1
|
Zhang Y, Xu JC, Hu ZD, Fan XY. Advances in protein subunit vaccines against tuberculosis. Front Immunol 2023; 14:1238586. [PMID: 37654500 PMCID: PMC10465801 DOI: 10.3389/fimmu.2023.1238586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/25/2023] [Indexed: 09/02/2023] Open
Abstract
Tuberculosis (TB), also known as the "White Plague", is caused by Mycobacterium tuberculosis (Mtb). Before the COVID-19 epidemic, TB had the highest mortality rate of any single infectious disease. Vaccination is considered one of the most effective strategies for controlling TB. Despite the limitations of the Bacille Calmette-Guérin (BCG) vaccine in terms of protection against TB among adults, it is currently the only licensed TB vaccine. Recently, with the evolution of bioinformatics and structural biology techniques to screen and optimize protective antigens of Mtb, the tremendous potential of protein subunit vaccines is being exploited. Multistage subunit vaccines obtained by fusing immunodominant antigens from different stages of TB infection are being used both to prevent and to treat TB. Additionally, the development of novel adjuvants is compensating for weaknesses of immunogenicity, which is conducive to the flourishing of subunit vaccines. With advances in the development of animal models, preclinical vaccine protection assessments are becoming increasingly accurate. This review summarizes progress in the research of protein subunit TB vaccines during the past decades to facilitate the further optimization of protein subunit vaccines that may eradicate TB.
Collapse
Affiliation(s)
- Ying Zhang
- Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Jin-chuan Xu
- Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Zhi-dong Hu
- Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- TB Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai, China
| | - Xiao-yong Fan
- Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- TB Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Wang T, Hu Y, Dusi S, Qi F, Sartoris S, Ugel S, De Sanctis F. "Open Sesame" to the complexity of pattern recognition receptors of myeloid-derived suppressor cells in cancer. Front Immunol 2023; 14:1130060. [PMID: 36911674 PMCID: PMC9992799 DOI: 10.3389/fimmu.2023.1130060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Pattern recognition receptors are primitive sensors that arouse a preconfigured immune response to broad stimuli, including nonself pathogen-associated and autologous damage-associated molecular pattern molecules. These receptors are mainly expressed by innate myeloid cells, including granulocytes, monocytes, macrophages, and dendritic cells. Recent investigations have revealed new insights into these receptors as key players not only in triggering inflammation processes against pathogen invasion but also in mediating immune suppression in specific pathological states, including cancer. Myeloid-derived suppressor cells are preferentially expanded in many pathological conditions. This heterogeneous cell population includes immunosuppressive myeloid cells that are thought to be associated with poor prognosis and impaired response to immune therapies in various cancers. Identification of pattern recognition receptors and their ligands increases the understanding of immune-activating and immune-suppressive myeloid cell functions and sheds light on myeloid-derived suppressor cell differences from cognate granulocytes and monocytes in healthy conditions. This review summarizes the different expression, ligand recognition, signaling pathways, and cancer relations and identifies Toll-like receptors as potential new targets on myeloid-derived suppressor cells in cancer, which might help us to decipher the instruction codes for reverting suppressive myeloid cells toward an antitumor phenotype.
Collapse
Affiliation(s)
- Tian Wang
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Yushu Hu
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Silvia Dusi
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Fang Qi
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Silvia Sartoris
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Stefano Ugel
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Francesco De Sanctis
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| |
Collapse
|
3
|
Yang Y, Li H, Fotopoulou C, Cunnea P, Zhao X. Toll-like receptor-targeted anti-tumor therapies: Advances and challenges. Front Immunol 2022; 13:1049340. [PMID: 36479129 PMCID: PMC9721395 DOI: 10.3389/fimmu.2022.1049340] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors, originally discovered to stimulate innate immune reactions against microbial infection. TLRs also play essential roles in bridging the innate and adaptive immune system, playing multiple roles in inflammation, autoimmune diseases, and cancer. Thanks to the immune stimulatory potential of TLRs, TLR-targeted strategies in cancer treatment have proved to be able to regulate the tumor microenvironment towards tumoricidal phenotypes. Quantities of pre-clinical studies and clinical trials using TLR-targeted strategies in treating cancer have been initiated, with some drugs already becoming part of standard care. Here we review the structure, ligand, signaling pathways, and expression of TLRs; we then provide an overview of the pre-clinical studies and an updated clinical trial watch targeting each TLR in cancer treatment; and finally, we discuss the challenges and prospects of TLR-targeted therapy.
Collapse
Affiliation(s)
- Yang Yang
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Hongyi Li
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Christina Fotopoulou
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Paula Cunnea
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Xia Zhao
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Therapeutic targets and biomarkers of tumor immunotherapy: response versus non-response. Signal Transduct Target Ther 2022; 7:331. [PMID: 36123348 PMCID: PMC9485144 DOI: 10.1038/s41392-022-01136-2] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/25/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023] Open
Abstract
Cancers are highly complex diseases that are characterized by not only the overgrowth of malignant cells but also an altered immune response. The inhibition and reprogramming of the immune system play critical roles in tumor initiation and progression. Immunotherapy aims to reactivate antitumor immune cells and overcome the immune escape mechanisms of tumors. Represented by immune checkpoint blockade and adoptive cell transfer, tumor immunotherapy has seen tremendous success in the clinic, with the capability to induce long-term regression of some tumors that are refractory to all other treatments. Among them, immune checkpoint blocking therapy, represented by PD-1/PD-L1 inhibitors (nivolumab) and CTLA-4 inhibitors (ipilimumab), has shown encouraging therapeutic effects in the treatment of various malignant tumors, such as non-small cell lung cancer (NSCLC) and melanoma. In addition, with the advent of CAR-T, CAR-M and other novel immunotherapy methods, immunotherapy has entered a new era. At present, evidence indicates that the combination of multiple immunotherapy methods may be one way to improve the therapeutic effect. However, the overall clinical response rate of tumor immunotherapy still needs improvement, which warrants the development of novel therapeutic designs as well as the discovery of biomarkers that can guide the prescription of these agents. Learning from the past success and failure of both clinical and basic research is critical for the rational design of studies in the future. In this article, we describe the efforts to manipulate the immune system against cancer and discuss different targets and cell types that can be exploited to promote the antitumor immune response.
Collapse
|
5
|
Xu X, Gan M, Ge Y, Yi C, Feng T, Liu M, Wu C, Chen X, Zhang W, Zhao L, Zou J. Multifaceted glycoadjuvant@AuNPs inhibits tumor metastasis through promoting T cell activation and remodeling tumor microenvironment. J Nanobiotechnology 2021; 19:376. [PMID: 34794428 PMCID: PMC8600715 DOI: 10.1186/s12951-021-01129-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
ABSTARCT BACKGROUND: Cytosine-phosphate-guanine (CpG) dinucleotides has been used as adjuvants for cancer immunotherapy. However, unmodified CpG are not very efficient in clinical trials. Glucose, ligand of C-type lectin receptors (CLRs), can promote DC maturation and antigen presentation, which is the first step of induction of adaptive immune responses. Therefore, conjugation of type B CpG DNA to glucose-containing glycopolymers may enhance the therapeutic effects against tumor by CpG-based vaccine. METHODS gCpG was developed by chemical conjugation of type B CpG DNA to glucose-containing glycopolymers. The therapeutic effects of gCpG-based vaccine were tested in both murine primary melanoma model and its metastasis model. RESULTS gCpG based tumor vaccine inhibited both primary and metastasis of melanoma in mice which was dependent on CD8 + T cells and IFNγ. In tumor microenvironment, gCpG treatment increased Th1 and CTL infiltration, increased M1 macrophages, decreased Tregs and MDSCs populations, and promoted inflammatory milieu with enhanced secretion of IFNγ and TNFα. The anti-tumor efficacy of gCpG was dramatically enhanced when combined with anti-PD1 immunotherapy. CONCLUSIONS We confirmed that gCpG was a promising adjuvant for vaccine formulation by activating both tumor-specific Th1 and Tc1 responses, and regulating tumor microenvironments.
Collapse
Affiliation(s)
- Xiaojing Xu
- College of Basic Medicine and Biological Sciences, Medical Department, Soochow University, 215123, Suzhou, People's Republic of China
| | - Minfeng Gan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Youzhen Ge
- College of Basic Medicine and Biological Sciences, Medical Department, Soochow University, 215123, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Department of Hematology, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Cheng Yi
- College of Basic Medicine and Biological Sciences, Medical Department, Soochow University, 215123, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Department of Hematology, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Tianyun Feng
- College of Basic Medicine and Biological Sciences, Medical Department, Soochow University, 215123, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Department of Hematology, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Mengjie Liu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou, 215006, People's Republic of China
| | - Cenhao Wu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Xiang Chen
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Weidong Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou, 215006, People's Republic of China.
| | - Lixiang Zhao
- College of Basic Medicine and Biological Sciences, Medical Department, Soochow University, 215123, Suzhou, People's Republic of China.
| | - Jun Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
6
|
Shen S, Huang Y, Sun Y, Zhang W. Catechol-driven self-assembly to fabricate highly ordered and SERS-active glycoadjuvant patterns. J Mater Chem B 2021; 9:5039-5042. [PMID: 34137422 DOI: 10.1039/d1tb00833a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Detection of vaccine (adjuvant and antigen) is crucial for the fundamental studies of immunotherapy. In this work, the catechol-containing glycopolymer obtained by sunlight-induced RAFT polymerization was first designed to generate glycoadjuvant@AuNPs. Then, a simple and general self-assembled technique, catechol-driven self-assembly (CDSA), was developed to fabricate AuNP-based glycoadjuvant patterns, regardless of the size, shape and synthetic method of AuNPs. More importantly, highly ordered glycoadjuvant patterns could be easily formed by catechol-driven self-assembly under confinement, which exhibit a higher SERS signal amplification ability for the detection of carbohydrates (glycoadjuvant).
Collapse
Affiliation(s)
- Shuyi Shen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China.
| | - Yan Huang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China.
| | - Yue Sun
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China.
| | - Weidong Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China. and State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou 215123, China
| |
Collapse
|
7
|
Natural and synthetic carbohydrate-based vaccine adjuvants and their mechanisms of action. Nat Rev Chem 2021; 5:197-216. [PMID: 37117529 PMCID: PMC7829660 DOI: 10.1038/s41570-020-00244-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2020] [Indexed: 01/31/2023]
Abstract
Modern subunit vaccines based on homogeneous antigens offer more precise targeting and improved safety compared with traditional whole-pathogen vaccines. However, they are also less immunogenic and require an adjuvant to increase the immunogenicity of the antigen and potentiate the immune response. Unfortunately, few adjuvants have sufficient potency and low enough toxicity for clinical use, highlighting the urgent need for new, potent and safe adjuvants. Notably, a number of natural and synthetic carbohydrate structures have been used as adjuvants in clinical trials, and two have recently been approved in human vaccines. However, naturally derived carbohydrate adjuvants are heterogeneous, difficult to obtain and, in some cases, unstable. In addition, their molecular mechanisms of action are generally not fully understood, partly owing to the lack of tools to elucidate their immune-potentiating effects, thus hampering the rational development of optimized adjuvants. To address these challenges, modification of the natural product structure using synthetic chemistry emerges as an attractive approach to develop well-defined, improved carbohydrate-containing adjuvants and chemical probes for mechanistic investigation. This Review describes selected examples of natural and synthetic carbohydrate-based adjuvants and their application in synthetic self-adjuvanting vaccines, while also discussing current understanding of their molecular mechanisms of action.
Collapse
|
8
|
Sivagnanalingam U, Beatty PL, Finn OJ. Myeloid derived suppressor cells in cancer, premalignancy and inflammation: A roadmap to cancer immunoprevention. Mol Carcinog 2020; 59:852-861. [PMID: 32333615 DOI: 10.1002/mc.23206] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/04/2020] [Accepted: 04/05/2020] [Indexed: 12/15/2022]
Abstract
The ultimate success of any form of cancer therapy or cancer prevention depends on its ability to engage the power of the immune system to completely eliminate a growing tumor, lower the life-time tumor risk and establish long-term memory to prevent recurrence or future tumors. For that reason, all therapies but especially immunotherapies depend on the immune health (immunocompetence) of each treated individual. Cancer and chronic illnesses, combined with a usually more advanced age of cancer patients or those at risk for cancer are known to severely suppress multiple antitumor functions of the immune system. Understanding the critical mechanisms controlling and mediating immune suppression can lead to additional therapies to alleviate the effects of those mechanisms and improve the outcome of cancer therapy and prevention. We introduce and review here a highly immunosuppressive cell population found in cancer, precancer, and chronic inflammatory diseases, myeloid derived suppressor cells (MDSC). First described in the setting of advanced cancer, their presence and immunosuppressive activity has been seen more recently in early premalignant lesions and in chronic inflammatory diseases leading to cancer. We describe the detrimental effects of their presence on cancer immunotherapy, immunosurveillance and immunoprevention and review early attempts to develop drugs to eliminate them or reduce their negative impact.
Collapse
Affiliation(s)
- Umayal Sivagnanalingam
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Pamela L Beatty
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Olivera J Finn
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
9
|
Aljohani S, Hussein WM, Toth I, Simerska P. Carbohydrates in Vaccine Development. Curr Drug Deliv 2020; 16:609-617. [PMID: 31267872 DOI: 10.2174/1567201816666190702153612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/25/2019] [Accepted: 05/29/2019] [Indexed: 02/03/2023]
Abstract
Despite advances in the development of new vaccines, there are still some diseases with no vaccine solutions. Therefore, further efforts are required to more comprehensively discern the different antigenic components of these microorganisms on a molecular level. This review summarizes advancement in the development of new carbohydrate-based vaccines. Following traditional vaccine counterparts, the carbohydrate-based vaccines introduced a new approach in fighting infectious diseases. Carbohydrates have played various roles in the development of carbohydrate-based vaccines, which are described in this review, including carbohydrates acting as antigens, carriers or targeting moieties. Carbohydrate-based vaccines against infectious diseases, such as group A streptococcus, meningococcal meningitis and human immunodeficiency virus, are also discussed. A number of carbohydrate- based vaccines, such as Pneumovax 23, Menveo and Pentacel, have been successfully marketed in the past few years and there is a promising standpoint for many more to come in the near future.
Collapse
Affiliation(s)
- Salwa Aljohani
- The University of Queensland, School of Chemistry and Molecular Biosciences, Cooper Road, St. Lucia QLD 4072, Australia
| | - Waleed M Hussein
- The University of Queensland, School of Chemistry and Molecular Biosciences, Cooper Road, St. Lucia QLD 4072, Australia
| | - Istvan Toth
- The University of Queensland, School of Chemistry and Molecular Biosciences, Cooper Road, St. Lucia QLD 4072, Australia.,The University of Queensland, School of Pharmacy, Pharmacy Australia Centre of Excellence, Cornwall Street, Woolloongabba, QLD 4072, Australia.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Pavla Simerska
- The University of Queensland, School of Chemistry and Molecular Biosciences, Cooper Road, St. Lucia QLD 4072, Australia
| |
Collapse
|
10
|
Zhang MY, Guo J, Hu XM, Zhao SQ, Li SL, Wang J. An in vivo anti-tumor effect of eckol from marine brown algae by improving the immune response. Food Funct 2019; 10:4361-4371. [PMID: 31276149 DOI: 10.1039/c9fo00865a] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The anti-cancer activities of brown algae and some active extracts or components from brown algae have been demonstrated. But the anti-tumor activities of eckol, a new natural phlorotannin derived from marine brown algae, are poorly understood. In order to investigate the in vivo anti-tumor effect and its potential mechanisms of eckol in a sarcoma 180 (S180) xenograft-bearing animal model, S180 xenograft-bearing mice were randomly divided into 4 groups: model control, and eckol low-dose (0.25 mg kg-1), middle-dose (0.5 mg kg-1) and high-dose (1.0 mg kg-1) groups. After eckol administration, the tumor inhibition, tumor tissue histology, thymus index and spleen index were measured. The apoptotic tumor cells were detected using the terminal deoxynucleotidyl transferase mediated dUTP nick end labelling (TUNEL) assay. The protein expression levels of cleaved Caspase-3 and Caspase-9 (two key apoptotic proteins), Bcl-2 and Bax (two key anti-apoptosis-related genes), as well as epidermal growth factor receptor (EGFR, a well-known cell proliferation-stimulating molecule in tumorigenesis) and p-EGFR in tumor tissues were determined by western blot. A carbon particle clearance test, measurement of serum cytokine levels, a splenic T lymphocyte proliferation test, and T lymphocyte subpopulation analysis were used to evaluate the effect of eckol on the immune function of tumor-bearing mice. Moreover, CD11c+-dendritic cell (DC) infiltration in tumor tissues was detected by immunohistochemistry, and the surface molecules on bone marrow-derived DCs were analyzed using flow cytometry. The pro-apoptosis and anti-proliferation activities of eckol were manifested by the increased TUNEL-positive apoptotic cells, the upregulated Caspase-3 and Caspase-9 expression, and the downregulated expression of Bcl-2, Bax, EGFR and p-EGFR in eckol-treated transplanted S180 tumors. Most importantly, eckol stimulated the mononuclear phagocytic system, recruited and activated DCs, promoted the tumor-specific Th1 responses, increased the CD4+/CD8+ T lymphocyte ratio, and enhanced cytotoxic T lymphocyte responses in the eckol-treated animals, suggesting its potent stimulatory property on innate and adaptive immune responses. This study suggested that eckol might act as a functional food constituent derived from marine brown algae with a potential in vivo anti-tumor effect achieved by improving the immune response.
Collapse
Affiliation(s)
- Meng-Ya Zhang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China.
| | | | | | | | | | | |
Collapse
|
11
|
Liu M, Wen M, Shen S, Zhang Z, Chen G, Zhang W. One‐Pot, Multicomponent Strategy for Designing Lymphoseek‐Inspired Hetero‐Glycoadjuvant@AuNPs. Macromol Rapid Commun 2019; 40:e1900215. [DOI: 10.1002/marc.201900215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/31/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Mengjie Liu
- M. Liu, M. Wen, S. Shen, Prof. G. Chen, Prof. W. ZhangCenter for Soft Condensed Matter Physicsand Interdisciplinary Research & School of Physical Scienceand TechnologyJiangsu Key Laboratory of Thin FilmsSoochow University Suzhou 215006 P. R. China
| | - Ming Wen
- M. Liu, M. Wen, S. Shen, Prof. G. Chen, Prof. W. ZhangCenter for Soft Condensed Matter Physicsand Interdisciplinary Research & School of Physical Scienceand TechnologyJiangsu Key Laboratory of Thin FilmsSoochow University Suzhou 215006 P. R. China
| | - Shuyi Shen
- M. Liu, M. Wen, S. Shen, Prof. G. Chen, Prof. W. ZhangCenter for Soft Condensed Matter Physicsand Interdisciplinary Research & School of Physical Scienceand TechnologyJiangsu Key Laboratory of Thin FilmsSoochow University Suzhou 215006 P. R. China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratoryfor Novel Functional Polymeric MaterialsSoochow University Suzhou 215123 China
| | - Gaojian Chen
- M. Liu, M. Wen, S. Shen, Prof. G. Chen, Prof. W. ZhangCenter for Soft Condensed Matter Physicsand Interdisciplinary Research & School of Physical Scienceand TechnologyJiangsu Key Laboratory of Thin FilmsSoochow University Suzhou 215006 P. R. China
| | - Weidong Zhang
- M. Liu, M. Wen, S. Shen, Prof. G. Chen, Prof. W. ZhangCenter for Soft Condensed Matter Physicsand Interdisciplinary Research & School of Physical Scienceand TechnologyJiangsu Key Laboratory of Thin FilmsSoochow University Suzhou 215006 P. R. China
- State and Local Joint Engineering Laboratoryfor Novel Functional Polymeric MaterialsSoochow University Suzhou 215123 China
| |
Collapse
|
12
|
de Aguiar RB, de Moraes JZ. Exploring the Immunological Mechanisms Underlying the Anti-vascular Endothelial Growth Factor Activity in Tumors. Front Immunol 2019; 10:1023. [PMID: 31156623 PMCID: PMC6530399 DOI: 10.3389/fimmu.2019.01023] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/23/2019] [Indexed: 12/14/2022] Open
Abstract
Several studies report the key role of the vascular endothelial growth factor (VEGF) signaling on angiogenesis and on tumor growth. This has led to the development of a number of VEGF-targeted agents to treat cancer patients by disrupting the tumor blood vessel supply. Of them, bevacizumab, an FDA-approved humanized monoclonal antibody against VEGF, is the most promising. Although the use of antibodies targeting the VEGF pathway has shown clinical benefits associated with a reduction in the tumor blood vessel density, the inhibition of VEGF-driven vascular effects is only part of the functional mechanism of these therapeutic agents in the tumor ecosystem. Compelling reports have demonstrated that VEGF confers, in addition to the activation of angiogenesis-related processes, immunosuppressive properties in tumors. It is also known that structural remodeling of the tumor blood vessel bed by anti-VEGF approaches affect the influx and activation of immune cells into tumors, which might influence the therapeutic results. Besides that, part of the therapeutic effects of antiangiogenic antibodies, including their role in the tumor vascular network, might be triggered by Fc receptors in an antigen-independent manner. In this mini-review, we explore the role of VEGF inhibitors in the tumor microenvironment with focus on the immune system, discussing around the functional contribution of both bevacizumab's Fab and Fc domains to the therapeutic results and the combination of bevacizumab therapy with other immune-stimulatory settings, including adjuvant-based vaccine approaches.
Collapse
|
13
|
Hao J, Fan W, Li Y, Tang R, Tian C, Yang Q, Zhu T, Diao C, Hu S, Chen M, Guo P, Long Q, Zhang C, Qin G, Yu W, Chen M, Li L, Qin L, Wang J, Zhang X, Ren Y, Zhou P, Zou L, Jiang K, Guo W, Deng W. Melatonin synergizes BRAF-targeting agent vemurafenib in melanoma treatment by inhibiting iNOS/hTERT signaling and cancer-stem cell traits. J Exp Clin Cancer Res 2019; 38:48. [PMID: 30717768 PMCID: PMC6360719 DOI: 10.1186/s13046-019-1036-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/13/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND As the selective inhibitor of BRAF kinase, vemurafenib exhibits effective antitumor activities in patients with V600 BRAF mutant melanomas. However, acquired drug resistance invariably develops after its initial treatment. METHODS Immunohistochemical staining was performed to detect the expression of iNOS and hTERT, p-p65, Epcam, CD44, PCNA in mice with melanoma xenografts. The proliferation and migration of melanoma cells were detected by MTT, tumorsphere culture, cell cycle, cell apoptosis, AO/EB assay and colony formation, transwell assay and scratch assay in vitro, and tumor growth differences were observed in xenograft nude mice. Changes in the expression of key molecules in the iNOS/hTERT signaling pathways were detected by western blot. Nucleus-cytoplasm separation, and immunofluorescence analyses were conducted to explore the location of p50/p65 in melanoma cell lines. Flow cytometry assay were performed to determine the expression of CD44. Pull down assay and ChIP assay were performed to detect the binding ability of p65 at iNOS and hTERT promoters. Additionally, hTERT promoter-driven luciferase plasmids were transfected in to melanoma cells with indicated treatment to determine luciferase activity of hTERT. RESULTS Melatonin significantly and synergistically enhanced vemurafenib-mediated inhibitions of proliferation, colony formation, migration and invasion and promoted vemurafenib-induced apoptosis, cell cycle arresting and stemness weakening in melanoma cells. Further mechanism study revealed that melatonin enhanced the antitumor effect of vemurafenib by abrogating nucleus translocation of NF-κB p50/p65 and their binding at iNOS and hTERT promoters, thereby suppressing the expression of iNOS and hTERT. The elevated anti-tumor capacity of vemurafenib upon co-treatment with melatonin was also evaluated and confirmed in mice with melanoma xenografts. CONCLUSIONS Collectively, our results demonstrate melatonin synergizes the antitumor effect of vemurafenib in human melanoma by inhibiting cell proliferation and cancer-stem cell traits via targeting NF-κB/iNOS/hTERT signaling pathway, and suggest the potential of melatonin in antagonizing the toxicity of vemurafenib and augmenting its sensitivities in melanoma treatment.
Collapse
Affiliation(s)
- Jiaojiao Hao
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Wenhua Fan
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Yizhuo Li
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Ranran Tang
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Chunfang Tian
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Qian Yang
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Tianhua Zhu
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Chaoliang Diao
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Sheng Hu
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Manyu Chen
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Ping Guo
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Qian Long
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Changlin Zhang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Ge Qin
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Wendan Yu
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Miao Chen
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Liren Li
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Lijun Qin
- Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingshu Wang
- Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | | | | | - Penghui Zhou
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Lijuan Zou
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Kui Jiang
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Wei Guo
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Wuguo Deng
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Centre, Guangzhou, China
| |
Collapse
|