1
|
Jiang J, Hu R, Li Z, He W. Antibody MYH9 and Antibiotic Lidamycin Inhibit the Growth and Proliferation of Lung Cancer Cells and Induce Their Apoptosis. Mol Biotechnol 2024:10.1007/s12033-024-01235-1. [PMID: 38997500 DOI: 10.1007/s12033-024-01235-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
The aim of this study was to investigate the impact of the antibiotic lidamycin (LDM) and the targeted therapy with the antibody Myosin heavy chain 9 (MYH9) on cancer cells, aiming to provide insights for cancer treatment. In this study, antibiotics and targeted antibodies were used in cancer cells, and then their effects on cell growth, proliferation, apoptosis regulation, and related proteins were measured, and comparative analysis was conducted on the effects of different drug concentrations on the growth of cancer cells. In H460, the apoptotic effect of 2 nM LDM on cells reached 70%. LDM had a downward trend on the levels of B-cell lymphoma-2 (Bcl-2) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in cells. The inhibitory effects of LDM at different concentrations on human large cell lung cancer H460 transplanted tumor in nude mice reached 53.20% and 69.80%, and the inhibitory effects on the growth of lung adenocarcinoma transplanted tumor in nude mice reached 40.20% and 58.30%. The expression of MYH9 (myosin, heavy polypeptide 9, non-muscle) in human lung cancer tissues and adjacent tissues reached more than 80%. At the concentration of 300 μM, antibody MYH9 inhibited cell growth by 30%, and the migration rate was also reduced by 25%. The inhibitory effect of siRNA after knocking out the MYH9 gene on cancer cells reached 70%. Antibiotic LDM and targeted antibody MYH9 can inhibit the growth, proliferation, and migration of cancer cells, promote cancer cell apoptosis, and have certain clinical significance for the treatment of cancer patients.
Collapse
Affiliation(s)
- Jie Jiang
- Department of Cardiothoracic Surgery, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Ruoyu Hu
- Department of Cardiothoracic Surgery, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Zhuoshuan Li
- Department of Cardiothoracic Surgery, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Wei He
- Department of Cardiothoracic Surgery, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu Province, China.
| |
Collapse
|
2
|
Wasik MA, Kim PM, Nejati R. Diverse and reprogrammable mechanisms of malignant cell transformation in lymphocytes: pathogenetic insights and translational implications. Front Oncol 2024; 14:1383741. [PMID: 38638855 PMCID: PMC11024630 DOI: 10.3389/fonc.2024.1383741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/18/2024] [Indexed: 04/20/2024] Open
Abstract
While normal B- and T-lymphocytes require antigenic ligands to become activated via their B- and T-cell receptors (BCR and TCR, respectively), B- and T-cell lymphomas show the broad spectrum of cell activation mechanisms regarding their dependence on BCR or TCR signaling, including loss of such dependence. These mechanisms are generally better understood and characterized for B-cell than for T-cell lymphomas. While some lymphomas, particularly the indolent, low-grade ones remain antigen-driven, other retain dependence on activation of their antigen receptors seemingly in an antigen-independent manner with activating mutations of the receptors playing a role. A large group of lymphomas, however, displays complete antigen receptor independence, which can develop gradually, in a stepwise manner or abruptly, through involvement of powerful oncogenes. Whereas some of the lymphomas undergo activating mutations of genes encoding proteins involved in signaling cascades downstream of the antigen-receptors, others employ activation mechanisms capable of substituting for these BCR- or TCR-dependent signaling pathways, including reliance on signaling pathways physiologically activated by cytokines. Finally, lymphomas can develop cell-lineage infidelity and in the extreme cases drastically rewire their cell activation mechanisms and engage receptors and signaling pathways physiologically active in hematopoietic stem cells or non-lymphoid cells. Such profound reprograming may involve partial cell dedifferentiation or transdifferentiation towards histocytes, dendritic, or mesodermal cells with various degree of cell maturation along these lineages. In this review, we elaborate on these diverse pathogenic mechanisms underlying cell plasticity and signaling reprogramming as well as discuss the related diagnostic and therapeutic implications and challenges.
Collapse
Affiliation(s)
- Mariusz A. Wasik
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Patricia M. Kim
- Department of Pathology and Laboratory Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Reza Nejati
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, United States
| |
Collapse
|
3
|
Iwakoshi A, Kikui H, Nakashima R, Goto Y, Ichikawa D, Sasaki E, Sekimizu M, Hattori H, Maeda N. CD30 expression in an emerging group of mesenchymal spindle cell neoplasms with ALK fusion detected by flow cytometry and immunohistochemistry. Genes Chromosomes Cancer 2024; 63:e23228. [PMID: 38380728 DOI: 10.1002/gcc.23228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 01/29/2024] [Indexed: 02/22/2024] Open
Abstract
An emerging group of spindle cell neoplasms harboring fusions involving NTRK or non-NTRK kinase genes often share characteristic S100 and/or CD34 expression; however, the diagnostic utility of immunohistochemical stains is not well established in this family owing to their lack of specificity. Recently, CD30 expression in spindle cell neoplasms with kinase gene fusions, such as NTRK, BRAF, RAF1, and RET, has been increasingly identified. We herein report a 10-year-old girl with high-grade spindle cell sarcoma of the neck. Prior to histopathological evaluation, flow cytometry (FCM) analysis and touch smear cytology of the tumor tissue revealed CD34+ and dimCD30+ spindle cell populations. Histopathologically, the case was characterized by monomorphic spindle-shaped cytomorphology with CD30, S100, and CD34 positivity and harbored close similarities with spindle cell neoplasms with NTRK or non-NTRK gene fusions. Subsequently, a comprehensive next-generation sequencing sarcoma panel identified a rare PLEKHH2::ALK fusion, and a diagnosis of ALK-rearranged spindle cell neoplasm was made. The patient showed significant tumor response to single-agent treatment with alectinib, an ALK-tyrosine kinase inhibitor. This case supports that CD30 is expressed in an ALK-rearranged mesenchymal neoplasm. The benefit of the early detection of CD30 expression by FCM for a prompt diagnosis and treatment is highlighted in the context of an aggressive clinical course. This case represents a learning experience regarding the need to the check the status of CD30 expression in these tumors and suggests the potential clinical benefits of CD30-targeted therapy.
Collapse
Affiliation(s)
- Akari Iwakoshi
- Department of Pathology, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Hajime Kikui
- Department of Pediatrics, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Ryosuke Nakashima
- Clinical Laboratory Department, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Yuya Goto
- Clinical Laboratory Department, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Daisuke Ichikawa
- Department of Pediatrics, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Eiichi Sasaki
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Masahiro Sekimizu
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
- Department of Pediatrics, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Hiroyoshi Hattori
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
- Department of Pediatrics, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Naoko Maeda
- Department of Pediatrics, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| |
Collapse
|
4
|
Yuan D, Zhai X, Zhu K, Ji J, Liu W. Tuftsin-tailored fusion protein inhibits the growth of circulating gastric tumor cells associated with macrophage phagocytosis. Biochem Biophys Rep 2023; 34:101443. [PMID: 36875797 PMCID: PMC9974367 DOI: 10.1016/j.bbrep.2023.101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/26/2023] Open
Abstract
Circulating tumor cells (CTCs) are a major cause of tumor metastasis and resistance to anticancer therapies. To date, no effective low-toxicity chemotherapeutic agents or antibodies have exhibited significant clinical activity against CTCs. Macrophages are important mediators of antitumor immunity. Tuftsin (TF), a tetrapeptide located at residues 289-292 of the CH2 domain of the Fc region of the IgG heavy chain, binds to Nrp-1, a receptor on the surface of macrophages that promotes phagocytosis and induces nonspecific activation of the immune system against tumors. Lidamycin (LDM) is an antitumor chemotherapy agent that is strongly cytotoxic to tumors and can dissociate into an apoprotein (LDP) and active enediyne (AE) in vitro. We previously constructed the fusion protein LDP-TF through genetic engineering and inserted the chromophore AE to produce LDM-TF, which can target macrophages to promote their phagocytic and cytotoxic activity against tumor cells. Preliminary experiments confirmed the anti-tumor activity of LDM-TFs. In this study, we found that LDM-TF effectively inhibited the growth of CTCs of gastric cancer origin and enhanced macrophage phagocytosis both in vivo and in vitro. Tumor cell expression of CD47, which helps to evade phagocytosis by macrophages, was substantially downregulated by LDM-TF. Notably, our in vitro experiments demonstrated that the combination of LDM-TF and anti-CD47 antibodies promoted phagocytosis more than either component alone. Our findings demonstrate the significant inhibitory effect of LDM-TF on the growth of CTCs of gastric cancer origin and suggest that the combination of LDM-TF and anti-CD47 antibodies may exhibit synergistic effects, thereby providing a new option for the clinical treatment of patients with advanced tumors that have metastasized.
Collapse
Affiliation(s)
- Dandan Yuan
- Department of Internal Medicine Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Xiaoyang Zhai
- The First Affiliated Hospital of Shantou University Medical College, 515041, Shantou, Guangdong Province, China
| | - Kunli Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Jiangang Ji
- Department of Encephalopathy, Weifang Traditional Chinese Hospital, Weifang, Shandong, 261041, China
| | - Wenjuan Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
- Corresponding author.
| |
Collapse
|
5
|
Barreca M, Lang N, Tarantelli C, Spriano F, Barraja P, Bertoni F. Antibody-drug conjugates for lymphoma patients: preclinical and clinical evidences. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:763-794. [PMID: 36654819 PMCID: PMC9834635 DOI: 10.37349/etat.2022.00112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/08/2022] [Indexed: 12/28/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are a recent, revolutionary approach for malignancies treatment, designed to provide superior efficacy and specific targeting of tumor cells, compared to systemic cytotoxic chemotherapy. Their structure combines highly potent anti-cancer drugs (payloads or warheads) and monoclonal antibodies (Abs), specific for a tumor-associated antigen, via a chemical linker. Because the sensitive targeting capabilities of monoclonal Abs allow the direct delivery of cytotoxic payloads to tumor cells, these agents leave healthy cells unharmed, reducing toxicity. Different ADCs have been approved by the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for the treatment of a wide range of malignant conditions, both as monotherapy and in combination with chemotherapy, including for lymphoma patients. Over 100 ADCs are under preclinical and clinical investigation worldwide. This paper it provides an overview of approved and promising ADCs in clinical development for the treatment of lymphoma. Each component of the ADC design, their mechanism of action, and the highlights of their clinical development progress are discussed.
Collapse
Affiliation(s)
- Marilia Barreca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy
| | - Noémie Lang
- Division of Oncology, Department of Oncology, Faculty of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Chiara Tarantelli
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
| | - Filippo Spriano
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
| | - Paola Barraja
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
| |
Collapse
|
6
|
Gong J, Guo F, Cheng W, Fan H, Miao Q, Yang J. Preliminary biological evaluation of 123I-labelled anti-CD30-LDM in CD30-positive lymphomas murine models. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:408-414. [PMID: 31913714 DOI: 10.1080/21691401.2019.1709857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Overexpression of CD30 has been reported on the surface of some T-cell lymphomas, especially on Hodgkin's lymphoma (HL) and anaplastic large cell lymphoma (ALCL). CD30 targeted immunotherapy has good clinical therapy response. We have produced a novel antibody drug conjugates (ADCs)-anti-CD30-LDM, which shows attractive tumour-targeting capability and extremely potent antitumor efficacy. To further investigate biological characteristics and promote clinical translation of anti-CD30-LDM, we constructed a radiolabeled 123I-anti-CD30-LDM to evaluate the biodistribution characteristics. The anti-CD30-LDM was radioiodinated by the Iodogen method. The radiochemical purity of 123I-anti-CD30-LDM was more over 98%, and the specific activity of 240.5 MBq/mg. The stability and the specificity of 123I-anti-CD30-LDM were evaluated in vitro. Cellular binding assays were used to evaluate the binding capabilities in CD30-positive Karpas299 cells and CD30-negative Raji cells. B-NDG mice bearing Karpas 299 and Raji xenografts were used for in vivo biodistribution studies. Our results demonstrated that anti-CD30-LDM as an ideal ADC targeted to CD30, which was labelled easily with 123I and obtained the sufficient yields. The 123I-anti-CD30-LDM preserved specific binding to CD30 in vitro and uptake in tumour xenografts in B-NDG mice. These results are encouraging for anti-CD30-LDM as a promising clinical translational candidate for various CD30 positive lymphomas and other diseases.
Collapse
Affiliation(s)
- Jianhua Gong
- NHC Key Laboratory of Biotechnology of Antibiotics, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feihu Guo
- High Tech of Atom Co. Ltd, Beijing, China
| | | | | | - Qingfang Miao
- NHC Key Laboratory of Biotechnology of Antibiotics, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jigang Yang
- Nuclear Medicine Department, Beijing Friendship Hospital, Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Hafeez U, Parakh S, Gan HK, Scott AM. Antibody-Drug Conjugates for Cancer Therapy. Molecules 2020; 25:E4764. [PMID: 33081383 PMCID: PMC7587605 DOI: 10.3390/molecules25204764] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 01/03/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are novel drugs that exploit the specificity of a monoclonal antibody (mAb) to reach target antigens expressed on cancer cells for the delivery of a potent cytotoxic payload. ADCs provide a unique opportunity to deliver drugs to tumor cells while minimizing toxicity to normal tissue, achieving wider therapeutic windows and enhanced pharmacokinetic/pharmacodynamic properties. To date, nine ADCs have been approved by the FDA and more than 80 ADCs are under clinical development worldwide. In this paper, we provide an overview of the biology and chemistry of each component of ADC design. We briefly discuss the clinical experience with approved ADCs and the various pathways involved in ADC resistance. We conclude with perspectives about the future development of the next generations of ADCs, including the role of molecular imaging in drug development.
Collapse
Affiliation(s)
- Umbreen Hafeez
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, Australia, (U.H.)
- Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health, Melbourne, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Sagun Parakh
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, Australia, (U.H.)
- Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health, Melbourne, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Hui K Gan
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, Australia, (U.H.)
- Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health, Melbourne, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC 3084, Australia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, Australia, (U.H.)
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC 3084, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC 3084, Australia
| |
Collapse
|
8
|
Fordham AM, Xie J, Gifford AJ, Wadham C, Morgan LT, Mould EVA, Fadia M, Zhai L, Massudi H, Ali ZS, Marshall GM, Lukeis RE, Fletcher JI, MacKenzie KL, Trahair TN. CD30 and ALK combination therapy has high therapeutic potency in RANBP2-ALK-rearranged epithelioid inflammatory myofibroblastic sarcoma. Br J Cancer 2020; 123:1101-1113. [PMID: 32684628 PMCID: PMC7524717 DOI: 10.1038/s41416-020-0996-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/17/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Epithelioid inflammatory myofibroblastic sarcoma (eIMS) is characterised by perinuclear ALK localisation, CD30 expression and early relapse despite crizotinib treatment. We aimed to identify therapies to prevent and/or treat ALK inhibitor resistance. METHODS Malignant ascites, from an eIMS patient at diagnosis and following multiple relapses, were used to generate matched diagnosis and relapse xenografts. RESULTS Xenografts were validated by confirmation of RANBP2-ALK rearrangement, perinuclear ALK localisation and CD30 expression. Although brentuximab-vedotin (BV) demonstrated single-agent activity, tumours regrew during BV therapy. BV resistance was associated with reduced CD30 expression and induction of ABCB1. BV resistance was reversed in vitro by tariquidar, but combination BV and tariquidar treatment only briefly slowed xenograft growth compared with BV alone. Combining BV with either crizotinib or ceritinib resulted in marked tumour shrinkage in both xenograft models, and resulted in prolonged tumour-free survival in the diagnosis compared with the relapse xenograft. CONCLUSIONS CD30 is a therapeutic target in eIMS. BV efficacy is limited by the rapid emergence of resistance. Prolonged survival with combination ALK and CD30-targeted-therapy in the diagnosis model provides the rationale to trial this combination in eIMS patients at diagnosis. This combination could also be considered for other CD30-positive, ALK-rearranged malignancies.
Collapse
Affiliation(s)
- Ashleigh M Fordham
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Jinhan Xie
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Andrew J Gifford
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
- Department of Anatomical Pathology, Prince of Wales Hospital Randwick, Randwick, NSW, Australia
| | - Carol Wadham
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Lisa T Morgan
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Emily V A Mould
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Mitali Fadia
- ACT Pathology, The Canberra Hospital, Garran, ACT, Australia
| | - Lei Zhai
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Hassina Massudi
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Zara S Ali
- Children's Medical Research Institute, Westmead, NSW, Australia
| | - Glenn M Marshall
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
| | - Robyn E Lukeis
- Cytogenetics Laboratory, SydPath, St Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Jamie I Fletcher
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
| | - Karen L MacKenzie
- Children's Medical Research Institute, Westmead, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Toby N Trahair
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia.
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia.
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia.
| |
Collapse
|
9
|
Huelse J, Fridlyand D, Earp S, DeRyckere D, Graham DK. MERTK in cancer therapy: Targeting the receptor tyrosine kinase in tumor cells and the immune system. Pharmacol Ther 2020; 213:107577. [PMID: 32417270 PMCID: PMC9847360 DOI: 10.1016/j.pharmthera.2020.107577] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The receptor tyrosine kinase MERTK is aberrantly expressed in numerous human malignancies, and is a novel target in cancer therapeutics. Physiologic roles of MERTK include regulation of tissue homeostasis and repair, innate immune control, and platelet aggregation. However, aberrant expression in a wide range of liquid and solid malignancies promotes neoplasia via growth factor independence, cell cycle progression, proliferation and tumor growth, resistance to apoptosis, and promotion of tumor metastases. Additionally, MERTK signaling contributes to an immunosuppressive tumor microenvironment via induction of an anti-inflammatory cytokine profile and regulation of the PD-1 axis, as well as regulation of macrophage, myeloid-derived suppressor cell, natural killer cell and T cell functions. Various MERTK-directed therapies are in preclinical development, and clinical trials are underway. In this review we discuss MERTK inhibition as an emerging strategy for cancer therapy, focusing on MERTK expression and function in neoplasia and its role in mediating resistance to cytotoxic and targeted therapies as well as in suppressing anti-tumor immunity. Additionally, we review preclinical and clinical pharmacological strategies to target MERTK.
Collapse
Affiliation(s)
- Justus Huelse
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Diana Fridlyand
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Shelton Earp
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Douglas K. Graham
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, Georgia
| |
Collapse
|
10
|
Li BL, Wang JK, Gao JS, Yu YH, Ma DS. A semi-rigid tricarboxylate ligand based Co( ii) coordination polymer: construction and applications in multiple sensing. NEW J CHEM 2020. [DOI: 10.1039/c9nj05766h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A cobalt coordination polymer was prepared, which expresses multiple fluorescence responses to transition metal ions, antibiotics, pesticides and nitrobenzene.
Collapse
Affiliation(s)
- Bai-Ling Li
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- P. R. China
| | - Jun-Ku Wang
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- P. R. China
| | - Jin-Sheng Gao
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- P. R. China
- Agricultural College
| | - Ying-Hui Yu
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- P. R. China
| | - Dong-Sheng Ma
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- P. R. China
| |
Collapse
|
11
|
Fan D, Jiang L, Song Y, Bao S, Yang Y, Yuan X, Zhen Y, Yang M, Xiong D. An Engineered Fusion Protein Anti-CD19(Fab)-LDM Effectively Inhibits ADR-Resistant B Cell Lymphoma. Front Oncol 2019; 9:861. [PMID: 31555598 PMCID: PMC6737009 DOI: 10.3389/fonc.2019.00861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/20/2019] [Indexed: 11/17/2022] Open
Abstract
The 5-year survival rate of patients with B cell lymphoma is about 50% after initial diagnosis, mainly because of resistance to chemotherapy. Hence, it is necessary to understand the mechanism of chemo-resistance and to explore novel methods to circumvent multidrug resistance. Previously, we showed that an engineered cytotoxic fusion protein anti-CD19(Fab)-LDM (lidamycin), can induce apoptosis of B-lymphoma cells. Herein, we successfully established an adriamycin (ADR)-resistant B cell lymphoma cell line BJAB/ADR. The mRNA and protein level of ATP-binding cassette subfamily B member 1 (ABCB1) were significantly overexpressed in BJAB/ADR cells. Increased efflux function of ABCB1 was observed by analyzing intracellular accumulation and efflux of Rhodamine 123. The efflux of Rhodamine 123 could be significantly ameliorated by verapamil. Treatment with anti-CD19(Fab)-LDM at different concentrations induced cytotoxic response of BJAB/ADR cells similar to that of the sensitive cells. In vivo studies showed that anti-CD19(Fab)-LDM had better antitumor effect in BJAB and BJAB/ADR cell lymphoma xenografts compared with ADR or LDM treatment alone. Taken together, anti-CD19(Fab)-LDM can effectively inhibit the growth of BJAB/ADR cells both in vitro and in vivo. Anti-CD19(Fab)-LDM could be a promising molecule for the treatment of drug resistant cancers.
Collapse
Affiliation(s)
- Dongmei Fan
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Linlin Jiang
- School of Life Sciences, Ludong University, Yantai, China
| | - Yuewen Song
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Shiqi Bao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yuanyuan Yang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiangfei Yuan
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yongsu Zhen
- Department of Oncology, Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Yang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Dongsheng Xiong
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|