007/s11912-021-01115-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW While females make up almost 60% of all brain and spinal cord tumors in adults, guidelines that address women's issues in neuro-oncology are lacking. This review sheds light on two common women's issues in neuro-oncology. RECENT FINDINGS Neuro-oncology providers are often faced with patient questions about fertility and pregnancy maintenance or prevention and typically respond with generic cancer chemotherapy recommendations, based on the paucity of evidence on the use of common neuro-oncology chemotherapies and pregnancy. While these remain important gap issues, there are several other poorly researched issues in the Neuro-Oncology of Women (N.O.W.) including recommendations around endogenous and iatrogenic hormone exposure and female sexuality in cancer. As a significant percentage of cancers are hormone-dependent, it is important to understand how changes in hormone levels impact tumor biology over the course of a woman's lifespan. Furthermore, greater attention should be given to the impact of tumors and tumor treatments on female sexuality. This article is intended to serve as an introduction to these two specific subjects within the vast expanse of N.O.W. subject matter.
Collapse
|
10
|
Tricarico R, Nicolas E, Hall MJ, Golemis EA. X- and Y-Linked Chromatin-Modifying Genes as Regulators of Sex-Specific Cancer Incidence and Prognosis. Clin Cancer Res 2020; 26:5567-5578. [PMID: 32732223 DOI: 10.1158/1078-0432.ccr-20-1741] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/24/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022]
Abstract
Biological sex profoundly conditions organismal development and physiology, imposing wide-ranging effects on cell signaling, metabolism, and immune response. These effects arise from sex-specified differences in hormonal exposure, and from intrinsic genetic and epigenetic differences associated with the presence of an XX versus XY chromosomal complement. In addition, biological sex is now recognized to be a determinant of the incidence, presentation, and therapeutic response of multiple forms of cancer, including cancers not specifically associated with male or female anatomy. Although multiple factors contribute to sex-based differences in cancer, a growing body of research emphasizes a role for differential activity of X- and Y-linked tumor-suppressor genes in males and females. Among these, the X-linked KDM6A/UTX and KDM5C/JARID1C/SMCX, and their Y-linked paralogs UTY/KDM6C and KDM5D/JARID1D/SMCY encode lysine demethylases. These epigenetic modulators profoundly influence gene expression, based on enzymatic activity in demethylating H3K27me3 and H3K4me3, and nonenzymatic scaffolding roles for large complexes that open and close chromatin for transcription. In a growing number of cases, mutations affecting these proteins have been recognized to strongly influence cancer risk, prognosis, and response to specific therapies. However, sex-specific patterns of mutation, expression, and activity of these genes, coupled with tissue-specific requirement for their function as tumor suppressors, together exemplify the complex relationship between sex and cancer vulnerabilities. In this review, we summarize and discuss the current state of the literature on the roles of these proteins in contributing to sex bias in cancer, and the status of clinical agents relevant to their function.
Collapse
Affiliation(s)
- Rossella Tricarico
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania. .,Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Emmanuelle Nicolas
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Michael J Hall
- Cancer Prevention and Control Program, Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
11
|
Zhang P, Yang Y, Qian K, Li L, Zhang C, Fu X, Zhang X, Chen H, Liu Q, Cao S, Cui J. A novel tumor suppressor ZBTB1 regulates tamoxifen resistance and aerobic glycolysis through suppressing HER2 expression in breast cancer. J Biol Chem 2020; 295:14140-14152. [PMID: 32690611 DOI: 10.1074/jbc.ra119.010759] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 07/07/2020] [Indexed: 12/18/2022] Open
Abstract
Transcriptional repressor zinc finger and BTB domain containing 1 (ZBTB1) is required for DNA repair. Because DNA repair defects often underlie genome instability and tumorigenesis, we determined to study the role of ZBTB1 in cancer. In this study, we found that ZBTB1 is down-regulated in breast cancer and this down-regulation is associated with poor outcome of breast cancer patients. ZBTB1 suppresses breast cancer cell proliferation and tumor growth. The majority of breast cancers are estrogen receptor (ER) positive and selective estrogen receptor modulators such as tamoxifen have been widely used in the treatment of these patients. Unfortunately, many patients develop resistance to endocrine therapy. Tamoxifen-resistant cancer cells often exhibit higher HER2 expression and an increase of glycolysis. Our data revealed that ZBTB1 plays a critical role in tamoxifen resistance in vitro and in vivo To see if ZBTB1 regulates HER2 expression, we tested the recruitments of ZBTB1 on HER2 regulatory sequences. We observed that over-expressed ZBTB1 occupies the estrogen receptor α (ERα)-binding site of the HER2 intron in tamoxifen-resistant cells, suppressing tamoxifen-induced transcription. In an effort to identify potential microRNAs (miRNAs) regulating ZBTB1, we found that miR-23b-3p directly targets ZBTB1. MiR-23b-3p regulates HER2 expression and tamoxifen resistance via targeting ZBTB1. Finally, we found that miR-23b-3p/ZBTB1 regulates aerobic glycolysis in tamoxifen-resistant cells. Together, our data demonstrate that ZBTB1 is a tumor suppressor in breast cancer cells and that targeting the miR-23b-3p/ZBTB1 may serve as a potential therapeutic approach for the treatment of tamoxifen resistant breast cancer.
Collapse
Affiliation(s)
- Panhong Zhang
- The Center for Translational Medicine, Yichun University, Yichun, Jiangxi, P.R. China
| | - Yutao Yang
- Department of Neurobiology, Capital Medical University, Beijing, P.R. China
| | - Kai Qian
- The Center for Translational Medicine, Yichun University, Yichun, Jiangxi, P.R. China
| | - Lianlian Li
- The Center for Translational Medicine, Yichun University, Yichun, Jiangxi, P.R. China
| | - Cuiping Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Xiaoyi Fu
- The Center for Translational Medicine, Yichun University, Yichun, Jiangxi, P.R. China.,Department of Pathology, 2nd Affiliated Hospital, Yichun University, Yichun, Jiangxi, P.R. China
| | - Xiumei Zhang
- The Center for Translational Medicine, Yichun University, Yichun, Jiangxi, P.R. China
| | - Huan Chen
- Department of Pathology, The 1st affiliated Hospital, Yichun University, Yichun, Jiangxi, P.R. China
| | - Qiongqing Liu
- The Center for Translational Medicine, Yichun University, Yichun, Jiangxi, P.R. China
| | - Shengnan Cao
- The Center for Translational Medicine, Yichun University, Yichun, Jiangxi, P.R. China
| | - Jiajun Cui
- The Center for Translational Medicine, Yichun University, Yichun, Jiangxi, P.R. China
| |
Collapse
|
12
|
Ben-Batalla I, Vargas-Delgado ME, von Amsberg G, Janning M, Loges S. Influence of Androgens on Immunity to Self and Foreign: Effects on Immunity and Cancer. Front Immunol 2020; 11:1184. [PMID: 32714315 PMCID: PMC7346249 DOI: 10.3389/fimmu.2020.01184] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
It is well-known that sex hormones can directly and indirectly influence immune cell function. Different studies support a suppressive role of androgens on different components of the immune system by decreasing antibody production, T cell proliferation, NK cytotoxicity, and stimulating the production of anti-inflammatory cytokines. Androgen receptors have also been detected in many different cells of hematopoietic origin leading to direct effects of their ligands on the development and function of the immune system. The immunosuppressive properties of androgens could contribute to gender dimorphisms in autoimmune and infectious disease and thereby also hamper immune surveillance of tumors. Consistently, females generally are more prone to autoimmunity, while relatively less susceptible to infections, and have lower incidence and mortality of the majority of cancers compared to males. Some studies show that androgen deprivation therapy (ADT) can induce expansion of naïve T cells and increase T-cell responses. Emerging clinical data also reveal that ADT might enhance the efficacy of various immunotherapies including immune checkpoint blockade. In this review, we will discuss the potential role of androgens and their receptors in the immune responses in the context of different diseases. A particular focus will be on cancer, highlighting the effect of androgens on immune surveillance, tumor biology and on the efficacy of anti-cancer therapies including emerging immune therapies.
Collapse
Affiliation(s)
- Isabel Ben-Batalla
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - María Elena Vargas-Delgado
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gunhild von Amsberg
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melanie Janning
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Division of Personalized Medical Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Personalized Oncology, University Hospital Mannheim, Mannheim, Germany
| | - Sonja Loges
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Division of Personalized Medical Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Personalized Oncology, University Hospital Mannheim, Mannheim, Germany
| |
Collapse
|
13
|
Hu C, Liu Y, Jiang S, Chen H, Xu H, Hu J, Li C, Xia H. The variable association between expression and methylation of estrogen receptors and the survival of patients with different tumors. Clin Transl Med 2020; 10:e49. [PMID: 32536040 PMCID: PMC7403838 DOI: 10.1002/ctm2.49] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Estrogen receptor (ER) is essential in reproductive development and is also the primary driver of breast cancers. Deregulation of ER may also be involved in tumorigenesis of other organs. To understand the role of ER in different tumor types, pan-cancer analysis of estrogen receptor alpha (ESR1) and estrogen receptor beta (ESR2) in various tumors and association with patients' survival were conducted using The Cancer Genome Atlas (TCGA) data. RESULTS Gene methylation level was evaluated by the mean methylation level of CpG sites in the promoter region. The significant different DNA methylation between tumor and healthy tissues was shown in 10 tumor types for ESR1 and eight tumor types for ESR2. The methylation pattern was also varied across different TCGA tumors. The pan-cancer analysis showed significantly different mRNA expression of ESR1 in nine tumor types and ESR2 in four tumor types. Survival analysis showed that the effects of ERs expression on survival are diverse in different tumors. The expression of ERs was associated with tumor molecular subtypes and various clinical characteristics. ER correlated genes were mainly enriched in cancer and immune-related pathways. CONCLUSIONS Our pan-cancer analysis data indicated that ERs might be significantly associated with carcinogenesis and progression of some tumors, which may be potential therapeutic targets and prognosis biomarkers.
Collapse
Affiliation(s)
- Chao Hu
- State Key Laboratory of Reproductive Medicine & Department of Pathology in the School of Basic Medical Sciences & The Affiliated Sir Run Run Hospital & Key Laboratory of Antibody Technique of National Health CommissionNanjing Medical UniversityNanjingChina
| | - Yinhua Liu
- Department of PathologyThe First Affiliated Yijishan Hospital of Wannan Medical College & Key Laboratory of Non‐coding RNA Transformation Research of Anhui Higher Education InstitutesWannan Medical CollegeWuhuChina
| | - Shan Jiang
- Department of OncologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Hongjin Chen
- State Key Laboratory of Reproductive Medicine & Department of Pathology in the School of Basic Medical Sciences & The Affiliated Sir Run Run Hospital & Key Laboratory of Antibody Technique of National Health CommissionNanjing Medical UniversityNanjingChina
| | - Haojun Xu
- State Key Laboratory of Reproductive Medicine & Department of Pathology in the School of Basic Medical Sciences & The Affiliated Sir Run Run Hospital & Key Laboratory of Antibody Technique of National Health CommissionNanjing Medical UniversityNanjingChina
| | - Junhong Hu
- Department of General SurgeryHuaihe Hospital of Henan UniversityKaifengChina
| | - Congzhu Li
- Department of Gynecologic OncologyCancer Hospital of Shantou University Medical CollegeShantouGuangdongChina
| | - Hongping Xia
- State Key Laboratory of Reproductive Medicine & Department of Pathology in the School of Basic Medical Sciences & The Affiliated Sir Run Run Hospital & Key Laboratory of Antibody Technique of National Health CommissionNanjing Medical UniversityNanjingChina
- Department of PathologyThe First Affiliated Yijishan Hospital of Wannan Medical College & Key Laboratory of Non‐coding RNA Transformation Research of Anhui Higher Education InstitutesWannan Medical CollegeWuhuChina
- Department of General SurgeryHuaihe Hospital of Henan UniversityKaifengChina
- Department of Gynecologic OncologyCancer Hospital of Shantou University Medical CollegeShantouGuangdongChina
| |
Collapse
|
14
|
Zheng D, Trynda J, Williams C, Vold JA, Nguyen JH, Harnois DM, Bagaria SP, McLaughlin SA, Li Z. Sexual dimorphism in the incidence of human cancers. BMC Cancer 2019; 19:684. [PMID: 31299933 PMCID: PMC6625025 DOI: 10.1186/s12885-019-5902-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 07/02/2019] [Indexed: 02/06/2023] Open
Abstract
Background Sex differences in the incidences of cancers become a critical issue in both cancer research and the development of precision medicine. However, details in these differences have not been well reported. We provide a comprehensive analysis of sexual dimorphism in human cancers. Methods We analyzed four sets of cancer incidence data from the SEER (USA, 1975–2015), from the Cancer Registry at Mayo Clinic (1970–2015), from Sweden (1970–2015), and from the World Cancer Report in 2012. Results We found that all human cancers had statistically significant sexual dimorphism with male dominance in the United States and mostly significant in the Mayo Clinic, Sweden, and the world data, except for thyroid cancer, which is female-dominant. Conclusions Sexual dimorphism is a clear but mostly neglected phenotype for most human cancers regarding the clinical practice of cancer. We expect that our study will facilitate the mechanistic studies of sexual dimorphism in human cancers. We believe that fully addressing the mechanisms of sexual dimorphism in human cancers will greatly benefit current development of individualized precision medicine beginning from the sex-specific diagnosis, prognosis, and treatment. Electronic supplementary material The online version of this article (10.1186/s12885-019-5902-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daoshan Zheng
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Griffin 210, Jacksonville, FL, 32224, USA
| | - Justyna Trynda
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Griffin 210, Jacksonville, FL, 32224, USA
| | - Cecilia Williams
- KTH Royal Institute of Technology, Karolinska Institutet, Science for Life Laboratory, Stockholm, Sweden
| | - Jeremy A Vold
- Mayo Cancer Registry, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Justin H Nguyen
- Department of Surgery and Mayo Clinic Cancer Center, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Denise M Harnois
- Department of Surgery and Mayo Clinic Cancer Center, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Sanjay P Bagaria
- Department of Surgery and Mayo Clinic Cancer Center, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Sarah A McLaughlin
- Department of Surgery and Mayo Clinic Cancer Center, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Zhaoyu Li
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Griffin 210, Jacksonville, FL, 32224, USA.
| |
Collapse
|