1
|
Shi W, Sethi G. Long noncoding RNAs induced control of ferroptosis: Implications in cancer progression and treatment. J Cell Physiol 2023; 238:880-895. [PMID: 36924057 DOI: 10.1002/jcp.30992] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
A novel kind of nonapoptotic, iron-dependent cell death brought on by lipid peroxidation is known as ferroptosis. Numerous pathological processes, including neurotoxicity, neurological disorders, ischemia-reperfusion damage, and particularly cancer, have been demonstrated to be influenced by changes in the ferroptosis-regulating network. Recent studies have established the critical roles that ferroptosis can play in cancer development and the evolution of resistance to standard chemoradiotherapy, thus suggesting that ferroptosis may be a feasible therapeutic strategy for cancer management. Gene expression may be regulated at the transcriptional and posttranscriptional levels by long noncoding RNAs (lncRNAs). They have been implicated in tumorigenesis. Some lncRNAs participate in the biological process of ferroptosis, which represents an exciting alternative to regulate ferroptosis as a means of cancer therapy. Even though there is evidence that lncRNAs have a mechanistic role in the ferroptosis of cancer cells, research on the mechanism and potential treatments for these lncRNAs is still lacking. We elucidate the potential mechanisms by which lncRNAs modulate ferroptosis in cancer and examine the promise and challenges of employing lncRNAs as novel therapeutic targets in cancer.
Collapse
Affiliation(s)
- Wei Shi
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
2
|
Azemin WA, Alias N, Ali AM, Shamsir MS. In silico analysis prediction of HepTH1-5 as a potential therapeutic agent by targeting tumour suppressor protein networks. J Biomol Struct Dyn 2023; 41:1141-1167. [PMID: 34935583 DOI: 10.1080/07391102.2021.2017349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Many studies reported that the activation of tumour suppressor protein, p53 induced the human hepcidin expression. However, its expression decreased when p53 was silenced in human hepatoma cells. Contrary to Tilapia hepcidin TH1-5, HepTH1-5 was previously reported to trigger the p53 activation through the molecular docking approach. The INhibitor of Growth (ING) family members are also shown to directly interact with p53 and promote cell cycle arrest, senescence, apoptosis and participate in DNA replication and DNA damage responses to suppress the tumour initiation and progression. However, the interrelation between INGs and HepTH1-5 remains unknown. Therefore, this study aims to identify the mechanism and their protein interactions using in silico approaches. The finding revealed that HepTH1-5 and its ligands had interacted mostly on hotspot residues of ING proteins which involved in histone modifications via acetylation, phosphorylation, and methylation. This proves that HepTH1-5 might implicate in an apoptosis signalling pathway and preserve the protein structure and function of INGs by reducing the perturbation of histone binding upon oxidative stress response. This study would provide theoretical guidance for the design and experimental studies to decipher the role of HepTH1-5 as a potential therapeutic agent for cancer therapy. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wan-Atirah Azemin
- Faculty of Bioresources and Food Industry, School of Agriculture Science and Biotechnology, Universiti Sultan Zainal Abidin, Besut, Malaysia.,Faculty of Science, Bioinformatics Research Group (BIRG), Department of Biosciences, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Nadiawati Alias
- Faculty of Bioresources and Food Industry, School of Agriculture Science and Biotechnology, Universiti Sultan Zainal Abidin, Besut, Malaysia
| | - Abdul Manaf Ali
- Faculty of Bioresources and Food Industry, School of Agriculture Science and Biotechnology, Universiti Sultan Zainal Abidin, Besut, Malaysia
| | - Mohd Shahir Shamsir
- Faculty of Science, Bioinformatics Research Group (BIRG), Department of Biosciences, Universiti Teknologi Malaysia, Skudai, Malaysia.,Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Pagoh Higher Education Hub, Muar, Malaysia
| |
Collapse
|
3
|
Circular RNA circPTPRF promotes the progression of GBM via sponging miR-1208 to up-regulate YY1. Cancer Cell Int 2022; 22:359. [DOI: 10.1186/s12935-022-02753-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/07/2022] [Indexed: 11/18/2022] Open
Abstract
AbstractGlioblastoma (GBM) is the most common primary malignant tumor in the brain, and its robust proliferation and invasion abilities reduce the survival time of patients. Circular RNAs (circRNAs) play an essential role in various tumors, such as regulating tumor cell proliferation, apoptosis, invasion, metastasis, and other progressive phenotypes through different mechanisms. Finding novel circRNAs may significantly contribute to the prognosis of GBM and provide the basis for the targeted therapy of GBM. In this study, we found circPTPRF is a novel circRNA that has never been studied, which was highly expressed in GBM and is closely related to poor patient prognoses. After knockdown or overexpression in glioma cell lines (U87 and LN229) and glioma stem cells (GSCs), we identified that circPTPRF could promote proliferation, invasion, and neurospheres formation abilities of GBM via in vitro and in vivo experiments. Mechanisms, miR-1208 was confirmed as a target of circPTPRF, and miR-1208 can also target the 3’UTR of YY1, and they were proved by luciferase reporter, western blotting (WB), qPCR and RNA immunoprecipitation (RIP) assays. The following rescue experiments demonstrated that circPTPRF was a miR-1208 sponge for upregulating YY1 expression to promote proliferation, invasion and neurosphere formation abilities of GBM in vitro. In conclusion, the circPTPRF/miR-1208/YY1 axis can regulate GBM progression. CircPTPRF may play an essential role in GBM diagnosis and prognostic prediction and be an important molecular target for GBM therapy.
Collapse
|
4
|
Chen L, Liao X, Jiang X, Yan J, Liang J, Hongwei L. Identification of Metastasis-Associated Genes in Cutaneous Squamous Cell Carcinoma Based on Bioinformatics Analysis and Experimental Validation. Adv Ther 2022; 39:4594-4612. [PMID: 35947350 DOI: 10.1007/s12325-022-02276-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/19/2022] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Cutaneous squamous cell carcinoma (cSCC) is a global malignant tumor with a high degree of malignancy. Once metastasis occurs, it will lead to poor prognosis and even death. This study attempts to find out the central genes closely related to cSCC metastasis, so as to clarify the molecular regulatory mechanism of cSCC metastasis and open up new ideas for clinical treatment. METHODS Firstly, cSCC data set GSE98767 was used to establish a tumor metastasis model via clustering analysis. The key module and hub genes associated with cSCC metastasis were analyzed by weighted gene co-expression analysis (WGCNA). Next, the prognostic functions of hub genes were identified by functional and pathway enrichment analysis, pan-cancer analysis, and receiver operating characteristic-area under the curve (ROC-AUC) validation. Finally, the key genes were verified by clinical sample detection and biological in vitro test. RESULTS A total of 19 hub genes related to cSCC metastasis were identified. They were highly expressed in cSCC metastatic tissues and were mainly enriched in cellular material and energy metabolism pathways. Overall survival (OS) and disease-free survival (DFS) results from pan-cancer analysis showed that eight and six highly expressed genes, respectively, with PAPSS2 and SCG5 had highly reliable ROC-AUC validation values and were poor prognostic factors. Clinical and biological tests also confirmed the upregulation of PAPSS2 and SCG5 in cSCC. Deletion of PAPSS2 and SCG5 resulted in decreased viability, migration, and invasion of A-431 cells. CONCLUSION PAPSS2 and SCG5 may be important factors for cSCC metastasis, and they are involved in the regulation of cSCC cell viability, migration, and invasion.
Collapse
Affiliation(s)
- Lang Chen
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China.,Department of Burns and Plastic, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, People's Republic of China.,Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510630, People's Republic of China
| | - Xuan Liao
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China.,Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510630, People's Republic of China
| | - Xiao Jiang
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China.,Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510630, People's Republic of China
| | - Jianxin Yan
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China.,Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510630, People's Republic of China
| | - Jiaji Liang
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China.,Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510630, People's Republic of China
| | - Liu Hongwei
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China. .,Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510630, People's Republic of China.
| |
Collapse
|
5
|
Wu C, Wu Z, Wang L, Chen Y, Huang X, Wang Z, Tian B. The Modulating Mechanisms of miRNA-196 in Malignancies and Its Prognostic Value: A Systematic Review and Meta-Analysis. Nutr Cancer 2021; 74:423-436. [PMID: 34435522 DOI: 10.1080/01635581.2021.1922718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Accumulating studies have revealed that up- or downregulated miRNA-196 expression correlates with the prognostic value in various malignancies; however, existing single studies lack robust evidence to elucidate the role of miRNA-196 in malignancy. The pooled results showed that the upregulation of miRNA-196 expression was significantly correlated with unfavorable OS [HR 2.14; 95% confidence interval (CI), 1.78-2.57; p < 0.001)] and worse PFS (HR 2.84; 95% CI, 1.29-6.23, P = 0.01) in various malignancies. According to the regulatory mechanisms, studies shown that multiple tumors associated with transcription processes could be modulated by the miRNA-196 family; correspondingly, the miRNA-196 family exerted biological functions that could be regulated by various molecules. The upregulation of miRNA-196a, miRNA-196b and miRNA-196 expression is correlated with significantly unfavorable OS in multiple malignancies; similarly, miRNA-196 overexpression predicts poor PFS in multiple malignancies. Taken together, these findings indicate that miRNA-196a and miRNA-196b may serve as oncogenic molecules and may be potential prognostic biomarkers in multiple malignancies.
Collapse
Affiliation(s)
- Chao Wu
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zuowei Wu
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Li Wang
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Chen
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xing Huang
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zihe Wang
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Bole Tian
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Wang Y, Shan A, Zhou Z, Li W, Xie L, Du B, Lei B. LncRNA TCONS_00004099-derived microRNA regulates oncogenesis through PTPRF in gliomas. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1023. [PMID: 34277823 PMCID: PMC8267291 DOI: 10.21037/atm-21-2442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/17/2021] [Indexed: 01/25/2023]
Abstract
Background Glioblastoma is the most common and aggressive primary tumor in the central nervous system (CNS). Patients with glioblastomas have poor prognosis due to its aggressive clinical behavior and resistance to the chemotherapeutic agent temozolomide (TMZ). Aberrant long non-coding RNAs (lncRNAs) are involved in glioma progression and its regulatory mechanisms. Analysis of sequencing data identified a new lncRNA, named lncRNA TCONS_00004099, which could derive a new microRNA and was highly expressed in glioma. Methods To elucidate the role of lncRNA TCONS_00004099 in gliomas, Quantitative Real-time PCR (qPCR) was used to assess the differential expression of lncRNA TCONS_00004099 and its related miRNA in glioma tissues, normal brain tissues, glioma cell lines (U87 and U251 cells), and a normal human embryonic brain cell line (HEB). Cell Counting Kit-8 (CCK8) assays to assess cell proliferation, flow cytometry assays examining apoptosis and the cell cycle, colony formation assays, wound healing assay, transwell assays, and zebrafish xenograft models were performed to further clarify the effects of the lncRNA and the related miRNA. Finally, Western blots were carried out to verify the mechanisms related to PTPRF (Protein Tyrosine Phosphatase Receptor Type F). Results LncRNA TCONS_00004099 was significantly increased in glioma tissues and glioma cell lines. A novel miRNA (miRNA TCONS_00004099) derived from the lncRNA was identified by qPCR. Knockdown of this lncRNA suppressed cell proliferation, migration, invasion and enhanced TMZ-induced apoptosis in U87 and U251 cell lines in vitro and in vivo. The miRNA mimics or inhibitor of miRNA TCONS_00004099 was used to reverse the effects of knockdown or overexpression of lncRNA TCONS_00004099, respectively. Western Blot analyses verified that PTPRF is one of the downstream targets of lncRNA TCONS_00004099. Conclusions These results demonstrated that lncRNA TCONS_00004099 promoted malignant behaviors in gliomas, including proliferation, metastasis, and anti-apoptosis. The effect of lncRNA TCONS_00004099 was mediated through miRNA TCONS_00004099 and its target PTPRF. Thus, the lncRNA TCONS_00004099/miRNA/PTPRF axis may be a potential therapeutic target for gliomas.
Collapse
Affiliation(s)
- Yuhao Wang
- Nosocomial Infection Control Center, People's Hospital of Shenzhen Baoan District, Shenzhen, China
| | - Aijun Shan
- Department of Emergency, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Zhiwei Zhou
- Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Faculty of Health Sciences, University of Macau, Macau, China
| | - Wenpeng Li
- Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lin Xie
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bo Du
- Department of Emergency, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Bingxi Lei
- Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Zhu X, Jiang L, Yang H, Chen T, Wu X, Lv K. Analyzing the lncRNA, miRNA, and mRNA-associated ceRNA networks to reveal potential prognostic biomarkers for glioblastoma multiforme. Cancer Cell Int 2020; 20:393. [PMID: 32821246 PMCID: PMC7429694 DOI: 10.1186/s12935-020-01488-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023] Open
Abstract
Background Glioblastoma multiforme (GBM) is the most seriously brain tumor with extremely poor prognosis. Recent research has demonstrated that competitive endogenous RNA (ceRNA) network which long noncoding RNAs (lncRNAs) act as microRNA (miRNA) sponges to regulate mRNA expression were closely related to tumor development. However, the regulatory mechanisms and functional roles of ceRNA network in the pathogenesis of GBM are remaining poorly understood. Methods In this study, we systematically analyzed the expression profiles of lncRNA and mRNA (GSE51146 dataset) and miRNA (GSE65626 dataset) from GEO database. Then, we constructed a ceRNA network with the dysregulated genes by bioinformatics methods. The TCGA and GSE4290 dataset were used to confirm the expression and prognostic value of candidate mRNAs. Results In total, 3413 differentially expressed lncRNAs and mRNAs, 305 differentially expressed miRNAs were indentified in GBM samples. Then a ceRNA network containing 3 lncRNAs, 5 miRNAs, and 60 mRNAs was constructed. The overall survival analysis of TCGA databases indicated that two mRNAs (C1s and HSD3B7) were remarkly related with the prognosis of GBM. Conclusion The ceRNA network may increase our understanding to the pathogenesis of GBM. In general, the candidate mRNAs from the ceRNA network can be predicted as new therapeutic targets and prognostic biomarkers for GBM.
Collapse
Affiliation(s)
- Xiaolong Zhu
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, 241001 People's Republic of China.,Non-coding RNA Research Center of Wannan Medical College, Wuhu, 241001 China.,Central Laboratory of Yijishan Hospital, Wannan Medical College, Wuhu, 241001 People's Republic of China
| | - Lan Jiang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, 241001 People's Republic of China.,Non-coding RNA Research Center of Wannan Medical College, Wuhu, 241001 China.,Central Laboratory of Yijishan Hospital, Wannan Medical College, Wuhu, 241001 People's Republic of China
| | - Hui Yang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, 241001 People's Republic of China.,Non-coding RNA Research Center of Wannan Medical College, Wuhu, 241001 China.,Central Laboratory of Yijishan Hospital, Wannan Medical College, Wuhu, 241001 People's Republic of China
| | - Tianbing Chen
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, 241001 People's Republic of China.,Non-coding RNA Research Center of Wannan Medical College, Wuhu, 241001 China.,Central Laboratory of Yijishan Hospital, Wannan Medical College, Wuhu, 241001 People's Republic of China
| | - Xingwei Wu
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, 241001 People's Republic of China.,Non-coding RNA Research Center of Wannan Medical College, Wuhu, 241001 China.,Central Laboratory of Yijishan Hospital, Wannan Medical College, Wuhu, 241001 People's Republic of China
| | - Kun Lv
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, 241001 People's Republic of China.,Non-coding RNA Research Center of Wannan Medical College, Wuhu, 241001 China.,Central Laboratory of Yijishan Hospital, Wannan Medical College, Wuhu, 241001 People's Republic of China
| |
Collapse
|
8
|
Archambeau J, Blondel A, Pedeux R. Focus-ING on DNA Integrity: Implication of ING Proteins in Cell Cycle Regulation and DNA Repair Modulation. Cancers (Basel) 2019; 12:cancers12010058. [PMID: 31878273 PMCID: PMC7017203 DOI: 10.3390/cancers12010058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/16/2022] Open
Abstract
The ING family of tumor suppressor genes is composed of five members (ING1-5) involved in cell cycle regulation, DNA damage response, apoptosis and senescence. All ING proteins belong to various HAT or HDAC complexes and participate in chromatin remodeling that is essential for genomic stability and signaling pathways. The gatekeeper functions of the INGs are well described by their role in the negative regulation of the cell cycle, notably by modulating the stability of p53 or the p300 HAT activity. However, the caretaker functions are described only for ING1, ING2 and ING3. This is due to their involvement in DNA repair such as ING1 that participates not only in NERs after UV-induced damage, but also in DSB repair in which ING2 and ING3 are required for accumulation of ATM, 53BP1 and BRCA1 near the lesion and for the subsequent repair. This review summarizes evidence of the critical roles of ING proteins in cell cycle regulation and DNA repair to maintain genomic stability.
Collapse
|
9
|
Lin M, Xu Y, Gao Y, Pan C, Zhu X, Wang ZW. Regulation of F-box proteins by noncoding RNAs in human cancers. Cancer Lett 2019; 466:61-70. [DOI: 10.1016/j.canlet.2019.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022]
|
10
|
Dantas A, Al Shueili B, Yang Y, Nabbi A, Fink D, Riabowol K. Biological Functions of the ING Proteins. Cancers (Basel) 2019; 11:E1817. [PMID: 31752342 PMCID: PMC6896041 DOI: 10.3390/cancers11111817] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
The proteins belonging to the inhibitor of growth (ING) family of proteins serve as epigenetic readers of the H3K4Me3 histone mark of active gene transcription and target histone acetyltransferase (HAT) or histone deacetylase (HDAC) protein complexes, in order to alter local chromatin structure. These multidomain adaptor proteins interact with numerous other proteins to facilitate their localization and the regulation of numerous biochemical pathways that impinge upon biological functions. Knockout of some of the ING genes in murine models by various groups has verified their status as tumor suppressors, with ING1 knockout resulting in the formation of large clear-cell B-lymphomas and ING2 knockout increasing the frequency of ameloblastomas, among other phenotypic effects. ING4 knockout strongly affects innate immunity and angiogenesis, and INGs1, ING2, and ING4 have been reported to affect apoptosis in different cellular models. Although ING3 and ING5 knockouts have yet to be published, preliminary reports indicate that ING3 knockout results in embryonic lethality and that ING5 knockout may have postpartum effects on stem cell maintenance. In this review, we compile the known information on the domains of the INGs and the effects of altering ING protein expression, to better understand the functions of this adaptor protein family and its possible uses for targeted cancer therapy.
Collapse
Affiliation(s)
- Arthur Dantas
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, 374 HMRB, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1, Canada; (A.D.); (B.A.S.); (Y.Y.)
| | - Buthaina Al Shueili
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, 374 HMRB, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1, Canada; (A.D.); (B.A.S.); (Y.Y.)
| | - Yang Yang
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, 374 HMRB, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1, Canada; (A.D.); (B.A.S.); (Y.Y.)
| | - Arash Nabbi
- Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| | - Dieter Fink
- Institute of Laboratory Animal Science, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| | - Karl Riabowol
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, 374 HMRB, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1, Canada; (A.D.); (B.A.S.); (Y.Y.)
| |
Collapse
|
11
|
Blondel A, Benberghout A, Pedeux R, Ricordel C. Exploiting ING2 Epigenetic Modulation as a Therapeutic Opportunity for Non-Small Cell Lung Cancer. Cancers (Basel) 2019; 11:cancers11101601. [PMID: 31640185 PMCID: PMC6827349 DOI: 10.3390/cancers11101601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) has been the leading cause of cancer-related death worldwide, over the last few decades. Survival remains extremely poor in the metastatic setting and, consequently, innovative therapeutic strategies are urgently needed. Inhibitor of Growth Gene 2 (ING2) is a core component of the mSin3A/Histone deacetylases complex (HDAC), which controls the chromatin acetylation status and modulates gene transcription. This gene has been characterized as a tumor suppressor gene and its status in cancer has been scarcely explored. In this review, we focused on ING2 and other mSin3A/HDAC member statuses in NSCLC. Taking advantage of existing public databases and known pharmacological properties of HDAC inhibitors, finally, we proposed a therapeutic model based on an ING2 biomarker-guided strategy.
Collapse
Affiliation(s)
- Alice Blondel
- INSERM U1242, Chemistry Oncogenesis Stress and Signaling, CLCC Eugène Marquis, 35033 Rennes, France.
| | - Amine Benberghout
- INSERM U1242, Chemistry Oncogenesis Stress and Signaling, CLCC Eugène Marquis, 35033 Rennes, France.
| | - Rémy Pedeux
- INSERM U1242, Chemistry Oncogenesis Stress and Signaling, CLCC Eugène Marquis, 35033 Rennes, France.
| | - Charles Ricordel
- INSERM U1242, Chemistry Oncogenesis Stress and Signaling, CLCC Eugène Marquis, 35033 Rennes, France.
- CHU Rennes, Service de Pneumologie, Université de Rennes 1, 35033 Rennes, France.
| |
Collapse
|