1
|
Du CM, Leu WJ, Jiang YH, Chan SH, Chen IS, Chang HS, Hsu LC, Hsu JL, Guh JH. Cardenolide glycosides sensitize gefitinib-induced apoptosis in non-small cell lung cancer: inhibition of Na +/K +-ATPase serving as a switch-on mechanism. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6533-6550. [PMID: 38451282 DOI: 10.1007/s00210-024-03031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
The treatment of non-small cell lung cancer (NSCLC) is known as a significant level of unmet medical need in spite of the progress in targeted therapy and personalized therapy. Overexpression of the Na+/K+-ATPase contributes to NSCLC progression, suggesting its potentiality in antineoplastic approaches. Epi-reevesioside F, purified from Reevesia formosana, showed potent anti-NSCLC activity through inhibiting the Na+/K+-ATPase, leading to internalization of α1- and α3-subunits in Na+/K+-ATPase and suppression of Akt-independent mTOR-p70S6K-4EBP1 axis. Epi-reevesioside F caused a synergistic amplification of apoptosis induced by gefitinib but not cisplatin, docetaxel, etoposide, paclitaxel, or vinorelbine in both NCI-H460 and A549 cells. The synergism was validated by enhanced activation of the caspase cascade. Bax cleavage, tBid formation, and downregulation of Bcl-xL and Bcl-2 contributed to the synergistic apoptosis induced by the combination treatment of epi-reevesioside F and gefitinib. The increase of membrane DR4 and DR5 levels, intracellular Ca2+ concentrations, and active m-calpain expression were responsible for the caspase-8 activation and Bax cleavage. The increased α-tubulin acetylation and activation of MAPK (i.e., p38 MAPK, Erk, and JNK) depending on cell types contributed to the synergistic mechanism under combination treatment. These signaling pathways that converged on profound c-Myc downregulation led to synergistic apoptosis in NSCLC. In conclusion, the data suggest that epi-reevesioside F inhibits the Na+/K+-ATPase and displays potent anti-NSCLC activity. Epi-reevesioside F sensitizes gefitinib-induced apoptosis through multiple pathways that converge on c-Myc downregulation. The data support the inhibition of Na+/K+-ATPase as a switch-on mechanism to sensitize gefitinib-induced anti-NSCLC activity.
Collapse
Affiliation(s)
- Chi-Min Du
- School of Pharmacy, National Taiwan University, No. 33, Linsen S. Rd., Zhongzheng Dist, Taipei, 100, Taiwan
| | - Wohn-Jenn Leu
- School of Pharmacy, National Taiwan University, No. 33, Linsen S. Rd., Zhongzheng Dist, Taipei, 100, Taiwan
| | - Yi-Huei Jiang
- School of Pharmacy, National Taiwan University, No. 33, Linsen S. Rd., Zhongzheng Dist, Taipei, 100, Taiwan
| | - She-Hung Chan
- Department of Cosmetic Science, Providence University, 200, Sec. 7, Taiwan Boulevard, Shalu Dist, Taichung, 43301, Taiwan
| | - Ih-Sheng Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Taiwan, Kaohsiung, Taiwan
| | - Hsun-Shuo Chang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Taiwan, Kaohsiung, Taiwan
| | - Lih-Ching Hsu
- School of Pharmacy, National Taiwan University, No. 33, Linsen S. Rd., Zhongzheng Dist, Taipei, 100, Taiwan
| | - Jui-Ling Hsu
- School of Pharmacy, National Taiwan University, No. 33, Linsen S. Rd., Zhongzheng Dist, Taipei, 100, Taiwan.
- Department of Nursing, Division of Basic Medical Sciences, Chang-Gung University of Science and Technology, Taoyuan, 333, Taiwan.
- Department of Medical Oncology, New Taipei Municipal TuCheng Hospital, New Taipei City, 236, Taiwan.
| | - Jih-Hwa Guh
- School of Pharmacy, National Taiwan University, No. 33, Linsen S. Rd., Zhongzheng Dist, Taipei, 100, Taiwan.
| |
Collapse
|
3
|
Candido MF, Medeiros M, Veronez LC, Bastos D, Oliveira KL, Pezuk JA, Valera ET, Brassesco MS. Drugging Hijacked Kinase Pathways in Pediatric Oncology: Opportunities and Current Scenario. Pharmaceutics 2023; 15:pharmaceutics15020664. [PMID: 36839989 PMCID: PMC9966033 DOI: 10.3390/pharmaceutics15020664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Childhood cancer is considered rare, corresponding to ~3% of all malignant neoplasms in the human population. The World Health Organization (WHO) reports a universal occurrence of more than 15 cases per 100,000 inhabitants around the globe, and despite improvements in diagnosis, treatment and supportive care, one child dies of cancer every 3 min. Consequently, more efficient, selective and affordable therapeutics are still needed in order to improve outcomes and avoid long-term sequelae. Alterations in kinases' functionality is a trademark of cancer and the concept of exploiting them as drug targets has burgeoned in academia and in the pharmaceutical industry of the 21st century. Consequently, an increasing plethora of inhibitors has emerged. In the present study, the expression patterns of a selected group of kinases (including tyrosine receptors, members of the PI3K/AKT/mTOR and MAPK pathways, coordinators of cell cycle progression, and chromosome segregation) and their correlation with clinical outcomes in pediatric solid tumors were accessed through the R2: Genomics Analysis and Visualization Platform and by a thorough search of published literature. To further illustrate the importance of kinase dysregulation in the pathophysiology of pediatric cancer, we analyzed the vulnerability of different cancer cell lines against their inhibition through the Cancer Dependency Map portal, and performed a search for kinase-targeted compounds with approval and clinical applicability through the CanSAR knowledgebase. Finally, we provide a detailed literature review of a considerable set of small molecules that mitigate kinase activity under experimental testing and clinical trials for the treatment of pediatric tumors, while discuss critical challenges that must be overcome before translation into clinical options, including the absence of compounds designed specifically for childhood tumors which often show differential mutational burdens, intrinsic and acquired resistance, lack of selectivity and adverse effects on a growing organism.
Collapse
Affiliation(s)
- Marina Ferreira Candido
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Mariana Medeiros
- Regional Blood Center, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Luciana Chain Veronez
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - David Bastos
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Karla Laissa Oliveira
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Julia Alejandra Pezuk
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - María Sol Brassesco
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
- Correspondence: ; Tel.: +55-16-3315-9144; Fax: +55-16-3315-4886
| |
Collapse
|
4
|
Gwynne WD, Suk Y, Custers S, Mikolajewicz N, Chan JK, Zador Z, Chafe SC, Zhai K, Escudero L, Zhang C, Zaslaver O, Chokshi C, Shaikh MV, Bakhshinyan D, Burns I, Chaudhry I, Nachmani O, Mobilio D, Maich WT, Mero P, Brown KR, Quaile AT, Venugopal C, Moffat J, Montenegro-Burke JR, Singh SK. Cancer-selective metabolic vulnerabilities in MYC-amplified medulloblastoma. Cancer Cell 2022; 40:1488-1502.e7. [PMID: 36368321 DOI: 10.1016/j.ccell.2022.10.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/09/2022] [Accepted: 10/06/2022] [Indexed: 11/12/2022]
Abstract
MYC-driven medulloblastoma (MB) is an aggressive pediatric brain tumor characterized by therapy resistance and disease recurrence. Here, we integrated data from unbiased genetic screening and metabolomic profiling to identify multiple cancer-selective metabolic vulnerabilities in MYC-driven MB tumor cells, which are amenable to therapeutic targeting. Among these targets, dihydroorotate dehydrogenase (DHODH), an enzyme that catalyzes de novo pyrimidine biosynthesis, emerged as a favorable candidate for therapeutic targeting. Mechanistically, DHODH inhibition acts on target, leading to uridine metabolite scarcity and hyperlipidemia, accompanied by reduced protein O-GlcNAcylation and c-Myc degradation. Pyrimidine starvation evokes a metabolic stress response that leads to cell-cycle arrest and apoptosis. We further show that an orally available small-molecule DHODH inhibitor demonstrates potent mono-therapeutic efficacy against patient-derived MB xenografts in vivo. The reprogramming of pyrimidine metabolism in MYC-driven medulloblastoma represents an unappreciated therapeutic strategy and a potential new class of treatments with stronger cancer selectivity and fewer neurotoxic sequelae.
Collapse
Affiliation(s)
- William D Gwynne
- Department of Surgery, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Center for Discovery in Cancer Research (CDCR), McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Yujin Suk
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Michael G DeGroote School of Medicine, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Center for Discovery in Cancer Research (CDCR), McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Stefan Custers
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Center for Discovery in Cancer Research (CDCR), McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Nicholas Mikolajewicz
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada
| | - Jeremy K Chan
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Zsolt Zador
- Department of Surgery, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Center for Discovery in Cancer Research (CDCR), McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Shawn C Chafe
- Department of Surgery, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Center for Discovery in Cancer Research (CDCR), McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Kui Zhai
- Department of Surgery, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Center for Discovery in Cancer Research (CDCR), McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Laura Escudero
- Department of Surgery, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Center for Discovery in Cancer Research (CDCR), McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Cunjie Zhang
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Olga Zaslaver
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Chirayu Chokshi
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Muhammad Vaseem Shaikh
- Department of Surgery, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Center for Discovery in Cancer Research (CDCR), McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - David Bakhshinyan
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Ian Burns
- Michael G DeGroote School of Medicine, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Iqra Chaudhry
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Center for Discovery in Cancer Research (CDCR), McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Omri Nachmani
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada
| | - Daniel Mobilio
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Center for Discovery in Cancer Research (CDCR), McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - William T Maich
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Center for Discovery in Cancer Research (CDCR), McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Patricia Mero
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kevin R Brown
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada
| | - Andrew T Quaile
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Chitra Venugopal
- Department of Surgery, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Center for Discovery in Cancer Research (CDCR), McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Jason Moffat
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada; Institute for Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - J Rafael Montenegro-Burke
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Sheila K Singh
- Department of Surgery, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Center for Discovery in Cancer Research (CDCR), McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|