1
|
Zhang Y, Cui Y, Hao C, Li Y, He X, Li W, Yu H. Development of the TP53 mutation associated hypopharyngeal squamous cell carcinoma prognostic model through bulk multi-omics sequencing and single-cell sequencing. Braz J Otorhinolaryngol 2024; 91:101499. [PMID: 39341197 PMCID: PMC11466543 DOI: 10.1016/j.bjorl.2024.101499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/30/2024] [Accepted: 08/18/2024] [Indexed: 09/30/2024] Open
Abstract
OBJECTIVE The aim of this study was to construct a prognostic model based on the TP53 mutation to calculate prognostic risk scores of patients with HPSCC. METHODS TP53 mutation and transcriptome data were downloaded from the TCGA databases. Gene expression data from GSE65858, GSE41613, GSE3292, GSE31056, GSE39366, and GSE227156 datasets were downloaded from the GEO database. GSEA, univariate, multivariate Cox analyses, and LASSO analysis were employed to identify key genes and construct the prognostic model. ROC curves were utilized to validate the OS and RFS results obtained from the model. The associations between risk scores with various clinicopathological characteristics and immune scores were analyzed via ggplot2, corrplot package, and GSVA, respectively. Single-cell sequencing data was analyzed via unbiased clustering and SingleR cell annotations. RESULTS Initially, two key genes, POLD2 and POLR2G, were identified and utilized to construct the prognostic model. Samples were divided into different risk groups via the risk scores obtained from the model, with high-risk group samples exhibiting poorer prognosis. Furthermore, the risk score exhibited a positive correlation with lymphatic metastasis in patients and the immune scores of CD4+ T, CD8+ T, dendritic cell, macrophage, and neutrophil. The immune responses also exhibited notable disparities between the high- and low-risk groups. The results of single-cell sequencing analysis demonstrated that epithelial cells and macrophages were relatively abundant in HPSCC samples. POLD2 and POLR2G exhibited higher expressions in epithelial cells, with most of the identified pathways also enriched in epithelial cells. CONCLUSION The prognostic model exhibited a significant capacity for predicting the prognosis of HSPCC samples based on the TP53 mutation conditions and may also predict the cancer characteristics and immune infiltration scores of samples via different risk scores obtained from the model. LEVEL OF EVIDENCE Level 5.
Collapse
Affiliation(s)
- Ying Zhang
- The Second Affiliated Hospital of Harbin Medical University, Department of Radiation Oncology, Harbin, China
| | - Yue Cui
- The Second Affiliated Hospital of Harbin Medical University, Department of Radiation Oncology, Harbin, China
| | - Congfan Hao
- The Second Affiliated Hospital of Harbin Medical University, Department of Radiation Oncology, Harbin, China
| | - Yingjie Li
- The Second Affiliated Hospital of Harbin Medical University, Department of Radiation Oncology, Harbin, China
| | - Xinyang He
- The Second Affiliated Hospital of Harbin Medical University, Department of Radiation Oncology, Harbin, China
| | - Wenhui Li
- The Second Affiliated Hospital of Harbin Medical University, Department of Radiation Oncology, Harbin, China
| | - Hongyang Yu
- The Second Affiliated Hospital of Harbin Medical University, Department of Radiation Oncology, Harbin, China.
| |
Collapse
|
2
|
Wang T, Wang G, Shan D, Fang Y, Zhou F, Yu M, Ju L, Li G, Xiang W, Qian K, Zhang Y, Xiao Y, Wang X. ACAT1 promotes proliferation and metastasis of bladder cancer via AKT/GSK3β/c-Myc signaling pathway. J Cancer 2024; 15:3297-3312. [PMID: 38817856 PMCID: PMC11134450 DOI: 10.7150/jca.95549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/08/2024] [Indexed: 06/01/2024] Open
Abstract
Acetyl-CoA acetyltransferase 1 (ACAT1) plays a significant role in the regulation of gene expression and tumorigenesis. However, the biological role of ACAT1 in bladder cancer (BLCA) has yet to be elucidated. This research aimed to elucidate the bioinformatics features and biological functions of ACAT1 in BLCA. Here, we demonstrate that ACAT1 is elevated in BLCA tissues and is correlated with specific clinicopathological features and an unfavorable prognosis for survival in BLCA patients. ACAT1 was identified as an independent risk factor in BLCA. Phenotypically, both in vitro and in vivo, ACAT1 knockdown suppressed BLCA cell proliferation and migration, while ACAT1 overexpression had the opposite effect. Mechanistic assays revealed that ACAT1 enhances BLCA cell proliferation and metastasis through the AKT/GSK3β/c-Myc signaling pathway by modulating the cell cycle and EMT. Taken together, the results of our study reveal that ACAT1 is an oncogenic driver in BLCA that enhances tumor proliferation and metastasis, indicating its potential as a diagnostic and therapeutic target for this disease.
Collapse
Affiliation(s)
- Tingjun Wang
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Danni Shan
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yayun Fang
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fenfang Zhou
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mengxue Yu
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Li
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wan Xiang
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Zhang
- Euler Technology, ZGC Life Sciences Park, Beijing, China
- Center for Quantitative Biology, School of Life Sciences, Peking University, Beijing, China
| | - Yu Xiao
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Lin G, Gao Z, Wu S, Zheng J, Guo X, Zheng X, Chen R. scRNA-seq revealed high stemness epithelial malignant cell clusters and prognostic models of lung adenocarcinoma. Sci Rep 2024; 14:3709. [PMID: 38355636 PMCID: PMC10867035 DOI: 10.1038/s41598-024-54135-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the sole causes of death in lung cancer patients. This study combined with single-cell RNA-seq analysis to identify tumor stem-related prognostic models to predict the prognosis of lung adenocarcinoma, chemotherapy agents, and immunotherapy efficacy. mRNA expression-based stemness index (mRNAsi) was determined by One Class Linear Regression (OCLR). Differentially expressed genes (DEGs) were detected by limma package. Single-cell RNA-seq analysis in GSE123902 dataset was performed using Seurat package. Weighted Co-Expression Network Analysis (WGCNA) was built by rms package. Cell differentiation ability was determined by CytoTRACE. Cell communication analysis was performed by CellCall and CellChat package. Prognosis model was constructed by 10 machine learning and 101 combinations. Drug predictive analysis was conducted by pRRophetic package. Immune microenvironment landscape was determined by ESTIMATE, MCP-Counter, ssGSEA analysis. Tumor samples have higher mRNAsi, and the high mRNAsi group presents a worse prognosis. Turquoise module was highly correlated with mRNAsi in TCGA-LUAD dataset. scRNA analysis showed that 22 epithelial cell clusters were obtained, and higher CSCs malignant epithelial cells have more complex cellular communication with other cells and presented dedifferentiation phenomenon. Cellular senescence and Hippo signaling pathway are the major difference pathways between high- and low CSCs malignant epithelial cells. The pseudo-temporal analysis shows that cluster1, 2, high CSC epithelial cells, are concentrated at the end of the differentiation trajectory. Finally, 13 genes were obtained by intersecting genes in turquoise module, Top200 genes in hdWGCNA, DEGs in high- and low- mRNAsi group as well as DEGs in tumor samples vs. normal group. Among 101 prognostic models, average c-index (0.71) was highest in CoxBoost + RSF model. The high-risk group samples had immunosuppressive status, higher tumor malignancy and low benefit from immunotherapy. This work found that malignant tumors and malignant epithelial cells have high CSC characteristics, and identified a model that could predict the prognosis, immune microenvironment, and immunotherapy of LUAD, based on CSC-related genes. These results provided reference value for the clinical diagnosis and treatment of LUAD.
Collapse
Affiliation(s)
- GuoYong Lin
- Department of Respiratory and Critical Illness Medicine, The First Hospital of Putian, Putian, 351100, China
| | - ZhiSen Gao
- Department of Respiratory and Critical Illness Medicine, The First Hospital of Putian, Putian, 351100, China
| | - Shun Wu
- Department of Respiratory and Critical Illness Medicine, The First Hospital of Putian, Putian, 351100, China
| | - JianPing Zheng
- Department of Respiratory and Critical Illness Medicine, The First Hospital of Putian, Putian, 351100, China
| | - XiangQiong Guo
- Department of Respiratory and Critical Illness Medicine, The First Hospital of Putian, Putian, 351100, China
| | - XiaoHong Zheng
- Department of Respiratory and Critical Illness Medicine, The First Hospital of Putian, Putian, 351100, China
| | - RunNan Chen
- Department of Respiratory and Critical Illness Medicine, The First Hospital of Putian, Putian, 351100, China.
| |
Collapse
|
4
|
Jiang J, Wang Y, Liu D, Wang X, Zhu Y, Tong J, Chen E, Xue L, Zhao N, Liang T, Zheng C. Selinexor Synergistically Promotes the Antileukemia Activity of Venetoclax in Acute Myeloid Leukemia by Inhibiting Glycolytic Function and Downregulating the Expression of DNA Replication Genes. Immunotargets Ther 2023; 12:135-147. [PMID: 38026089 PMCID: PMC10680489 DOI: 10.2147/itt.s429402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The BCL-2 inhibitor venetoclax has been widely used in the treatment of acute myeloid leukemia (AML); however, AML patients treated with venetoclax gradually develop resistance. The exportin-1 (XPO1) inhibitor selinexor can synergistically promote the antileukemia activity of venetoclax, but the mechanism remains unclear. Methods and Results Annexin V/7-aminoactinomycin D assays were used to examine the effects of a combination of venetoclax and selinexor (VEN+SEL) on AML cell lines and primary AML cells. RNA sequencing and oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) determinations by a Seahorse XF analyzer were employed to investigate the molecular mechanism of the toxicity of the VEN+SEL combination to AML cells. The cytotoxicity of NK cell combined with VEN+SEL combination was assessed in vitro using flow cytometry. VEN+SEL enhanced the apoptosis of AML cells (KG-1A and THP-1) and primary AML samples in vitro. The ECAR and OCR results demonstrated that the VEN+SEL combination significantly inhibited glycolytic function. RNA sequencing of THP-1 cells demonstrated that DNA replication-related genes were downregulated after treatment with the VEN+SEL combination. Conclusion This study indicated that selinexor can synergistically enhance the antileukemia activity of venetoclax in AML cells in vitro by inhibiting glycolytic function and downregulating DNA replication-related genes. Based on our experimental data, combining selinexor with venetoclax is an appropriate advanced treatment option for AML patients.
Collapse
Affiliation(s)
- Jiqian Jiang
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Yan Wang
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Dan Liu
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Xiaoyu Wang
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Yingqiao Zhu
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Juan Tong
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Erling Chen
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Lei Xue
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Na Zhao
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Tingting Liang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Changcheng Zheng
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| |
Collapse
|
5
|
Wu X, Liu Y, Wang W, Crimmings K, Williams A, Mager J, Cui W. Early embryonic lethality of mice lacking POLD2. Mol Reprod Dev 2023; 90:98-108. [PMID: 36528861 PMCID: PMC9974775 DOI: 10.1002/mrd.23663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/09/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
As a highly conserved DNA polymerase (Pol), Pol δ plays crucial roles in chromosomal DNA synthesis and various DNA repair pathways. However, the function of POLD2, the second small subunit of DNA Pol δ (p50 subunit), has not been characterized in vivo during mammalian development. Here, we report for the first time, the essential role of subunit POLD2 during early murine embryogenesis. Although Pold2 mutant mouse embryos exhibit normal morphology at E3.5 blastocyst stage, they cannot be recovered at gastrulation stages. Outgrowth assays reveal that mutant blastocysts cannot hatch from the zona pellucida, indicating impaired blastocyst function. Notably, these phenotypes can be recapitulated by small interfering RNA (siRNA)-mediated knockdown, which also exhibit slowed cellular proliferation together with skewed primitive endoderm and epiblast allocation during the second cell lineage specification. In summary, our study demonstrates that POLD2 is essential for the earliest steps of mammalian development, and the retarded proliferation and embryogenesis may also alter the following cell lineage specifications in the mouse blastocyst embryos.
Collapse
Affiliation(s)
- Xiaoqing Wu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, Anhui, China
| | - Yong Liu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, Anhui, China
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Wenying Wang
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, Anhui, China
| | - Kate Crimmings
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Andrea Williams
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Wei Cui
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
- Animal Models Core Facility, Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
6
|
Zhang Z. POLD2 is activated by E2F1 to promote triple-negative breast cancer proliferation. Front Oncol 2022; 12:981329. [PMID: 36119494 PMCID: PMC9479206 DOI: 10.3389/fonc.2022.981329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly malignant breast cancer subtype with a poor prognosis. Improved insight into the molecular biology basis of TNBC progression is urgently needed. Herein, we reported that POLD2 was highly expressed in TNBC and patients with high POLD2 expression in their tumors had poor clinical outcomes. In functional studies, knockdown of POLD2 inhibited the proliferation of TNBC. Mechanistically, we revealed that transcription factor E2F1 directly bound to the promoter of POLD2 and regulated its expression in TNBC cells, which in turn contributed to the proliferation of TNBC. Additionally, rescue experiments validated that E2F1-mediated cell proliferation in TNBC was dependent on POLD2. Taken together, our results elucidated a novel mechanism of the E2F1-POLD2 axis in TNBC proliferation, and POLD2 may be a potential therapeutic target for TNBC treatment.
Collapse
|
7
|
Cong F, Long J, Liu J, Deng Z, Yan B, Liang C, Huang X, Liu J, Tang W. An integrative analysis revealing POLD2 as a tumor suppressive immune protein and prognostic biomarker in pan-cancer. Front Genet 2022; 13:877468. [PMID: 36081989 PMCID: PMC9447486 DOI: 10.3389/fgene.2022.877468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/22/2022] [Indexed: 11/15/2022] Open
Abstract
Introduction: POLD2 is an indispensable subunit of DNA polymerase δ, which is responsible for the synthesis of the backward accompanying strand in eukaryotic organisms. Current studies have found an association between POLD2 and the development of a variety of cancers. However, its value in cancer immunotherapy has not been fully established. Methods: POLD2 expression was analyzed using RNA expression and clinical data from TCGA and GTEx databases. The prognostic impact of POLD2 on tumor patients was analyzed using clinical survival data from TCGA. Gene enrichment analysis was performed using the R package “cluster analyzer” to explore the role of POLD2. We used the TIMER2 database to analyze the relationship between immune cell infiltration and POLD2 expression in TCGA. We downloaded relevant data from TCGA and analyzed the relationship between POLD2 and immune checkpoints, immunosuppressive genes, immune activating genes, chemokines and chemokine receptors. Results: POLD2 was significantly overexpressed in most tumors compared to normal tissue. High POLD2 expression was significantly associated with advanced tumor stage, significantly shorter overall survival and progression-free survival. Also, we found that POLD2 expression correlated strongly with immunomodulatory genes, and significantly negatively with most immune checkpoints (PD-L1, CTLA4, TIM3, and CD28). Pathway enrichment analysis suggests that low expression of POLD2 promotes immune regulation-related pathways and high expression promotes metabolic and DNA repair-related pathways. Furthermore, tumor microenvironment analysis suggests that high POLD2 expression inhibits infiltration of CD8+ T cells and CD4+ memory T cells. Discussion: In conclusion, POLD2 may be a molecular biomarker for pan-cancer prognosis and immunotherapy. It may serve as a potential target for new insights in human tumor prognosis prediction and immunotherapy assessment.
Collapse
Affiliation(s)
- Fengyun Cong
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Department of Gastroenteroanal Surgery, The First People’s Hospital of Nanning, Nanning, China
| | - Junxian Long
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Department of Gastroenteroanal Surgery, The First People’s Hospital of Nanning, Nanning, China
| | - Jun Liu
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zhixiang Deng
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Binli Yan
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Cao Liang
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaoliang Huang
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jinxin Liu
- Department of Gastroenteroanal Surgery, The First People’s Hospital of Nanning, Nanning, China
- *Correspondence: Jinxin Liu, ; Weizhong Tang,
| | - Weizhong Tang
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- *Correspondence: Jinxin Liu, ; Weizhong Tang,
| |
Collapse
|
8
|
Zhang W, Shi Y, Li H, Yu M, Zhao J, Chen H, Kong M. In situ injectable nano-complexed hydrogel based on chitosan/dextran for combining tumor therapy via hypoxia alleviation and TAMs polarity regulation. Carbohydr Polym 2022; 288:119418. [PMID: 35450661 DOI: 10.1016/j.carbpol.2022.119418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 12/26/2022]
|
9
|
Feng D, Shi X, Xiong Q, Zhang F, Li D, Yang L. A Gene Prognostic Index Associated With Epithelial-Mesenchymal Transition Predicting Biochemical Recurrence and Tumor Chemoresistance for Prostate Cancer. Front Oncol 2022; 11:805571. [PMID: 35096608 PMCID: PMC8790245 DOI: 10.3389/fonc.2021.805571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/14/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND We aimed to establish a novel epithelial-mesenchymal transition (EMT)-related gene prognostic index (EMTGPI) associated with biochemical recurrence (BCR) and drug resistance for prostate cancer (PCa). METHODS We used Lasso and Cox regression analysis to establish the EMTGPI. All analyses were conducted with R version 3.6.3 and its suitable packages. RESULTS We established the EMTGPI based on SFRP4 and SPP1. Patients in high-risk group had 2.23 times of BCR risk than those in low-risk group (p = 0.003), as well as 2.36 times of metastasis risk (p = 0.053). In external validation, we detected similar diagnostic efficacy and prognostic value in terms of BCR free survival. For drug resistance, we observe moderately diagnostic accuracy of EMTGPI score (AUC: 0.804). We found that PDCD1LG2 (p = 0.04) and CD96 (p = 0.01) expressed higher in BCR patients compared with their counterpart. For TME analysis, we detected that CD8+ T cells and M1 macrophages expressed higher in BCR group. Moreover, stromal score (p = 0.003), immune score (p = 0.01), and estimate score (p = 0.003) were higher in BCR patients. We found that EMTGPI was significantly related to HAVCR2 (r: 0.34), CD96 (r: 0.26), CD47 (r: 0.22), KIR3DL1 (r: -0.21), KLRD1 (r: -0.21), and CD2 (r: 0.21). In addition, we observed that EMTGPI was significantly associated with M1 macrophages (r: 0.6), M2 macrophages (r: -0.33), monocytes (r: -0.18), neutrophils (r: -0.43), CD8+ T cells (r: 0.13), and dendritic cells (r: 0.37). PHA-793887 was the common drug sensitive to SPP1 and SFRP4, and PC3 and DU145 were the common PCa-related cell lines of SPP1, SFRP4, and PHA-793887. CONCLUSIONS We concluded that the EMTGPI score based on SFRP4 and SPP1 could be used to predict BCR for PCa patients. We confirmed the impact of immune evasion on the BCR process of PCa.
Collapse
Affiliation(s)
| | | | | | | | | | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Lozinski M, Bowden NA, Graves MC, Fay M, Tooney PA. DNA damage repair in glioblastoma: current perspectives on its role in tumour progression, treatment resistance and PIKKing potential therapeutic targets. Cell Oncol (Dordr) 2021; 44:961-981. [PMID: 34057732 DOI: 10.1007/s13402-021-00613-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/17/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The aggressive, invasive and treatment resistant nature of glioblastoma makes it one of the most lethal cancers in humans. Total surgical resection is difficult, and a combination of radiation and chemotherapy is used to treat the remaining invasive cells beyond the tumour border by inducing DNA damage and activating cell death pathways in glioblastoma cells. Unfortunately, recurrence is common and a major hurdle in treatment, often met with a more aggressive and treatment resistant tumour. A mechanism of resistance is the response of DNA repair pathways upon treatment-induced DNA damage, which enact cell-cycle arrest and repair of DNA damage that would otherwise cause cell death in tumour cells. CONCLUSIONS In this review, we discuss the significance of DNA repair mechanisms in tumour formation, aggression and treatment resistance. We identify an underlying trend in the literature, wherein alterations in DNA repair pathways facilitate glioma progression, while established high-grade gliomas benefit from constitutively active DNA repair pathways in the repair of treatment-induced DNA damage. We also consider the clinical feasibility of inhibiting DNA repair in glioblastoma and current strategies of using DNA repair inhibitors as agents in combination with chemotherapy, radiation or immunotherapy. Finally, the importance of blood-brain barrier penetrance when designing novel small-molecule inhibitors is discussed.
Collapse
Affiliation(s)
- Mathew Lozinski
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Nikola A Bowden
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
| | - Moira C Graves
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
| | - Michael Fay
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- Genesis Cancer Care, Gateshead, New South Wales, Australia
| | - Paul A Tooney
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia.
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia.
- Hunter Medical Research Institute, Newcastle, NSW, Australia.
| |
Collapse
|