1
|
Mancarella C, Morrione A, Scotlandi K. Extracellular Interactors of the IGF System: Impact on Cancer Hallmarks and Therapeutic Approaches. Int J Mol Sci 2024; 25:5915. [PMID: 38892104 PMCID: PMC11172729 DOI: 10.3390/ijms25115915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Dysregulation of the insulin-like growth factor (IGF) system determines the onset of various pathological conditions, including cancer. Accordingly, therapeutic strategies have been developed to block this system in tumor cells, but the results of clinical trials have been disappointing. After decades of research in the field, it is safe to say that one of the major reasons underlying the poor efficacy of anti-IGF-targeting agents is derived from an underestimation of the molecular complexity of this axis. Genetic, transcriptional, post-transcriptional and functional interactors interfere with the activity of canonical components of this axis, supporting the need for combinatorial approaches to effectively block this system. In addition, cancer cells interface with a multiplicity of factors from the extracellular compartment, which strongly affect cell destiny. In this review, we will cover novel extracellular mechanisms contributing to IGF system dysregulation and the implications of such dangerous liaisons for cancer hallmarks and responses to known and new anti-IGF drugs. A deeper understanding of both the intracellular and extracellular microenvironments might provide new impetus to better decipher the complexity of the IGF axis in cancer and provide new clues for designing novel therapeutic approaches.
Collapse
Affiliation(s)
- Caterina Mancarella
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
2
|
Cao Y, Li Y, Liu R, Zhou J, Wang K. Preclinical and Basic Research Strategies for Overcoming Resistance to Targeted Therapies in HER2-Positive Breast Cancer. Cancers (Basel) 2023; 15:cancers15092568. [PMID: 37174034 PMCID: PMC10177527 DOI: 10.3390/cancers15092568] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/16/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
The amplification of epidermal growth factor receptor 2 (HER2) is associated with a poor prognosis and HER2 gene is overexpressed in approximately 15-30% of breast cancers. In HER2-positive breast cancer patients, HER2-targeted therapies improved clinical outcomes and survival rates. However, drug resistance to anti-HER2 drugs is almost unavoidable, leaving some patients with an unmet need for better prognoses. Therefore, exploring strategies to delay or revert drug resistance is urgent. In recent years, new targets and regimens have emerged continuously. This review discusses the fundamental mechanisms of drug resistance in the targeted therapies of HER2-positive breast cancer and summarizes recent research progress in this field, including preclinical and basic research studies.
Collapse
Affiliation(s)
- Yi Cao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Pathology, School of Basic Medical science, Central South University, Changsha 410008, China
| | - Yunjin Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Pathology, School of Basic Medical science, Central South University, Changsha 410008, China
| | - Ruijie Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Pathology, School of Basic Medical science, Central South University, Changsha 410008, China
| | - Kuansong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Pathology, School of Basic Medical science, Central South University, Changsha 410008, China
| |
Collapse
|
3
|
Ding R, Liu Q, Yu J, Wang Y, Gao H, Kan H, Yang Y. Identification of Breast Cancer Subtypes by Integrating Genomic Analysis with the Immune Microenvironment. ACS OMEGA 2023; 8:12217-12231. [PMID: 37033796 PMCID: PMC10077467 DOI: 10.1021/acsomega.2c08227] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Objectives: We aim to identify the breast cancer (BC) subtype clusters and the crucial gene classifier prognostic signatures by integrating genomic analysis with the tumor immune microenvironment (TME). Methods: Data sets of BC were derived from the Cancer Genome Atlas (TCGA), METABRIC, and Gene Expression Omnibus (GEO) databases. Unsupervised consensus clustering was carried out to obtain the subtype clusters of BC patients. Weighted gene coexpression network analysis (WGCNA), least absolute shrinkage and selection operator (LASSO), and univariate and multivariate regression analysis were employed to obtain the gene classifier signatures and their biological functions, which were validated by the BC dataset from the METABRIC database. Additionally, to evaluate the overall survival rates of BC patients, Kaplan-Meier survival analysis was carried out. Moreover, to assess how BC subtype clusters are related to the TME, single-cell analysis was performed. Finally, the drug sensitivity and the immune cell infiltration for different phenotypes of BC patients were also calculated by the CIBERSORT and ESTIMATE algorithms. Results : TCGA-BC samples were divided into three subtype clusters, S1, S2, and S3, among which the prognosis of S2 was poor and that of S1 and S3 were better. Three key pathways and 10 crucial prognostic-related gene signatures are screened. Finally, single-cell analysis suggests that S1 samples have the most types of immune cells, S2 with more sensitivity to tumor treatment drugs are enriched with more neutrophils, and more multilymphoid progenitor cells are involved in subtype cluster S3. Conclusions: Our novelty was to identify the BC subtype clusters and the gene classifier signatures employing a large-amount dataset combined with multiple bioinformatics methods. All of the results provide a basis for clinical precision treatment of BC.
Collapse
Affiliation(s)
- Ran Ding
- School
of Medical Informatics Engineering, Anhui
University of Chinese Medicine, Hefei 230012, China
- Anhui
Computer Application Research Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Hefei 230013, China
| | - Qiwei Liu
- School
of Medical Informatics Engineering, Anhui
University of Chinese Medicine, Hefei 230012, China
| | - Jing Yu
- School
of Medical Informatics Engineering, Anhui
University of Chinese Medicine, Hefei 230012, China
| | - Yongkang Wang
- School
of Medical Informatics Engineering, Anhui
University of Chinese Medicine, Hefei 230012, China
| | - Honglei Gao
- School
of Medical Informatics Engineering, Anhui
University of Chinese Medicine, Hefei 230012, China
| | - Hongxing Kan
- School
of Medical Informatics Engineering, Anhui
University of Chinese Medicine, Hefei 230012, China
- Anhui
Computer Application Research Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Hefei 230013, China
| | - Yinfeng Yang
- School
of Medical Informatics Engineering, Anhui
University of Chinese Medicine, Hefei 230012, China
- Anhui
Computer Application Research Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Hefei 230013, China
| |
Collapse
|
4
|
Zhao YX, Ma LB, Yang Z, Wang F, Wang HY, Dang JY. Cancerous inhibitor of protein phosphatase 2A enhances chemoresistance of gastric cancer cells to oxaliplatin. World J Gastrointest Oncol 2023; 15:286-302. [PMID: 36908323 PMCID: PMC9994047 DOI: 10.4251/wjgo.v15.i2.286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/23/2022] [Accepted: 01/05/2023] [Indexed: 02/14/2023] Open
Abstract
BACKGROUND Cancerous inhibitor of protein phosphatase 2A (CIP2A) is a newly discovered oncogene. It is an active cell proliferation regulatory factor that inhibits tumor apoptosis in gastric cancer (GC) cells. CIP2A is functionally related to chemoresistance in various types of tumors according to recent studies. The underlying mechanism, however, is unknown. Further, the primary treatment regimen for GC is oxaliplatin-based chemotherapy. Nonetheless, it often fails due to chemoresistance of GC cells to oxaliplatin.
AIM The goal of this study was to examine CIP2A expression and its association with oxaliplatin resistance in human GC cells.
METHODS Immunohistochemistry was used to examine CIP2A expression in GC tissues and adjacent normal tissues. CIP2A expression in GC cell lines was reduced using small interfering RNA. After confirming the silencing efficiency, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium and flow cytometry assays were used to evaluate cell proliferation and apoptosis caused by oxaliplatin treatment. Further, the key genes and protein changes were verified using real-time quantitative reverse transcription PCR and Western blotting, respectively, before and after intervention. For bioinformatics analysis, we used the R software and Bioconductor project. For statistical analysis, we used GraphPad Prism 6.0 and the Statistical Package for the Social Sciences software version 20.0 (IBM, Armonk, United States).
RESULTS A high level of CIP2A expression was associated with tumor size, T stage, lymph node metastasis, Tumor Node Metastasis stage, and a poor prognosis. Further, CIP2A expression was higher in GC cells than in normal human gastric epithelial cells. Using small interfering RNA against CIP2A, we discovered that CIP2A knockdown inhibited cell proliferation and significantly increased GC cell sensitivity to oxaliplatin. Moreover, CIP2A knockdown enhanced oxaliplatin-induced apoptosis in GC cells. Hence, high CIP2A levels in GC may be a factor in chemoresistance to oxaliplatin. In human GC cells, CIP2A regulated protein kinase B phosphorylation, and chemical inhibition of the protein kinase B signaling pathway was significantly associated with increased sensitivity to oxaliplatin. Therefore, the protein kinase B signaling pathway was correlated with CIP2A-enhanced chemoresistance of human GC cells to oxaliplatin.
CONCLUSION CIP2A expression could be a novel therapeutic strategy for chemoresistance in GC.
Collapse
Affiliation(s)
- Yong-Xun Zhao
- The Seventh Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Li-Bin Ma
- The Seventh Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Ze Yang
- The Seventh Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Fang Wang
- Department of Pathology, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Hui-Ying Wang
- The First Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Jia-Yao Dang
- The First Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
5
|
IGFBP3 Enhances Treatment Outcome and Predicts Favorable Prognosis in ABC-DLBCL. JOURNAL OF ONCOLOGY 2023; 2023:1388041. [PMID: 36660244 PMCID: PMC9845052 DOI: 10.1155/2023/1388041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 01/11/2023]
Abstract
Chemoresistance is a key obstacle in the clinical treatment and management of activated B cell-like diffuse large B-cell lymphoma (ABC-DLBCL), which leads to the poor prognosis of patients. Exploring novel biomarkers to early warn drug resistance and ameliorate the patients' outcome in ABC-DLBCL is urgent and crucial. Previously, we found that insulin-like growth factor-binding protein 3 (IGFBP3) was remarkably associated with immunochemotherapy treatment response through microarray screening. Based on a retrospective cohort (n = 160) and a GEO cohort (n = 292), here we determined the positive expression rate of IGFBP3 and analyzed the role of IGFBP3 in treatment response and prognostics in ABC-DLBCL. The results demonstrated that the complete response (CR) rate of R-CHOP treatment was higher in ABC-DLBCL with IGFBP3 positive expression than those with IGFBP3 negative expression (42.0% vs 26.4%), and IGFBP3 positive expression in ABC-DLBCL was significantly correlated with enhanced therapeutic response (P = 0.037). High level of IGFBP3 was negatively correlated with tumorigenesis and development and predicted favorable survival time in ABC-DLBCL. In conclusion, IGFBP3 may be utilized as a promising biomarker for prognosis evaluation and a potential therapy target in ABC-DLBCL patients.
Collapse
|
6
|
Nokhostin F, Azadehrah M, Azadehrah M. The multifaced role and therapeutic regulation of autophagy in ovarian cancer. Clin Transl Oncol 2022; 25:1207-1217. [PMID: 36534371 DOI: 10.1007/s12094-022-03045-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Ovarian cancer (OC) is one of the tumors that occurs most frequently in women. Autophagy is involved in cell homeostasis, biomolecule recycling, and survival, making it a potential target for anti-tumor drugs. It is worth noting that growing evidence reveals a close link between autophagy and OC. In the context of OC, autophagy demonstrates activity as both a tumor suppressor and a tumor promoter, depending on the context. Autophagy's exact function in OC is greatly reliant on the tumor microenvironment (TME) and other conditions, such as hypoxia, nutritional deficiency, chemotherapy, and so on. However, what can be concluded from different studies is that autophagy-related signaling pathways, especially PI3K/AKT/mTOR axis, increase in advanced stages and malignant phenotype of the disease reduces autophagy and ultimately leads to tumor progression. This study sought to present a thorough understanding of the role of autophagy-related signaling pathways in OC and existing therapies targeting these signaling pathways.
Collapse
Affiliation(s)
- Fahimeh Nokhostin
- Department of Obstetrics and Gynecology, Faculty of Medicine, Shahid Sadughi University of Medical Sciences, Yazd, Iran
| | - Mahboobeh Azadehrah
- Cancer Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Malihe Azadehrah
- Cancer Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
7
|
Wang ZH, Zheng ZQ, Jia S, Liu SN, Xiao XF, Chen GY, Liang WQ, Lu XF. Trastuzumab resistance in HER2-positive breast cancer: Mechanisms, emerging biomarkers and targeting agents. Front Oncol 2022; 12:1006429. [PMID: 36276152 PMCID: PMC9584623 DOI: 10.3389/fonc.2022.1006429] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/12/2022] [Indexed: 02/05/2023] Open
Abstract
Trastuzumab is a standard molecular targeted therapy for human epidermal growth factor receptor 2(HER2) -positive breast cancer, which can significantly improve the survival of patients with this molecular subtype of breast cancer. However, the clinical problem of onset or secondary resistance to trastuzumab has limited its efficacy. Therefore, it is very important to explore the mechanism of trastuzumab resistance and formulate countermeasures. Our study described the underlying molecular mechanism of trastuzumab resistance including ERBB2 mutations and nuclear localization, transcriptional and post-translational alterations of ERBB2, over-activation of bypass signaling pathways activation and so on. Then summarize the potential emerging predicting biomarkers and therapeutic strategies for trastuzumab resistance, in order to provide research direction for reversing trastuzumab resistance.
Collapse
Affiliation(s)
- Zhen-hao Wang
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), Shantou, China
- Shantou University Medical College (SUMC), Shantou, China
| | - Zhuo-qun Zheng
- Shantou University Medical College (SUMC), Shantou, China
| | - Shi−cheng Jia
- Shantou University Medical College (SUMC), Shantou, China
| | - Shu-ni Liu
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), Shantou, China
| | - Xiao-fen Xiao
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), Shantou, China
- Shantou University Medical College (SUMC), Shantou, China
| | - Guan-yuan Chen
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), Shantou, China
- Shantou University Medical College (SUMC), Shantou, China
| | - Wei-quan Liang
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), Shantou, China
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou, China
| | - Xiao-feng Lu
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), Shantou, China
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou, China
| |
Collapse
|
8
|
Wu D, Yu HQ, Xiong HJ, Zhang YJ, Lin XT, Zhang J, Wu W, Wang T, Liu XY, Xie CM. Elevated Sodium Pump α3 Subunit Expression Promotes Colorectal Liver Metastasis via the p53-PTEN/IGFBP3-AKT-mTOR Axis. Front Oncol 2021; 11:743824. [PMID: 34868940 PMCID: PMC8632823 DOI: 10.3389/fonc.2021.743824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022] Open
Abstract
The sodium pump α3 subunit is associated with colorectal liver metastasis. However, the underlying mechanism involved in this effect is not yet known. In this study, we found that the expression levels of the sodium pump α3 subunit were positively associated with metastasis in colorectal cancer (CRC). Knockdown of the α3 subunit or inhibition of the sodium pump could significantly inhibit the migration of colorectal cancer cells, whereas overexpression of the α3 subunit promoted colorectal cancer cell migration. Mechanistically, the α3 subunit decreased p53 expression, which subsequently downregulated PTEN/IGFBP3 and activated mTOR, leading to the promotion of colorectal cancer cell metastasis. Reciprocally, knockdown of the α3 subunit or inhibition of the sodium pump dramatically blocked this effect in vitro and in vivo via the downregulation of mTOR activity. Furthermore, a positive correlation between α3 subunit expression and mTOR activity was observed in an aggressive CRC subtype. Conclusions: Elevated expression of the sodium pump α3 subunit promotes CRC liver metastasis via the PTEN/IGFBP3-mediated mTOR pathway, suggesting that sodium pump α3 could represent a critical prognostic marker and/or therapeutic target for this disease.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hong-Qiang Yu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hao-Jun Xiong
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yu-Jun Zhang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiao-Tong Lin
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jie Zhang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wu Wu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Teng Wang
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiao-Yu Liu
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China.,School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chuan-Ming Xie
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
9
|
Jiang X, Zhang W, Li L, Xie S. Integrated Transcriptomic Analysis Revealed Hub Genes and Pathways Involved in Sorafenib Resistance in Hepatocellular Carcinoma. Pathol Oncol Res 2021; 27:1609985. [PMID: 34737677 PMCID: PMC8560649 DOI: 10.3389/pore.2021.1609985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/28/2021] [Indexed: 12/31/2022]
Abstract
Hepatocellular carcinoma (HCC), a high mortality malignancy, has become a worldwide public health concern. Acquired resistance to the multikinase inhibitor sorafenib challenges its clinical efficacy and the survival benefits it provides to patients with advanced HCC. This study aimed to identify critical genes and pathways associated with sorafenib resistance in HCC using integrated bioinformatics analysis. Differentially expressed genes (DEGs) were identified using four HCC gene expression profiles (including 34 sorafenib-resistant and 29 sorafenib-sensitive samples) based on the robust rank aggregation method and R software. Gene ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) online tool. A protein–protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes (STRING), and small molecules reversing sorafenib resistance were searched for using the connectivity map (CMAP) database. Pearson correlation and survival analyses of hub genes were performed using cBioPortal and Gene Expression Profiling and Interactive Analysis (GEPIA). Finally, the expression levels of hub genes in sorafenib-resistant HCC cells were verified using quantitative polymerase chain reaction (q-PCR). A total of 165 integrated DEGs (66 upregulated and 99 downregulated in sorafenib resistant samples compared sorafenib sensitive ones) primarily enriched in negative regulation of endopeptidase activity, extracellular exosome, and protease binding were identified. Some pathways were commonly shared between the integrated DEGs. Seven promising therapeutic agents and 13 hub genes were identified. These findings provide a strategy and theoretical basis for overcoming sorafenib resistance in HCC patients.
Collapse
Affiliation(s)
- Xili Jiang
- Department of Radiology, The Second People's Hospital of Hunan Province/Brain Hospital of Hunan Province, Changsha, China
| | - Wei Zhang
- Department of Radiology, The Second People's Hospital of Hunan Province/Brain Hospital of Hunan Province, Changsha, China
| | - Lifeng Li
- Department of Radiology, Changsha Central Hospital, Changsha, China
| | - Shucai Xie
- Department of Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Li M, Wu W, Deng S, Shao Z, Jin X. TRAIP modulates the IGFBP3/AKT pathway to enhance the invasion and proliferation of osteosarcoma by promoting KANK1 degradation. Cell Death Dis 2021; 12:767. [PMID: 34349117 PMCID: PMC8339131 DOI: 10.1038/s41419-021-04057-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 01/03/2023]
Abstract
Osteosarcoma is one of the most common primary malignancies in bones and is characterized by high metastatic rates. Circulating tumor cells (CTCs) derived from solid tumors can give rise to metastatic lesions, increasing the risk of death in patients with cancer. Here, we used bioinformatics tools to compare the gene expression between CTCs and metastatic lesions in osteosarcoma to identify novel molecular mechanisms underlying osteosarcoma metastasis. We identified TRAIP as a key differentially expressed gene with prognostic significance in osteosarcoma. We demonstrated that TRAIP regulated the proliferation and invasion of osteosarcoma cells. In addition, we found that TRAIP promoted KANK1 polyubiquitination and subsequent degradation, downregulating IGFBP3 and activating the AKT pathway in osteosarcoma cells. These results support the critical role of the TRAIP/KANK1/IGFBP3/AKT signaling axis in osteosarcoma progression and suggest that TRAIP may represent a promising therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Mi Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sisi Deng
- Cancer center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Uro-Oncology Institute of Central South University, Changsha, Hunan, China.
| |
Collapse
|
11
|
Hao P, Huang Y, Peng J, Yu J, Guo X, Bao F, Dian Z, An S, Xu TR. IRS4 promotes the progression of non-small cell lung cancer and confers resistance to EGFR-TKI through the activation of PI3K/Akt and Ras-MAPK pathways. Exp Cell Res 2021; 403:112615. [PMID: 33894221 DOI: 10.1016/j.yexcr.2021.112615] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/13/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
IRS4 is a member of the insulin receptor substrate (IRS) protein family. It acts as a cytoplasmic adaptor protein, integrating and transmitting signals from receptor protein tyrosine kinases to the intracellular environment. IRS4 can induce mammary tumorigenesis and is usually overexpressed in non-small cell lung cancer (NSCLC). However, little is known about the role of IRS4 in the development and progression of lung cancer. In this study, we show that IRS4 knockout suppresses the proliferation, colony formation, migration, and invasion of A549 lung cancer cells, as well as tumor growth in a nude mouse xenograft model. In contrast, stable expression of IRS4 showed the opposite effects. As expected, IRS4 was found to activate the PI3K/Akt and Ras-MAPK pathways, and we also showed that IRS4 depletion significantly enhanced the sensitivity of EGFR tyrosine kinase inhibitor (EGFR-TKI)-resistant cells to gefitinib. Taken together, these results show that IRS4 promotes NSCLC progression and may represent a potential therapeutic target for EGFR-TKI-resistant NSCLC.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Drug Resistance, Neoplasm/genetics
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Extracellular Signal-Regulated MAP Kinases/genetics
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Gefitinib/therapeutic use
- Gene Expression Regulation, Neoplastic
- Humans
- Insulin Receptor Substrate Proteins/antagonists & inhibitors
- Insulin Receptor Substrate Proteins/genetics
- Insulin Receptor Substrate Proteins/metabolism
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Mice
- Mice, Nude
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Signal Transduction
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Peiqi Hao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ying Huang
- Simcere Pharmaceutical Co., Ltd, Nanjing, 210018, China; The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd, Nanjing, 210018, China
| | - Jun Peng
- The First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Jiaojiao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiaoxi Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Fan Bao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; The First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Ziqin Dian
- The First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Su An
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Tian-Rui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
12
|
Dong C, Wu J, Chen Y, Nie J, Chen C. Activation of PI3K/AKT/mTOR Pathway Causes Drug Resistance in Breast Cancer. Front Pharmacol 2021; 12:628690. [PMID: 33790792 PMCID: PMC8005514 DOI: 10.3389/fphar.2021.628690] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Although chemotherapy, targeted therapy and endocrine therapy decrease rate of disease recurrence in most breast cancer patients, many patients exhibit acquired resistance. Hyperactivation of the PI3K/AKT/mTOR pathway is associated with drug resistance and cancer progression. Currently, a number of drugs targeting PI3K/AKT/mTOR are being investigated in clinical trials by combining them with standard therapies to overcome acquired resistance in breast cancer. In this review, we summarize the critical role of the PI3K/AKT/mTOR pathway in drug resistance, the development of PI3K/AKT/mTOR inhibitors, and strategies to overcome acquired resistance to standard therapies in breast cancer.
Collapse
Affiliation(s)
- Chao Dong
- Department of the Second Medical Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Kunming, China
| | - Jiao Wu
- Department of the Second Medical Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Kunming, China
| | - Yin Chen
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Jianyun Nie
- Department of the Third Breast Surgery, The 3rd Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Kunming, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
13
|
Song Q, Feng S, Peng W, Li A, Ma T, Yu B, Liu HM. Cullin-RING Ligases as Promising Targets for Gastric Carcinoma Treatment. Pharmacol Res 2021; 170:105493. [PMID: 33600940 DOI: 10.1016/j.phrs.2021.105493] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
Gastric carcinoma has serious morbidity and mortality, which seriously threats human health. The studies on gastrointestinal cell biology have shown that the ubiquitination modification that occurs after protein translation plays an essential role in the pathogenesis of gastric carcinoma. Protein ubiquitination is catalyzed by E3 ubiquitin ligase and can regulate various substrate proteins in different cellular pathways. Cullin-RING E3 ligase (CRLs) is a representative of the E3 ubiquitin ligase family, which requires cullin (CUL) neddylation modification for activation to regulate homeostasis of ~20% of cellular proteins. The substrate molecules regulated by CRLs are often involved in many cell progressions such as cell cycle progression, cell apoptosis, DNA damage and repair. Given that CRLs play an important role in modulation of biological activities, so targeting a certain CULs member neddylation may be an attractive strategy for selectively controlling the cellular proteins levels to achieve the goal of cancer treatment. In this review, we will discuss the roles of CULs and Ring protein in gastric carcinoma and summarize the current neddylation modulators for gastric carcinoma treatment.
Collapse
Affiliation(s)
- Qianqian Song
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China
| | - Siqi Feng
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China
| | - Wenjun Peng
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China
| | - Anqi Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ting Ma
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Bin Yu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
14
|
The Roles of Insulin-Like Growth Factor Binding Protein Family in Development and Diseases. Adv Ther 2021; 38:885-903. [PMID: 33331986 DOI: 10.1007/s12325-020-01581-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022]
Abstract
The insulin-like growth factor (IGF) system comprises ligands of IGF-I/II, IGF receptors (IGFR), IGF binding proteins (IGFBPs), and IGFBP hydrolases. The IGF system plays multiple roles during various disease development as IGFs are widely involved in cell proliferation and differentiation through regulating DNA transcription. Meanwhile, IGFBPs, which are mainly synthesized in the liver, can bind to IGFs and perform two different functions: either inhibition of IGFs by forming inactive compounds with IGF or enhancement of the function of IGFs by strengthening the IGF-IGFR interaction. Interestingly, IGFBPs may have wider functions through IGF-independent mechanisms. Studies have shown that IGFBPs play important roles in cardiovascular disease, tumor progression, fetal growth, and neuro-nutrition. In this review, we emphasize that different IGFBP family members have common or unique functions in numerous diseases; moreover, IGFBPs may serve as biomarkers for disease diagnosis and prediction.
Collapse
|
15
|
Li X, Yin G, Ji W, Liu J, Zhang Y, Wang J, Zhu X, Zhu L, Dai D, Ma W, Xu W. 18F-FHBG PET-CT Reporter Gene Imaging of Adoptive CIK Cell Transfer Immunotherapy for Breast Cancer in a Mouse Model. Onco Targets Ther 2020; 13:11659-11668. [PMID: 33223839 PMCID: PMC7671474 DOI: 10.2147/ott.s271657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022] Open
Abstract
Background To further improve the efficiency of adoptively transferred cytokine-induced killer (CIK) cell immunotherapy in breast cancer (BC), a reliable imaging method is required to visualize and monitor these transferred cells in vivo. Methods Herpes simplex virus 1-thymidine kinase (HSV1-TK) and 9-(4-[18F]fluoro-3-(hydroxymethyl)butyl)guanine (18F-FHBG) were used as a pair of reporter gene/reporter probe for positron emission tomography (PET) imaging in this study. Following the establishment of subcutaneous BC xenograft-bearing nude mice models, induced human CIK cells expressing reporter gene HSV1-TK through lentiviral transduction were intravenously injected to nude mice. γ-radioimmunoassay was used to determine the specific uptake of 18F-FHBG by these genetically engineered CIK cells expressing HSV1-TK in vitro, and 18F-FHBG micro positron emission tomography-computed tomography (PET-CT) imaging was performed to visualize these adoptively transferred CIK cells in tumor-bearing nude mice. Results Specific uptake of 18F-FHBG by CIK cells expressing HSV1-TK was clearly observed in vitro. Consistently, the localization of adoptively transferred CIK cells in tumor target could be effectively visualized by 18F-FHBG micro PET-CT reporter gene imaging. Conclusion PET-CT reporter gene imaging using 18F-FHBG as a reporter probe enables the visualization and monitoring of adoptively transferred CIK cells in vivo.
Collapse
Affiliation(s)
- Xiaofeng Li
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| | - Guotao Yin
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| | - Wei Ji
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China.,Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China
| | - Jianjing Liu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| | - Yufan Zhang
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| | - Jian Wang
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| | - Xiang Zhu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| | - Lei Zhu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| | - Dong Dai
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| | - Wenchao Ma
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| | - Wengui Xu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| |
Collapse
|
16
|
Gao G, Shi X, Yao Z, Shen J, Shen L. Identification of lymph node metastasis-related microRNAs in breast cancer using bioinformatics analysis. Medicine (Baltimore) 2020; 99:e22105. [PMID: 32991406 PMCID: PMC7523764 DOI: 10.1097/md.0000000000022105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Lymph node metastasis is a significant problem in breast cancer, and its underlying molecular mechanism is still unclear. The purpose of this study is to research the molecular mechanism and to explore the key RNAs and pathways that mediate lymph node metastasis in breast cancer. METHODS GSE100453 and GSE38167 were downloaded from the Gene Expression Omnibus (GEO) database and 569 breast cancer statistics were also downloaded from the TCGA database. Differentially expressed miRNAs were calculated by using R software and GEO2R. Gene ontology and Enriched pathway analysis of target mRNAs were analyzed by using the Database for Database of Annotation Visualization and Integrated Discovery (DAVID) and R software. The protein-protein interaction (PPI) network was performed according to Metascape, String, and Cytoscape software. RESULTS In total, 6 differentially expressed miRNAs were selected, and 499 mRNAs were identified after filtering. The research of the Kyoto Encyclopedia of Genes and Genomes (KEGG) demonstrated that mRNAs enriched in certain tumor pathways. Also, certain hub mRNAs were highlighted after constructed and analyzed the PPI network. A total of 3 out of 6 miRNAs had a significant relationship with the overall survival (P < .05) and showed a good ability of risk prediction model of over survival. CONCLUSIONS By utilizing bioinformatics analyses, differently expressed miRNAs were identified and constructed a complete gene network. Several potential mechanisms and therapeutic and prognostic targets of lymph node metastasis were also demonstrated in breast cancer.
Collapse
|
17
|
A novel 4-aminoquinazoline derivative, DHW-208, suppresses the growth of human breast cancer cells by targeting the PI3K/AKT/mTOR pathway. Cell Death Dis 2020; 11:491. [PMID: 32606352 PMCID: PMC7327080 DOI: 10.1038/s41419-020-2690-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 01/03/2023]
Abstract
Breast cancer is one of the most frequent cancers among women worldwide. However, there is still no effective therapeutic strategy for advanced breast cancer that has metastasized. Aberrant activation of the PI3K/AKT/mTOR pathway is an essential step for the growth of human breast cancers. In our previous study, we designed and synthesized DHW-208 (2,4-difluoro-N-(5-(4-((1-(2-hydroxyethyl)-1H-pyrazol-4-yl)amino)quinazolin-6-yl)-2-methoxypyridin-3-yl)benzenesulfonamide) as a novel pan-PI3K inhibitor. This study aimed to assess the therapeutic efficacy of DHW-208 in breast cancer and investigate its underlying mechanism. We found that DHW-208 inhibited the growth, proliferation, migration, and invasion of breast cancer cells. Moreover, DHW-208 induced breast cancer cell apoptosis via the mitochondrial pathway and induced G0/G1 cell-cycle arrest. In vitro results show that DHW-208 is a dual inhibitor of PI3K and mTOR, and suppress the growth of human breast cancer cells by targeting the PI3K/AKT/mTOR pathway. Consistent with the in vitro results, in vivo studies demonstrated that DHW-208 elicits an antitumor effect by inhibiting the PI3K/AKT/mTOR-signaling pathway with a high degree of safety in breast cancer. Above all, we report for the first time that DHW-208 suppressed the growth of human breast cancer cells by inhibiting the PI3K/AKT/mTOR-signaling pathway both in vivo and in vitro. Our study may provide evidence for the use of DHW-208 as an effective, novel therapeutic candidate for the treatment of human breast cancers in clinical trials.
Collapse
|
18
|
Shen G, Gao Q, Liu F, Zhang Y, Dai M, Zhao T, Cheng M, Xu T, Jin P, Yin W, Huang D, Weng H, Chen W, Ren H, Mu X, Wu X, Hu S. The Wnt3a/β-catenin/TCF7L2 signaling axis reduces the sensitivity of HER2-positive epithelial ovarian cancer to trastuzumab. Biochem Biophys Res Commun 2020; 526:685-691. [PMID: 32248976 DOI: 10.1016/j.bbrc.2020.03.154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 12/24/2022]
Abstract
Epithelial ovarian cancer (EOC) is one of the most common and lethal gynecological cancers. Novel therapeutic agents have been developed for EOC, but patient survival remains poor. Trastuzumab has been approved for breast and gastric cancers with high expression of human epidermal growth factor receptor 2 (HER2), but it has not achieved any clinical success in EOC. Dysregulated Wnt/β-catenin signaling is involved in cancer development, but whether it plays a role in EOC resistance to trastuzumab remains largely unknown. Here, we observed that high expression of Wnt3a, β-catenin and TCF7L2, which can form a signaling axis in the Wnt/β-catenin pathway, commonly existed in HER2-positive EOC tissue samples and was correlated with a poor patient prognosis. Cell proliferation and migration assays and nude mouse xenograft model experiments demonstrated that the Wnt3a/β-catenin/TCF7L2 signaling axis promoted tumor cell growth and metastasis and reduced tumor sensitivity to trastuzumab. Analysis of downstream Akt signaling suggested that the function of the Wnt3a/β-catenin/TCF7L2 signaling axis was mediated, at least in part, through increasing Akt phosphorylation. Overall, this study reveals a crucial role for the Wnt3a/β-catenin/TCF7L2 signaling axis in EOC resistance to trastuzumab and the potential application of HER2-targeted drugs combined with inhibitors of this signaling axis for EOC treatment.
Collapse
Affiliation(s)
- Guodong Shen
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, 230001, China.
| | - Qian Gao
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, 230001, China; Department of Genetics, School of Life Science, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Fenfen Liu
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, 230001, China
| | - Yan Zhang
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, 230001, China; School of Health Services Management, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Meng Dai
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, 230001, China
| | - Tingting Zhao
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, 230001, China; Department of Gynecology and Obstetrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Min Cheng
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, 230001, China
| | - Tingjuan Xu
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, 230001, China
| | - Peipei Jin
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, 230001, China
| | - Wu Yin
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, 230001, China
| | - Dabing Huang
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, 230001, China; Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Haiyan Weng
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Wen Chen
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, 230001, China
| | - Huirong Ren
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, 230001, China
| | - Xuanxuan Mu
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, 230001, China
| | - Xinchun Wu
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, 230001, China
| | - Shilian Hu
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, 230001, China.
| |
Collapse
|
19
|
Abstract
The insulin-like growth factors (IGFs; IGF1/IGF2), known for their regulation of cell and organismal growth and development, are evolutionarily conserved ligands with equivalent peptides present in flies (
D. melanogaster), worms (
C. elegans) among others. Two receptor tyrosine kinases, the IGF1 receptor and the insulin receptor mediate the actions of these ligands with a family of IGF binding proteins serving as selective inhibitors of IGF1/2. This treatise reviews recent findings on IGF signaling in cancer biology and central nervous system function. This includes overexpression of IGF1 receptors in enhancing tumorigenesis, acquired resistance and contributions to metastasis in multiple cancer types. There is accumulating evidence that insulin resistance, a hallmark of type 2 diabetes, occurs in the central nervous system, independent of systemic insulin resistance and characterized by reduced insulin and IGF1 receptor signaling, and may contribute to dementias including Alzheimer’s Disease and cognitive impairment. Controversy over the role(s) of IGF signaling in cancer and whether its inhibition would be of benefit, still persist and extend to IGF1’s role in longevity and central nervous system function.
Collapse
Affiliation(s)
- Steven A Rosenzweig
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
20
|
Zhang Z, Zhang J, Li J, Geng H, Zhou B, Zhang B, Chen H. miR-320/ELF3 axis inhibits the progression of breast cancer via the PI3K/AKT pathway. Oncol Lett 2020; 19:3239-3248. [PMID: 32256819 PMCID: PMC7074334 DOI: 10.3892/ol.2020.11440] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 02/05/2020] [Indexed: 01/11/2023] Open
Abstract
There is increasing evidence demonstrating that disorders affecting microRNAs (miRs) influence tumorigenesis and progression, which results in a poor prognosis in patients with breast cancer (BC). In the present study, the precise molecular mechanism underlying the role of miR-320 in the progression of BC was investigated. Reverse transcription-quantitative PCR was conducted to determine mRNA expression, and western blot analysis was used to test protein levels. An MTT assay was conducted to detect cell viability and Transwell assays were used to analyze cell migration and invasion abilities. Furthermore, E74-like factor 3 (ELF3) protein density was tested via immunohistochemistry. Tumor volume was detected by xenograft tumor formation assay. The current results indicated that miR-320 expression was downregulated in BC tissues and cells, and was associated with a poor prognosis of patients with BC. Overexpression of miR-320 inhibited cell proliferation, migration and invasion via inhibition of the epithelial-mesenchymal transition and the PI3K/AKT signaling pathway in BC cells. Furthermore, it was revealed that the tumor size and weight were smaller in nude mice that had been transfected to overexpress miR-320. The luciferase reporter assay demonstrated the direct binding of miR-320 to the 3′ untranslated region of ELF3 mRNA, which may further downregulate ELF3. Overall, the present results provided evidence that miR-320 may be a tumor suppressor in BC, and that the miR-320/ELF3 axis regulated tumor progression via the PI3K/AKT signaling pathway, which may represent a novel treatment strategy for BC.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Department of Thoracic Surgery, Baoding First Central Hospital, Baoding, Hebei 071000, P.R. China
| | - Jinku Zhang
- Department of Pathology, Baoding First Central Hospital, Baoding, Hebei 071000, P.R. China
| | - Jinmei Li
- Department of Pathology, Baoding First Central Hospital, Baoding, Hebei 071000, P.R. China
| | - Huijuan Geng
- Department of Clinical Laboratory, Baoding Infectious Diseases Hospital, Baoding, Hebei 071000, P.R. China
| | - Bingjuan Zhou
- Department of Pathology, Baoding First Central Hospital, Baoding, Hebei 071000, P.R. China
| | - Bingxin Zhang
- Department of Pathology, Baoding First Central Hospital, Baoding, Hebei 071000, P.R. China
| | - Hong Chen
- Department of Pathology, Baoding First Central Hospital, Baoding, Hebei 071000, P.R. China
| |
Collapse
|