1
|
Chuang AEY, Tao YK, Dong SW, Nguyen HT, Liu CH. Polypyrrole/iron-glycol chitosan nanozymes mediate M1 macrophages to enhance the X-ray-triggered photodynamic therapy for bladder cancer by promoting antitumor immunity. Int J Biol Macromol 2024; 280:135608. [PMID: 39276877 DOI: 10.1016/j.ijbiomac.2024.135608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
X-ray Photodynamic Therapy (XPDT) is an emerging, deeply penetrating, and non-invasive tumor treatment that stimulates robust antitumor immune responses. However, its efficacy is often limited by low therapeutic delivery and immunosuppressant within the tumor microenvironment. This challenge can potentially be addressed by utilizing X-ray responsive iron-glycol chitosan-polypyrrole nanozymes (GCS-I-PPy NZs), which activate M1 macrophages. These nanozymes increase tumor infiltration and enhance the macrophages' intrinsic immune response and their ability to stimulate adaptive immunity. Authors have designed biocompatible, photosensitizer-containing GCS-I-PPy NZs using oxidation/reduction reactions. These nanozymes were internalized by M1 macrophages to form RAW-GCS-I-PPy NZs. Authors' results demonstrated that these engineered macrophages effectively delivered the nanozymes with potentially high tumor accumulation. Within the tumor microenvironment, the accumulated GCS-I-PPy NZs underwent X-ray irradiation, generating reactive oxygen species (ROS). This ROS augmentation significantly enhanced the therapeutic effect of XPDT and synergistically promoted T cell infiltration into the tumor. These findings suggest that nano-engineered M1 macrophages can effectively boost the immune effects of XPDT, providing a promising strategy for enhancing cancer immunotherapy. The ability of GCS-I-PPy NZs to mediate M1 macrophage activation and increase tumor infiltration highlights their potential in overcoming the limitations of current XPDT approaches and improving therapeutic outcomes in melanoma and other cancers.
Collapse
Affiliation(s)
- Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan.
| | - Yu-Kuang Tao
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Shao-Wei Dong
- Taipei Medical University Shuang Ho Hospital, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan; Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan.
| |
Collapse
|
2
|
Kronk TA, Solorzano E, Robinson GT, Castor J, Ball HC, Safadi FF. The expression and function of Gpnmb in lymphatic endothelial cells. Gene 2024:148993. [PMID: 39389329 DOI: 10.1016/j.gene.2024.148993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/03/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
The lymphatic system functions in fluid homeostasis, lipid absorption and the modulation of the immune response. The role of Gpnmb (osteoactivin), an established osteoinductive molecule with newly identified anti-inflammatory properties, has not been studied in lymphangiogenesis. Here, we demonstrate that Gpnmb increases lymphatic endothelial cell (LEC) migration and lymphangiogenesis marker gene expression in vitro by enhancing pro-autophagic gene expression, while no changes were observed in cell proliferation or viability. In addition, cellular spreading and cytoskeletal reorganization was not altered following Gpnmb treatment. We show that systemic Gpnmb overexpression in vivo leads to increases in lymphatic tubule number per area. Overall, data presented in this study suggest Gpnmb is a positive modulator of lymphangiogenesis.
Collapse
Affiliation(s)
- Trinity A Kronk
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, OH, USA; Basic and Translational Biomedicine, College of Graduate Studies, Northeast Ohio Medical University, OH, USA; Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH, USA; Department of Orthopaedics, Akron Children's Hospital, OH, USA; University Hospitals, Cleveland, OH, USA
| | - Ernesto Solorzano
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, OH, USA; Basic and Translational Biomedicine, College of Graduate Studies, Northeast Ohio Medical University, OH, USA; Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Gabrielle T Robinson
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, OH, USA; Basic and Translational Biomedicine, College of Graduate Studies, Northeast Ohio Medical University, OH, USA; Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH, USA; University Hospitals, Cleveland, OH, USA
| | - Joshua Castor
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, OH, USA; Foundations of Medicine, College of Graduate Studies, Northeast Ohio Medical University, OH, USA
| | - Hope C Ball
- Rebecca D. Considine Research Institute, Akron Children's Hospital, OH, USA
| | - Fayez F Safadi
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, OH, USA; Basic and Translational Biomedicine, College of Graduate Studies, Northeast Ohio Medical University, OH, USA; Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH, USA; University Hospitals, Cleveland, OH, USA; Rebecca D. Considine Research Institute, Akron Children's Hospital, OH, USA; School of Biomedical Sciences, Kent State University, Kent, OH, USA.
| |
Collapse
|
3
|
Lu J, Zhu K, Yang N, Chen Q, Liu L, Liu Y, Yang Y, Li J. Radiomics and Clinical Features for Distinguishing Kidney Stone-Associated Urinary Tract Infection: A Comprehensive Analysis of Machine Learning Classification. Open Forum Infect Dis 2024; 11:ofae581. [PMID: 39435322 PMCID: PMC11493090 DOI: 10.1093/ofid/ofae581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024] Open
Abstract
Background This study investigated the abilities of radiomics and clinical feature models to distinguish kidney stone-associated urinary tract infections (KS-UTIs) using computed tomography. Methods A retrospective analysis was conducted on a single-center dataset comprising computed tomography (CT) scans and corresponding clinical information from 461 patients with kidney stones. Radiomics features were extracted from CT images and underwent dimensionality reduction and selection. Multiple machine learning (Three types of shallow learning and four types of deep learning) algorithms were employed to construct radiomics and clinical models in this study. Performance evaluation and optimal model selection were done using receiver operating characteristic (ROC) curve analysis and Delong test. Univariate and multivariate logistic regression analyzed clinical and radiomics features to identify significant variables and develop a clinical model. A combined model integrating radiomics and clinical features was established. Model performance was assessed by ROC curve analysis, clinical utility was evaluated through decision curve analysis, and the accuracy of the model was analyzed via calibration curve. Results Multilayer perceptron (MLP) showed higher classification accuracy than other classifiers (area under the curve (AUC) for radiomics model: train 0.96, test 0.94; AUC for clinical model: train 0.95, test 0.91. The combined radiomics-clinical model performed best (AUC for combined model: train 0.98, test 0.95). Decision curve and calibration curve analyses confirmed the model's clinical efficacy and calibration. Conclusions This study showed the effectiveness of combining radiomics and clinical features from CT scans to identify KS-UTIs. A combined model using MLP exhibited strong classification abilities.
Collapse
Affiliation(s)
- Jianjuan Lu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kun Zhu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ning Yang
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiang Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lingrui Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yanyan Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases, Anhui Medical University, Hefei, China
- Institute of Infectious Diseases, Anhui Medical University, Hefei, China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yi Yang
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiabin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases, Anhui Medical University, Hefei, China
- Institute of Infectious Diseases, Anhui Medical University, Hefei, China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Huang Y, Zhang H, Chen L, Ding Q, Chen D, Liu G, Zhang X, Huang Q, Zhang D, Weng S. Contrast-enhanced CT radiomics combined with multiple machine learning algorithms for preoperative identification of lymph node metastasis in pancreatic ductal adenocarcinoma. Front Oncol 2024; 14:1342317. [PMID: 39346735 PMCID: PMC11427235 DOI: 10.3389/fonc.2024.1342317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/23/2024] [Indexed: 10/01/2024] Open
Abstract
Objectives This research aimed to assess the value of radiomics combined with multiple machine learning algorithms in the diagnosis of pancreatic ductal adenocarcinoma (PDAC) lymph node (LN) metastasis, which is expected to provide clinical treatment strategies. Methods A total of 128 patients with pathologically confirmed PDAC and who underwent surgical resection were randomized into training (n=93) and validation (n=35) groups. This study incorporated a total of 13 distinct machine learning algorithms and explored 85 unique combinations of these algorithms. The area under the curve (AUC) of each model was computed. The model with the highest mean AUC was selected as the best model which was selected to determine the radiomics score (Radscore). The clinical factors were examined by the univariate and multivariate analysis, which allowed for the identification of factors suitable for clinical modeling. The multivariate logistic regression was used to create a combined model using Radscore and clinical variables. The diagnostic performance was assessed by receiver operating characteristic curves, calibration curves, and decision curve analysis (DCA). Results Among the 233 models constructed using arterial phase (AP), venous phase (VP), and AP+VP radiomics features, the model built by applying AP+VP radiomics features and a combination of Lasso+Logistic algorithm had the highest mean AUC. A clinical model was eventually constructed using CA199 and tumor size. The combined model consisted of AP+VP-Radscore and two clinical factors that showed the best diagnostic efficiency in the training (AUC = 0.920) and validation (AUC = 0.866) cohorts. Regarding preoperative diagnosis of LN metastasis, the calibration curve and DCA demonstrated that the combined model had a good consistency and greatest net benefit. Conclusions Combining radiomics and machine learning algorithms demonstrated the potential for identifying the LN metastasis of PDAC. As a non-invasive and efficient preoperative prediction tool, it can be beneficial for decision-making in clinical practice.
Collapse
Affiliation(s)
- Yue Huang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Han Zhang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Lingfeng Chen
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Qingzhu Ding
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Dehua Chen
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Guozhong Liu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiang Zhang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Qiang Huang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Denghan Zhang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Shangeng Weng
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Clinical Research Center for Hepatobiliary Pancreatic and Gastrointestinal Malignant Tumors Precise Treatment of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
5
|
Tian Y, Tang L, Wang X, Ji Y, Tu Y. Nrf2 in human cancers: biological significance and therapeutic potential. Am J Cancer Res 2024; 14:3935-3961. [PMID: 39267682 PMCID: PMC11387866 DOI: 10.62347/lzvo6743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
The nuclear factor-erythroid 2-related factor 2 (Nrf2) is able to control the redox balance in the cells responding to oxidative damage and other stress signals. The Nrf2 upregulation can elevate the levels of antioxidant enzymes to support against damage and death. In spite of protective function of Nrf2 in the physiological conditions, the stimulation of Nrf2 in the cancer has been in favour of tumorigenesis. Since the dysregulation of molecular pathways and mutations/deletions are common in tumors, Nrf2 can be a promising therapeutic target. The Nrf2 overexpression can prevent cell death in tumor and by increasing the survival rate of cancer cells, ensures the carcinogenesis. Moreover, the induction of Nrf2 can promote the invasion and metastasis of tumor cells. The Nrf2 upregulation stimulates EMT to increase cancer metastasis. Furthermore, regarding the protective function of Nrf2, its stimulation triggers chemoresistance. The natural products can regulate Nrf2 in the cancer therapy and reverse drug resistance. Moreover, nanostructures can specifically target Nrf2 signaling in cancer therapy. The current review discusses the potential function of Nrf2 in the proliferation, metastasis and drug resistance. Then, the capacity of natural products and nanostructures for suppressing Nrf2-mediated cancer progression is discussed.
Collapse
Affiliation(s)
- Yu Tian
- Research Center, Huizhou Central People's Hospital, Guangdong Medical University Huizhou, Guangdong, China
- School of Public Health, Benedictine University Lisle, Illinois, USA
| | - Lixin Tang
- Department of Respiratory, Chongqing Public Health Medical Center Chongqing, China
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School Boston, Massachusetts, USA
| | - Yanqin Ji
- Department of Administration, Huizhou Central People's Hospital, Guangdong Medical University Huizhou, Guangdong, China
| | - Yanyang Tu
- Research Center, Huizhou Central People's Hospital, Guangdong Medical University Huizhou, Guangdong, China
| |
Collapse
|
6
|
Zhang T, Chen S, Qu S, Wang L. Anoikis-Related Genes Impact Prognosis and Tumor Microenvironment in Bladder Cancer. Mol Biotechnol 2024:10.1007/s12033-024-01255-x. [PMID: 39172330 DOI: 10.1007/s12033-024-01255-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/25/2024] [Indexed: 08/23/2024]
Abstract
Anoikis tolerance is an important biological process of tumor colonization and metastasis outside the primary tumor. Recent research has progressively elucidated the function and underlying mechanisms of anoikis in the metastasis of various solid tumors. Nevertheless, the specific mechanisms of anoikis in bladder cancer and its consequent effects on the tumor immune microenvironment remain ambiguous. In this study, we developed an anoikis score based on five genes (ETV7, NGF, SCD, LAMC1, and CASP6) and categorized subjects into high and low-risk groups using the median score from the TCGA database. Our findings indicate that SCD enhances the proliferation of bladder cancer cells in vitro. Furthermore, integrating the anoikis score with clinicopathological features to construct a prognostic nomogram demonstrated precision in assessing patient outcomes. Immune cell analysis revealed elevated infiltration levels of Treg cells and M2 macrophages in the high anoikis score group, whereas CD8+ T cell levels were reduced. This study highlights the importance of anoikis score in predicting patient prognosis, immune cell infiltration, and drug response, which may provide a treatment modality worth exploring in depth for the study of bladder cancer.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Shaojun Chen
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Shanna Qu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Longsheng Wang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
7
|
Li H, Ma H, Ma J, Qin F, Fan S, Kong S, Zhao S, Ma J. Unveiling the role of RAC3 in the growth and invasion of cisplatin-resistant bladder cancer cells. J Cell Mol Med 2024; 28:e18473. [PMID: 38847477 PMCID: PMC11157678 DOI: 10.1111/jcmm.18473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/10/2024] Open
Abstract
Bladder cancer is one of the most prevalent cancers worldwide, and its morbidity and mortality rates have been increasing over the years. However, how RAC family small GTPase 3 (RAC3) affects the proliferation, migration and invasion of cisplatin-resistant bladder cancer cells remains unclear. Bioinformatics techniques were used to investigate the expression of RAC3 in bladder cancer tissues. Influences of RAC3 in the grade, stage, distant metastasis, and survival rate of bladder cancer were also examined. Analysis of the relationship between RAC3 expression and the immune microenvironment (TIME), genomic mutations, and stemness index. In normal bladder cancer cells (T24, 5637, and BIU-87) and cisplatin-resistant bladder cancer cells (BIU-87-DDP), the expression of RAC3 was detected separately with Western blotting. Plasmid transfection was used to overexpress or silence the expression of RAC3 in bladder cancer cells resistant to cisplatin (BIU-87-DDP). By adding activators and inhibitors, the activities of the JNK/MAPK signalling pathway were altered. Cell viability, invasion, and its level of apoptosis were measured in vitro using CCK-8, transwell, and flow cytometry. The bioinformatics analyses found RAC3 levels were elevated in bladder cancer tissues and were associated with a poor prognosis in bladder cancer. RAC3 in BIU-87-DDP cells expressed a higher level than normal bladder cancer cells. RAC3 overexpression promoted BIU-87-DDP proliferation. The growth of BIU-87-DDP cells slowed after the knockdown of RAC3, and RAC3 may have had an impact on the activation of the JNK/MAPK pathway.
Collapse
Affiliation(s)
- Haodong Li
- Department of UrologyHebei Medical University Third HospitalShijiazhuangChina
| | - Hongxuan Ma
- Faculty of Health and Behavioural SciencesThe University of QueenslandQueenslandAustralia
| | - JianHua Ma
- Geriatrics DepartmentHebei Chengde Central HospitalChengdeChina
| | - Fei Qin
- Department of UrologyHebei Medical University Third HospitalShijiazhuangChina
| | - Siqi Fan
- Department of UrologyHebei Medical University Third HospitalShijiazhuangChina
| | - Shaopeng Kong
- Department of UrologyHebei Medical University Third HospitalShijiazhuangChina
| | - Sitao Zhao
- Department of UrologyHebei Medical University Third HospitalShijiazhuangChina
| | - Jianguo Ma
- Department of UrologyHebei Medical University Third HospitalShijiazhuangChina
| |
Collapse
|
8
|
Fan S, Mao Y, Ge Y, Liang Z. Association of preoperative elevated lipoprotein (a) with poor survival in patients with biliary tract cancers. Cancer Med 2024; 13:e7331. [PMID: 38819582 PMCID: PMC11141329 DOI: 10.1002/cam4.7331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/06/2024] [Accepted: 05/12/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Biliary tract cancers have garnered significant attention due to their highly malignant nature. The relationship between abnormal lipid metabolism and tumor occurrence and development is a research hotspot. However, its correlation with biliary tract cancers is unclear. METHODS We enrolled 78 patients with biliary tract cancers and obtained data on clinical characteristics, pathological findings, and preoperative blood lipid indices, including total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), and lipoprotein (a) [Lp(a)]. Receiver operating characteristic (ROC) curves were used to determine the optimal predictive cutoff values of lipid indicators among the participants. Independent risk factors were determined using Cox regression, and survival was predicted using the Kaplan-Meier method. Statistical analyses were performed using SPSS software. RESULTS Univariate Cox regression analysis revealed that the body mass index (BMI), tumor location, surgical margin, N stage, and abnormally increased LDL-C, TG, and Lp(a) levels were significantly associated with poor prognosis of biliary tract cancers (p < 0.05). Multifactor Cox regression demonstrated that only N stage (HR = 3.393, p < 0.001) and abnormally increased Lp(a) levels (HR = 2.814, p = 0.004) were significantly associated with shorter survival. N stage and Lp(a) were identified as independent prognostic risk factors for patients with biliary tract cancers. CONCLUSION This study presents Lp(a) as a novel biochemical marker that can guide clinical treatment strategies for patients with biliary tract cancers. More effective treatment options and intensive postoperative testing should be considered to prolong the survival of these patients with preoperative abnormal lipid metabolism.
Collapse
Affiliation(s)
- Shanshan Fan
- Department of Oncology, Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| | - Yihan Mao
- The Third Clinical School of MedicineCapital Medical UniversityBeijingChina
| | - Yang Ge
- Department of Oncology, Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| | - Ziwei Liang
- Department of Oncology, Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
9
|
Xiao S, Chen J, Wei Y, Song W. BHLHE41 inhibits bladder cancer progression via regulation of PYCR1 stability and thus inactivating PI3K/AKT signaling pathway. Eur J Med Res 2024; 29:302. [PMID: 38811952 PMCID: PMC11134742 DOI: 10.1186/s40001-024-01889-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/18/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND The basic helix-loop-helix family member e41 (BHLHE41) is frequently dysregulated in tumors and plays a crucial role in malignant progression of various cancers. Nevertheless, its specific function and underlying mechanism in bladder cancer (BCa) remain largely unexplored. METHODS The expression levels of BHLHE41 in BCa tissues and cells were examined by qRT-PCR and western blot assays. BCa cells stably knocking down or overexpressing BHLHE41 were constructed through lentivirus infection. The changes of cell proliferation, cell cycle distribution, migration, and invasion were detected by CCK-8, flow cytometry, wound healing, transwell invasion assays, respectively. The expression levels of related proteins were detected by western blot assay. The interaction between BHLHE41 and PYCR1 was explored by co-immunoprecipitation analysis. RESULTS In this study, we found that BHLHE41 was lowly expressed in bladder cancer tissues and cell lines, and lower expression of BHLHE41 was associated with poor overall survival in bladder cancer patients. Functionally, by manipulating the expression of BHLHE41, we demonstrated that overexpression of BHLHE41 significantly retarded cell proliferation, migration, invasion, and induced cell cycle arrest in bladder cancer through various in vitro and in vivo experiments, while silence of BHLHE41 caused the opposite effect. Mechanistically, we showed that BHLHE41 directly interacted with PYCR1, decreased its stability and resulted in the ubiquitination and degradation of PYCR1, thus inactivating PI3K/AKT signaling pathway. Rescue experiments showed that the effects induced by BHLHE41 overexpression could be attenuated by further upregulating PYCR1. CONCLUSION BHLHE41 might be a useful prognostic biomarker and a tumor suppressor in bladder cancer. The BHLHE41/PYCR1/PI3K/AKT axis might be a potential therapeutic target for bladder cancer intervention.
Collapse
Affiliation(s)
- Shuai Xiao
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410011, China
| | - Junjie Chen
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410011, China
| | - Yongbao Wei
- Department of Urology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.
| | - Wei Song
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410011, China.
| |
Collapse
|
10
|
Wang B, Chen K, Gao M, Sun X, He W, Chen J, Yang W, Yang T, Qin H, Ruan H, Huang H, Lin T, Huang J. Chitinase 3-like 1 expression associated with lymphatic metastasis and prognosis in urothelial carcinoma of the bladder. Clin Transl Immunology 2024; 13:e1505. [PMID: 38623539 PMCID: PMC11017757 DOI: 10.1002/cti2.1505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/04/2024] [Accepted: 03/26/2024] [Indexed: 04/17/2024] Open
Abstract
Objectives Lymphatic metastasis, an early stage of the metastasis process, is associated with adverse clinical outcomes in urothelial carcinoma of the bladder (UCB). However, the role of inflammation in triggering lymphatic metastasis remains unclear. Methods We employed an RNA-sequencing cohort (n = 50) from Sun Yat-Sen Memorial Hospital (SYMH) to identify the most highly upregulated inflammatory gene associated with lymphatic metastasis. Using immunohistochemistry and immunofluorescence analyses, we validated the association of the identified molecule with clinical features and prognosis in an independent UCB cohort (n = 244) from SYMH. We also analysed TCGA-BLCA cohort (n = 408) to identify its potential biological pathways and immune landscape. Results In our study, chitinase 3-like 1 (CHI3L1) emerged as a significantly overexpressed proinflammatory mediator in UCB tissues with lymphatic metastasis compared to those without lymphatic metastasis (81.1% vs. 47.8%, P < 0.001). Within UCB tissues, CHI3L1 was expressed in both stromal cells (52.8%) and tumor cells (7.3%). Moreover, CHI3L1+ stromal cells, but not tumor cells, exhibited independent prognostic significance for both overall survival (P < 0.001) and recurrence-free survival (P = 0.006). CHI3L1+ stromal cells were positively associated with D2-40+ lymphatic vessel density (P < 0.001) and the immunosuppressive PD-L1/PD-1/CD8 axis in UCB tissues (all P < 0.05). A bioinformatics analysis also identified a positive association between CHI3L1 expression and lymphangiogenesis or immunosuppression pathways. Conclusion Our study established a clear association between stromal CHI3L1 expression and lymphatic metastasis, suggesting that stromal CHI3L1 expression is a potential prognostic marker for bladder cancer patients.
Collapse
Affiliation(s)
- Bo Wang
- Department of Urology, Sun Yat‐sen Memorial HospitalSun Yat‐sen (Zhongshan) UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat‐Sen Memorial HospitalSun Yat‐sen (Zhongshan) UniversityGuangzhouChina
| | - Ke Chen
- Department of Urology, Sun Yat‐sen Memorial HospitalSun Yat‐sen (Zhongshan) UniversityGuangzhouChina
| | - Mingchao Gao
- Department of Urology, Sun Yat‐sen Memorial HospitalSun Yat‐sen (Zhongshan) UniversityGuangzhouChina
| | - Xi Sun
- Department of Urology, Sun Yat‐sen Memorial HospitalSun Yat‐sen (Zhongshan) UniversityGuangzhouChina
| | - Wang He
- Department of Urology, Sun Yat‐sen Memorial HospitalSun Yat‐sen (Zhongshan) UniversityGuangzhouChina
| | - Junyu Chen
- Department of Urology, Sun Yat‐sen Memorial HospitalSun Yat‐sen (Zhongshan) UniversityGuangzhouChina
| | - Wenjuan Yang
- Department of Hematology, Sun Yat‐sen Memorial HospitalSun Yat‐sen (Zhongshan) UniversityGuangzhouChina
| | - Tenghao Yang
- Department of Urology, Sun Yat‐sen Memorial HospitalSun Yat‐sen (Zhongshan) UniversityGuangzhouChina
| | - Haide Qin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat‐Sen Memorial HospitalSun Yat‐sen (Zhongshan) UniversityGuangzhouChina
| | - Honglian Ruan
- School of Public HealthGuangzhou Medical UniversityGuangzhouChina
| | - Hao Huang
- Department of Urology, Sun Yat‐sen Memorial HospitalSun Yat‐sen (Zhongshan) UniversityGuangzhouChina
| | - Tianxin Lin
- Department of Urology, Sun Yat‐sen Memorial HospitalSun Yat‐sen (Zhongshan) UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat‐Sen Memorial HospitalSun Yat‐sen (Zhongshan) UniversityGuangzhouChina
| | - Jian Huang
- Department of Urology, Sun Yat‐sen Memorial HospitalSun Yat‐sen (Zhongshan) UniversityGuangzhouChina
| |
Collapse
|
11
|
Zhang X, Ma L, Xue M, Sun Y, Wang Z. Advances in lymphatic metastasis of non-small cell lung cancer. Cell Commun Signal 2024; 22:201. [PMID: 38566083 PMCID: PMC10986052 DOI: 10.1186/s12964-024-01574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/16/2024] [Indexed: 04/04/2024] Open
Abstract
Lung cancer is a deeply malignant tumor with high incidence and mortality. Despite the rapid development of diagnosis and treatment technology, abundant patients with lung cancer are still inevitably faced with recurrence and metastasis, contributing to death. Lymphatic metastasis is the first step of distant metastasis and an important prognostic indicator of non-small cell lung cancer. Tumor-induced lymphangiogenesis is involved in the construction of the tumor microenvironment, except promoting malignant proliferation and metastasis of tumor cells, it also plays a crucial role in individual response to treatment, especially immunotherapy. Thus, this article reviews the current research status of lymphatic metastasis in non-small cell lung cancer, in order to provide some insights for the basic research and clinical and translational application in this field.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Li Ma
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Man Xue
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yanning Sun
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.
| |
Collapse
|
12
|
Wang W, Ding Y, Zhao Y, Li X. m6A reader IGF2BP2 promotes lymphatic metastasis by stabilizing DPP4 in papillary thyroid carcinoma. Cancer Gene Ther 2024; 31:285-299. [PMID: 38102465 DOI: 10.1038/s41417-023-00702-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/23/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
Lymph node metastasis (LNM) is a major cause of locoregional recurrence of papillary thyroid carcinoma (PTC). However, the mechanisms responsible for LNM are unclear. Aberrant N6-methyladenosine (m6A) RNA modification plays a vital role in cancer progression and metastasis, and whether m6A modification regulates LNM in PTC remains to be determined. This study showed that IGF2BP2 was upregulated in PTC and positively associated with LNM. Functionally, IGF2BP2 knockdown significantly inhibited PTC cell proliferation and invasion in vitro, and vice versa. Moreover, IGF2BP2 knockdown significantly inhibited lymphatic metastasis in vivo. Mechanistically, Human m6A epitranscriptomic microarray, MeRIP, and RIP assays demonstrated that IGF2BP2 activated the NF-KB pathway by enhancing DPP4 stability in an m6A-dependent manner. Furthermore, IGF2BP2 knockdown increased the sensitivity of PTC cells to cisplatin therapy to a certain extent, while its overexpression produced the opposite effects. Overall, this study uncovers that IGF2BP2 promotes lymphatic metastasis via stabilizing DPP4 in an m6A-dependent manner, and provides new insights for understanding the mechanism of lymphatic metastasis in PTC.
Collapse
Affiliation(s)
- Wenlong Wang
- Department of General Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan Province, China
| | - Ying Ding
- Department of Breast Thyroid Surgery, Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, China
- Postdoctoral Station of Medical Aspects of Specific Environments, the Third Xiangya Hospital, Central South University, Changsha, China
- Department of Oncology, Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, China
| | - Yunzhe Zhao
- Department of General Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
| | - Xinying Li
- Department of General Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan Province, China.
| |
Collapse
|
13
|
Fan S, Qi M, Qi Q, Miao Q, Deng L, Pan J, Qiu S, He J, Huang M, Li X, Huang J, Lin J, Lyu W, Deng W, He Y, Liu X, Gao L, Zhang D, Ye W, Chen M. Targeting FAP α-positive lymph node metastatic tumor cells suppresses colorectal cancer metastasis. Acta Pharm Sin B 2024; 14:682-697. [PMID: 38322324 PMCID: PMC10840431 DOI: 10.1016/j.apsb.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/18/2023] [Accepted: 10/24/2023] [Indexed: 02/08/2024] Open
Abstract
Lymphatic metastasis is the main metastatic route for colorectal cancer, which increases the risk of cancer recurrence and distant metastasis. The properties of the lymph node metastatic colorectal cancer (LNM-CRC) cells are poorly understood, and effective therapies are still lacking. Here, we found that hypoxia-induced fibroblast activation protein alpha (FAPα) expression in LNM-CRC cells. Gain- or loss-function experiments demonstrated that FAPα enhanced tumor cell migration, invasion, epithelial-mesenchymal transition, stemness, and lymphangiogenesis via activation of the STAT3 pathway. In addition, FAPα in tumor cells induced extracellular matrix remodeling and established an immunosuppressive environment via recruiting regulatory T cells, to promote colorectal cancer lymph node metastasis (CRCLNM). Z-GP-DAVLBH, a FAPα-activated prodrug, inhibited CRCLNM by targeting FAPα-positive LNM-CRC cells. Our study highlights the role of FAPα in tumor cells in CRCLNM and provides a potential therapeutic target and promising strategy for CRCLNM.
Collapse
Affiliation(s)
- Shuran Fan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Ming Qi
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Qi Qi
- School of Medicine, Jinan University, Guangzhou 510632, China
| | - Qun Miao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Lijuan Deng
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510630, China
| | - Jinghua Pan
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Shenghui Qiu
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Jiashuai He
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Maohua Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xiaobo Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jie Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jiapeng Lin
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wenyu Lyu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Weiqing Deng
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yingyin He
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xuesong Liu
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Lvfen Gao
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Dongmei Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wencai Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Minfeng Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| |
Collapse
|
14
|
Zengzhao W, Xuan L, Xiaohan M, Encun H, Jibing C, Hongjun G. Molecular mechanism of microRNAs, long noncoding RNAs, and circular RNAs regulating lymphatic metastasis of bladder cancer. Urol Oncol 2024; 42:3-17. [PMID: 37989693 DOI: 10.1016/j.urolonc.2023.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 11/23/2023]
Abstract
Bladder cancer (BC), a malignancy originating in the epithelial tissue in the inner wall of the bladder, is a common urological cancer type. BC spreads through 3 main pathways: direct infiltration, lymphatic metastasis, and hematogenous metastasis. Lymphatic metastasis is considered a poor prognostic factor for BC and is often associated with lower survival rates. The treatment of BC after lymphatic metastasis is complex and challenging. A deeper understanding of the molecular mechanisms underlying lymphatic metastasis of BC may yield potential targets for its treatment. Here, we summarize the current knowledge on epigenetic factors-including miRNAs, lncRNAs, and circRNAs-associated with lymphatic metastasis in BC. These factors are strongly associated with lymphangiogenesis, cancer cell proliferation and migration, and epithelial-mesenchymal transition processes, providing new insights to develop newer BC treatment strategies.
Collapse
Affiliation(s)
- Wei Zengzhao
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Lan Xuan
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Ma Xiaohan
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Hou Encun
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China; Guangxi Clinical Research Center for Kidney Diseases of Integrated Traditional Chinese and Western Medicine, Nanning, Guangxi, China.
| | - Chen Jibing
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China; Guangxi Clinical Research Center for Kidney Diseases of Integrated Traditional Chinese and Western Medicine, Nanning, Guangxi, China.
| | - Gao Hongjun
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China; Guangxi Clinical Research Center for Kidney Diseases of Integrated Traditional Chinese and Western Medicine, Nanning, Guangxi, China.
| |
Collapse
|
15
|
Li Y, Zheng H, Luo Y, Lin Y, An M, Kong Y, Zhao Y, Yin Y, Ai L, Huang J, Chen C. An HGF-dependent positive feedback loop between bladder cancer cells and fibroblasts mediates lymphangiogenesis and lymphatic metastasis. Cancer Commun (Lond) 2023; 43:1289-1311. [PMID: 37483113 PMCID: PMC10693311 DOI: 10.1002/cac2.12470] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) play a vital role in facilitating tumor progression through extensive reciprocal interplay with cancer cells. Tumor-derived extracellular vesicles (EVs) are the critical mediators involved in the crosstalk between cancer cells and stromal cells, contributing to the metastasis of cancers. Yet, the biological mechanisms of tumor-derived EVs in triggering CAFs phenotype to stimulate the lymph node (LN) metastasis of bladder cancer (BCa) are largely unknown. Here, we aimed to explore the effects and molecular mechanisms of tumor-derived EV-mediated CAFs phenotype in regulating BCa LN metastasis. METHODS The high-throughput sequencing was utilized to identify the crucial long non-coding RNA (lncRNA) associated with CAF enrichment in BCa. The functional role of the transition of fibroblasts to CAFs induced by LINC00665-mediated EVs was investigated through the in vitro and in vivo assays. Chromatin isolation by RNA purification assays, fluorescence resonance energy transfer assays, cytokine profiling and patient-derived xenograft (PDX) model were performed to explore the underlying mechanism of LINC00665 in the LN metastasis of BCa. RESULTS We found that CAFs are widely enriched in the tumor microenvironment of BCa, which correlated with BCa lymphangiogenesis and LN metastasis. We then identified a CAF-associated long non-coding RNA, LINC00665, which acted as a crucial mediator of CAF infiltration in BCa. Clinically, LINC00665 was associated with LN metastasis and poor prognosis in patients with BCa. Mechanistically, LINC00665 transcriptionally upregulated RAB27B expression and induced H3K4me3 modification on the promoter of RAB27B through the recruitment of hnRNPL. Moreover, RAB27B-induced EVs secretion endowed fibroblasts with the CAF phenotype, which reciprocally induced LINC00665 overexpression to form a RAB27B-HGF-c-Myc positive feedback loop, enhancing the lymphangiogenesis and LN metastasis of BCa. Importantly, we demonstrated that blocking EV-transmitted LINC00665 or HGF broke this loop and impaired BCa lymphangiogenesis in a PDX model. CONCLUSION Our study uncovers a precise mechanism that LINC00665 sustains BCa LN metastasis by inducing a RAB27B-HGF-c-Myc positive feedback loop between BCa cells and fibroblasts, suggesting that LINC00665 could be a promising therapeutic target for patients with LN metastatic BCa.
Collapse
Affiliation(s)
- Yuting Li
- Department of OncologySun Yat‐sen Memorial HospitalGuangzhouGuangdongP. R. China
| | - Hanhao Zheng
- Cancer CenterRenmin Hospital of Wuhan UniversityWuhanHubeiP. R. China
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongP. R. China
| | - Yuming Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalState Key Laboratory of Oncology in South ChinaGuangzhouGuangdongP. R. China
| | - Yan Lin
- Cancer CenterRenmin Hospital of Wuhan UniversityWuhanHubeiP. R. China
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongP. R. China
| | - Mingjie An
- Cancer CenterRenmin Hospital of Wuhan UniversityWuhanHubeiP. R. China
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongP. R. China
| | - Yao Kong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalState Key Laboratory of Oncology in South ChinaGuangzhouGuangdongP. R. China
| | - Yue Zhao
- Department of General SurgeryGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouGuangdongP. R. China
| | - Yina Yin
- Department of OncologySun Yat‐sen Memorial HospitalGuangzhouGuangdongP. R. China
| | - Le Ai
- Department of OncologySun Yat‐sen Memorial HospitalGuangzhouGuangdongP. R. China
| | - Jian Huang
- Cancer CenterRenmin Hospital of Wuhan UniversityWuhanHubeiP. R. China
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongP. R. China
| | - Changhao Chen
- Cancer CenterRenmin Hospital of Wuhan UniversityWuhanHubeiP. R. China
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongP. R. China
| |
Collapse
|
16
|
Wang SS, Zhai GQ, Chen G, Huang ZG, Zhang Y, Zhang LJ, Dang YW, Li SH, Yan HB. Metadherin Promotes the Development of Bladder Cancer by Enhancing Cell Division. Cancer Biother Radiopharm 2023; 38:650-662. [PMID: 35704039 DOI: 10.1089/cbr.2021.0392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Bladder cancer (BLCA) is a malignant tumor occurring in bladder mucosa. Metadherin (MTDH) has been implicated in tumor progression; however, its molecular biological mechanisms in BLCA remain unclear. Materials and Methods: Cell functions were tested after BLCA cells were transfected by both short hairpin RNAs and small interfering RNAs to silence MTDH. Furthermore, in-house RNA sequencing (RNA-seq) was performed with T24 cells after the knockdown of MTDH. In addition, MTDH-related pathways were explored. Finally, MTDH mRNA and protein expression levels were examined using multiple detection methods in BLCA tissues. Results: MTDH knockdown could largely inhibit cell proliferation, viability, and migration and induce apoptosis of BLCA cells. In-house RNA-seq showed that MTDH knockdown led to extracellular matrix organization and cell division. The integrated analysis showed that the comprehensive expression of MTDH at the mRNA level was 0.47 and that at the protein level was 0.54, based on 11 platforms, including 1485 BLCA and 180 non-BLCA samples. Conclusions: MTDH promotes the growth of BLCA cells through the pathway of cell division. This study provides new directions and biomarkers for future treatment.
Collapse
Affiliation(s)
- Shi-Shuo Wang
- Department of Pathology and First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Gao-Qiang Zhai
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Gang Chen
- Department of Pathology and First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Zhi-Guang Huang
- Department of Pathology and First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Yu Zhang
- Department of Pathology and First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Li-Jie Zhang
- Department of Pathology and First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Yi-Wu Dang
- Department of Pathology and First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Sheng-Hua Li
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Hai-Biao Yan
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| |
Collapse
|
17
|
Huang N, Peng L, Yang J, Li J, Zhang S, Sun M. FAM111B Acts as an Oncogene in Bladder Cancer. Cancers (Basel) 2023; 15:5122. [PMID: 37958297 PMCID: PMC10648174 DOI: 10.3390/cancers15215122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Bladder cancer (BLCA) is a prevalent malignancy of the urinary system, associated with a high recurrence rate and poor prognosis. FAM111B, which encodes a protein containing a trypsin-like cysteine/serine peptidase domain, has been implicated in the progression of various human cancers; however, its involvement in BLCA remains unclear. In this study, we investigated the expression of FAM111B gene in tumor tissues compared to para-tumor tissues using immunohistochemistry and observed a significantly higher FAM111B gene expression in tumor tissues. Furthermore, analysis of clinical characteristics indicated that the increased FAM111B gene expression correlated with lymphatic metastasis and reduced overall survival. To investigate its functional role, we employed FAM111B-knockdown BLCA cell models and performed cell proliferation, wound-healing, transwell, and flow cytometry assays. The results showed that decreased FAM111B gene expression inhibited proliferation and migration but induced apoptosis in BLCA cells. In vivo experiments further validated that FAM111B knockdown suppressed tumor growth. Overall, our findings suggest that FAM111B acts as an oncogene in BLCA, playing a critical role in tumorigenesis, progression, and metastasis of BLCA. In conclusion, we have demonstrated a strong correlation between the expression of FAM111B gene and the development, progression, and metastasis of bladder cancer (BLCA). Thus, FAM111B is an oncogene associated with BLCA and holds promise as a molecular target for future treatment of this cancer.
Collapse
Affiliation(s)
- Ning Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China; (N.H.); (L.P.); (J.Y.); (J.L.)
| | - Lei Peng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China; (N.H.); (L.P.); (J.Y.); (J.L.)
| | - Jiaping Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China; (N.H.); (L.P.); (J.Y.); (J.L.)
| | - Jinqian Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China; (N.H.); (L.P.); (J.Y.); (J.L.)
| | - Sheng Zhang
- Medical Oncology, Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Mingjuan Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China; (N.H.); (L.P.); (J.Y.); (J.L.)
| |
Collapse
|
18
|
Wang G, He X, Dai H, Lin L, Cao W, Fu Y, Diao W, Ding M, Zhang Q, Chen W, Guo H. WDR4 promotes the progression and lymphatic metastasis of bladder cancer via transcriptional down-regulation of ARRB2. Oncogenesis 2023; 12:47. [PMID: 37783676 PMCID: PMC10545698 DOI: 10.1038/s41389-023-00493-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023] Open
Abstract
Lymph node (LN) metastasis is one of the key prognostic factors in bladder cancer, but its underlying mechanisms remain unclear. Here, we found that elevated expression of WD repeat domain 4 (WDR4) in bladder cancer correlated with worse prognosis. WDR4 can promote the LN metastasis and proliferation of bladder cancer cells. Mechanistic studies showed that WDR4 can promote the nuclear localization of DEAD-box helicase 20 (DDX20) and act as an adaptor to bind DDX20 and Early growth response 1 (Egr1), thereby inhibiting Egr1-promoted transcriptional expression of arrestin beta 2 (ARRB2) and ultimately contributing to the progression of bladder cancer. Immunohistochemical analysis confirmed that WDR4 expression is also an independent predictor of LN metastasis in bladder cancer. Our results reveal a novel mechanism of LN metastasis and progression in bladder cancer and identify WDR4 as a potential therapeutic target for metastatic bladder cancer.
Collapse
Affiliation(s)
- Guoli Wang
- Department of Urology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, China
| | - Xin He
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, China
| | - Huiqi Dai
- Department of Urology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, China
| | - Lingyi Lin
- Department of Urology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, China
| | - Wenmin Cao
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, China
| | - Yao Fu
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Wenli Diao
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, China
| | - Meng Ding
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, China
| | - Qing Zhang
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, China.
| | - Wei Chen
- Department of Urology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China.
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, China.
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China.
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
19
|
Lu J, Lai J, Xiao K, Peng S, Zhang Y, Xia Q, Liu S, Cheng L, Zhang Q, Chen Y, Chen X, Lin T. A clinically practical model for the preoperative prediction of lymph node metastasis in bladder cancer: a multicohort study. Br J Cancer 2023; 129:1166-1175. [PMID: 37542107 PMCID: PMC10539530 DOI: 10.1038/s41416-023-02383-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND The aim of this study was to construct a clinically practical model to precisely predict lymph node (LN) metastasis in bladder cancer patients. METHODS Four independent cohorts were included. The least absolute shrinkage and selection operator regression with multivariate logistic regression were applied. The diagnostic efficacy of LN score and CT/MRI was compared by accuracy, sensitivity, specificity, and area under curve (AUC). RESULTS A total of 606 patients were included to develop a basic prediction model. After multistep gene selection, the LN metastasis prediction model was constructed with 5 genes. The model can accurately predict LN metastasis with an AUC of 0.781. For clinically practical use, we transformed the model into a Fast LN Scoring System using the SYSMH cohort (n = 105). High LN score patients exhibited a 72.2% LN metastasis rate, while low LN score patients showed a 3.4% LN metastasis rate. The LN score achieved a superior accuracy than CT/MRI (0.882 vs. 0.727). Application of LN score can correct the diagnosis of 88% (22/25) patients who were misdiagnosed by CT/MRI. DISCUSSION The clinically practical LN score can precisely, rapidly, and conveniently predict LN status, which will assist preoperative diagnosis for LN metastasis and guide precise therapy.
Collapse
Affiliation(s)
- Junlin Lu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, Guangdong, P. R. China
| | - Jiajian Lai
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, Guangdong, P. R. China
| | - Kanghua Xiao
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, Guangdong, P. R. China
| | - Shengmeng Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, Guangdong, P. R. China
| | - Yangjie Zhang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, Guangdong, P. R. China
| | - Qidong Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, P. R. China
| | - Sen Liu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, Guangdong, P. R. China
| | - Liang Cheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, Guangdong, P. R. China
| | - Qiang Zhang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, Guangdong, P. R. China
| | - Yuelong Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, Guangdong, P. R. China
| | - Xu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, Guangdong, P. R. China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, Guangdong, P. R. China.
- Guangdong Provincial Clinical Research Center for Urological Diseases, 510120, Guangzhou, Guangdong, P. R. China.
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, Guangdong, P. R. China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, Guangdong, P. R. China.
- Guangdong Provincial Clinical Research Center for Urological Diseases, 510120, Guangzhou, Guangdong, P. R. China.
| |
Collapse
|
20
|
Ji H, Hu C, Yang X, Liu Y, Ji G, Ge S, Wang X, Wang M. Lymph node metastasis in cancer progression: molecular mechanisms, clinical significance and therapeutic interventions. Signal Transduct Target Ther 2023; 8:367. [PMID: 37752146 PMCID: PMC10522642 DOI: 10.1038/s41392-023-01576-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 07/04/2023] [Accepted: 07/26/2023] [Indexed: 09/28/2023] Open
Abstract
Lymph nodes (LNs) are important hubs for metastatic cell arrest and growth, immune modulation, and secondary dissemination to distant sites through a series of mechanisms, and it has been proved that lymph node metastasis (LNM) is an essential prognostic indicator in many different types of cancer. Therefore, it is important for oncologists to understand the mechanisms of tumor cells to metastasize to LNs, as well as how LNM affects the prognosis and therapy of patients with cancer in order to provide patients with accurate disease assessment and effective treatment strategies. In recent years, with the updates in both basic and clinical studies on LNM and the application of advanced medical technologies, much progress has been made in the understanding of the mechanisms of LNM and the strategies for diagnosis and treatment of LNM. In this review, current knowledge of the anatomical and physiological characteristics of LNs, as well as the molecular mechanisms of LNM, are described. The clinical significance of LNM in different anatomical sites is summarized, including the roles of LNM playing in staging, prognostic prediction, and treatment selection for patients with various types of cancers. And the novel exploration and academic disputes of strategies for recognition, diagnosis, and therapeutic interventions of metastatic LNs are also discussed.
Collapse
Affiliation(s)
- Haoran Ji
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Chuang Hu
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xuhui Yang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yuanhao Liu
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Guangyu Ji
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiansong Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Mingsong Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
21
|
Viúdez-Pareja C, Kreft E, García-Caballero M. Immunomodulatory properties of the lymphatic endothelium in the tumor microenvironment. Front Immunol 2023; 14:1235812. [PMID: 37744339 PMCID: PMC10512957 DOI: 10.3389/fimmu.2023.1235812] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/08/2023] [Indexed: 09/26/2023] Open
Abstract
The tumor microenvironment (TME) is an intricate complex and dynamic structure composed of various cell types, including tumor, stromal and immune cells. Within this complex network, lymphatic endothelial cells (LECs) play a crucial role in regulating immune responses and influencing tumor progression and metastatic dissemination to lymph node and distant organs. Interestingly, LECs possess unique immunomodulatory properties that can either promote or inhibit anti-tumor immune responses. In fact, tumor-associated lymphangiogenesis can facilitate tumor cell dissemination and metastasis supporting immunoevasion, but also, different molecular mechanisms involved in LEC-mediated anti-tumor immunity have been already described. In this context, the crosstalk between cancer cells, LECs and immune cells and how this communication can shape the immune landscape in the TME is gaining increased interest in recent years. In this review, we present a comprehensive and updated report about the immunomodulatory properties of the lymphatic endothelium within the TME, with special focus on primary tumors and tumor-draining lymph nodes. Furthermore, we outline emerging research investigating the potential therapeutic strategies targeting the lymphatic endothelium to enhance anti-tumor immune responses. Understanding the intricate mechanisms involved in LEC-mediated immune modulation in the TME opens up new possibilities for the development of innovative approaches to fight cancer.
Collapse
Affiliation(s)
- Cristina Viúdez-Pareja
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, Andalucía Tech, University of Málaga, Málaga, Spain
- IBIMA (Biomedical Research Institute of Málaga)-Plataforma BIONAND, Málaga, Spain
| | - Ewa Kreft
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, Andalucía Tech, University of Málaga, Málaga, Spain
- IBIMA (Biomedical Research Institute of Málaga)-Plataforma BIONAND, Málaga, Spain
| | - Melissa García-Caballero
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, Andalucía Tech, University of Málaga, Málaga, Spain
- IBIMA (Biomedical Research Institute of Málaga)-Plataforma BIONAND, Málaga, Spain
| |
Collapse
|
22
|
Li Z, Lu T, Chen Z, Yu X, Wang L, Shen G, Huang H, Li Z, Ren Y, Guo W, Hu Y. HOXA11 promotes lymphatic metastasis of gastric cancer via transcriptional activation of TGFβ1. iScience 2023; 26:107346. [PMID: 37539033 PMCID: PMC10393827 DOI: 10.1016/j.isci.2023.107346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/09/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
Most gastric cancer (GC) patients with early stage often have no lymph node (LN) metastases, while LN metastases appear in the advanced stage. However, there are some patients who present with early stage LN metastases and no LN metastases in the advanced stage. To explore the deeper molecular mechanisms involved, we collected clinical samples from early and advanced stage GC with and without LN metastases, as well as metastatic lymph nodes. Herein, we identified a key target, HOXA11, that was upregulated in GC tissues and closely associated with lymphatic metastases. HOXA11 transcriptionally regulates TGFβ1 expression and activates the TGFβ1/Smad2 pathway, which not only promotes EMT development but also induces VEGF-C secretion and lymphangiogenesis. These findings provide a plausible mechanism for HOXA11-modulated tumor in lymphatic metastasis and suggest that HOXA11 may represent a potential therapeutic target for clinical intervention in LN-metastatic gastric cancer.
Collapse
Affiliation(s)
- Zhenyuan Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Tailiang Lu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Zhian Chen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Xiang Yu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Lingzhi Wang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Guodong Shen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Huilin Huang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Zhenhao Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Yingxin Ren
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Weihong Guo
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Yanfeng Hu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| |
Collapse
|
23
|
Zhang M, Li Z, Liu Y, Ding X, Wang Y, Fan S. The ceramide synthase (CERS/LASS) family: Functions involved in cancer progression. Cell Oncol (Dordr) 2023; 46:825-845. [PMID: 36947340 DOI: 10.1007/s13402-023-00798-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
INTRODUCTION Ceramide synthases (CERSes) are also known longevity assurance (LASS) genes. CERSes play important roles in the regulation of cancer progression. The CERS family is expressed in a variety of human tumours and is involved in tumorigenesis. They are closely associated with the progression of liver, breast, cervical, ovarian, colorectal, head and neck squamous cell, gastric, lung, prostate, oesophageal, pancreatic and blood cancers. CERSes play diverse and important roles in the regulation of cell survival, proliferation, apoptosis, migration, invasion, and drug resistance. The differential expression of CERSes in tumour and nontumour cells and survival analysis of cancer patients suggest that some CERSes could be used as potential prognostic markers. They are also important potential targets for cancer therapy. METHODS In this review, we summarize the available evidence on the inhibitory or promotive roles of CERSes in the progression of many cancers. Furthermore, we summarize the identified upstream and downstream molecular mechanisms that may regulate the function of CERSes in cancer settings.
Collapse
Affiliation(s)
- Mengmeng Zhang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Zhangyun Li
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Yuwei Liu
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Xiao Ding
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Yanyan Wang
- Department of Ultrasonic Medicine, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China.
| | - Shaohua Fan
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| |
Collapse
|
24
|
Yan D, Xie Y, Huang L, Zhang Y, Gu R, Xie H, Huang X, Luo H. RNA m5C methylation orchestrates BLCA progression via macrophage reprogramming. J Cell Mol Med 2023; 27:2398-2411. [PMID: 37408139 PMCID: PMC10424284 DOI: 10.1111/jcmm.17826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
Recently, epigenetics showed essential roles in tumour microenvironment (TME) and immunotherapy response, however, the functions of RNA 5-methylcytosine (m5C) modification in TME remains unknown. According to 13 m5C regulators, we evaluated 412 BLCA patients from The Cancer Genome Atlas (TCGA) database. The m5C score was constructed by unsupervised clustering analysis and principal component analysis (PCA) algorithms. Gene set variation analysis (GSVA), ESTIMATE algorithm, and immunohistochemical (IHC) staining were performed. Macrophage chemotaxis assay was used to assess the M2 macrophages. Among the 412 patients, the frequency of mutation was 13%. m5C regulators was expressed significantly in BLCA tissue compared with normal tissue. Then, two m5C methylation modification patterns were identified with dissimilar TME cell infiltration patterns. The C1 alteration pattern in the m5C cluster was connected with better survival. In addition, we found that NSUN6 was highly correlated with recruitment of macrophages via bioinformatics and IHC. Further experiment validated that NSUN6 promoted HDAC10 expression by mediating m5C methylation, inhibited the transcription of macrophage-associated chemokines and thus inhibited the recruitment of M2 macrophages. The m5C score constructed by m5C modification pattern showed that high m5C score group had a better prognosis. This study uncovered the significant roles of m5C modifications in modulating the TME and indicated that NSUN6 could inhibit the recruitment of M2 macrophages via m5C methylation, which provided novel insight into epigenetic regulation of TME and clinical suggestions for immunotherapeutic strategies.
Collapse
Affiliation(s)
- Dali Yan
- Department of OncologyThe Affiliated Huai'an Hospital of Xuzhou Medical University and the Second People's Hospital of Huai'anHuai'anChina
| | - Yongsong Xie
- Department of GeriatricsThe Third Hospital of Kunshan CityKunshanChina
| | - Liyuan Huang
- Department of UrologyThe Affiliated Huai'an Hospital of Xuzhou Medical University and the Second People's Hospital of Huai'anHuai'anChina
| | - Yi Zhang
- Department of OncologyThe Affiliated Huai'an Hospital of Xuzhou Medical University and the Second People's Hospital of Huai'anHuai'anChina
| | - Runhuan Gu
- Department of OncologyThe Affiliated Huai'an Hospital of Xuzhou Medical University and the Second People's Hospital of Huai'anHuai'anChina
| | - Huaibing Xie
- Department of OncologyThe Affiliated Huai'an Hospital of Xuzhou Medical University and the Second People's Hospital of Huai'anHuai'anChina
| | - Xing Huang
- Department of PathologyJiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer HospitalNanjingChina
| | - Hao Luo
- Department of OncologyLian Shui People's Hospital Affiliated to Kangda College of Nanjing Medical UniversityHuai'anChina
| |
Collapse
|
25
|
Jiang Y, Zhu C, Huang H, Huang G, Fu B, Xi X. TUBA1C is a potential new prognostic biomarker and promotes bladder urothelial carcinoma progression by regulating the cell cycle. BMC Cancer 2023; 23:716. [PMID: 37528357 PMCID: PMC10391756 DOI: 10.1186/s12885-023-11209-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 07/23/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND TUBA1C is an α-tubulin isoform involved in mitosis, and its dysregulation has been implicated in tumor progression. There is still no clear understanding of its role in bladder urothelial carcinoma (BLCA). METHODS This study examined the differential expression of TUBA1C and its prognostic significance in bladder cancer based on data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) and also assessed the correlation of TUBA1C expression level with immune cell infiltration and immune checkpoint gene expression levels and the half-inhibitory concentration (IC50) of different chemotherapeutic agents. Immunotherapy response was estimated using the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm. We detected TUBA1C expression in BLCA cells using PCR and Western blotting. Functional assays, including CCK-8, colony formation, transwell, apoptosis and cell cycle assays, were also performed to assess the oncogenic role of TUBA1C in BLCA. RESULT In three independent public cohorts, TUBA1C was significantly upregulated in bladder tumor tissues, and high TUBA1C expression in bladder cancer was associated with a poorer outcome than low expression. TUBA1C was an independent prognostic risk factor for bladder cancer, and numerous immune checkpoint genes and infiltrating immune cells were associated with TUBA1C. TIDE analysis revealed that TUBA1C showed great potential for predicting the immunotherapy response in bladder cancer patients. In addition, drug sensitivity analysis revealed that high TUBA1C expression indicated sensitivity to multiple chemotherapeutic agents. Functional assays revealed that silencing TUBA1C significantly inhibited the proliferation, migration and invasion of BLCA cells and induced apoptosis and cell cycle arrest. CONCLUSION The overexpression of TUBA1C in bladder cancer predicts a poor prognosis and may also be a potential immunotherapeutic target. As a prognostic marker, TUBA1C influences tumor progression by regulating the cell cycle.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chao Zhu
- Department of Blood Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Haoxuan Huang
- Department of Urology, The Third Affiliated Hospital of Nanchang University, Nanchang, China
| | - Gaomin Huang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Xiaoqing Xi
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
26
|
Wasfie T, Atherton JM, Villegas SJ, Korbitz H, Henke A. Small bowel obstruction secondary to metastatic urothelial bladder cancer. SAGE Open Med Case Rep 2023; 11:2050313X231176356. [PMID: 37483266 PMCID: PMC10357062 DOI: 10.1177/2050313x231176356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/02/2023] [Indexed: 07/25/2023] Open
Abstract
Small bowel obstruction secondary to primary cancer, such as carcinoid and adenocarcinoma, is not unusual. Less frequently, hematological metastasis from breast, lung, and melanoma can occur. However, metastasis from urothelial bladder carcinoma is extremely rare. In this index case, we describe a 71-year-old Caucasian man with a prior history of urothelial bladder carcinoma. He was treated successfully with chemoradiation and local resection a year prior to his current presentation with small bowel obstruction which required surgical resection of a loop of jejunum, which was found to be caused by obstructive, metastatic urothelial bladder carcinoma on pathology. Therefore, one should consider the possibility of secondary obstructive malignant lesions arising from the urinary bladder in such a patient when presented with bowel obstruction and a history of urothelial bladder carcinoma.
Collapse
Affiliation(s)
- Tarik Wasfie
- Department of Surgery, Ascension Genesys Hospital, Grand Blanc, MI, USA
| | - Joshua M Atherton
- Central Michigan University School of Medicine, Mount Pleasant, MI, USA
| | - Sergio J Villegas
- Department of Emergency Medicine, Ascension Genesys Hospital, Grand Blanc, MI, USA
| | - Holland Korbitz
- Department of Surgery, Ascension Genesys Hospital, Grand Blanc, MI, USA
| | - Andrew Henke
- Department of Pathology, Ascension Genesys Hospital, Grand Blanc, MI, USA
| |
Collapse
|
27
|
Xiao K, Peng S, Lu J, Zhou T, Hong X, Chen S, Liu G, Li H, Huang J, Chen X, Lin T. UBE2S interacting with TRIM21 mediates the K11-linked ubiquitination of LPP to promote the lymphatic metastasis of bladder cancer. Cell Death Dis 2023; 14:408. [PMID: 37422473 PMCID: PMC10329682 DOI: 10.1038/s41419-023-05938-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/30/2023] [Indexed: 07/10/2023]
Abstract
Lymphatic metastasis is the most common pattern of bladder cancer (BCa) metastasis and has an extremely poor prognosis. Emerging evidence shows that ubiquitination plays crucial roles in various processes of tumors, including tumorigenesis and progression. However, the molecular mechanisms underlying the roles of ubiquitination in the lymphatic metastasis of BCa are largely unknown. In the present study, through bioinformatics analysis and validation in tissue samples, we found that the ubiquitin-conjugating E2 enzyme UBE2S was positively correlated with the lymphatic metastasis status, high tumor stage, histological grade, and poor prognosis of BCa patients. Functional assays showed that UBE2S promoted BCa cell migration and invasion in vitro, as well as lymphatic metastasis in vivo. Mechanistically, UBE2S interacted with tripartite motif containing 21 (TRIM21) and jointly induced the ubiquitination of lipoma preferred partner (LPP) via K11-linked polyubiquitination but not K48- or K63-linked polyubiquitination. Moreover, LPP silencing rescued the anti-metastatic phenotypes and inhibited the epithelial-mesenchymal transition of BCa cells after UBE2S knockdown. Finally, targeting UBE2S with cephalomannine distinctly inhibited the progression of BCa in cell lines and human BCa-derived organoids in vitro, as well as in a lymphatic metastasis model in vivo, without significant toxicity. In conclusion, our study reveals that UBE2S, by interacting with TRIM21, degrades LPP through K11-linked ubiquitination to promote the lymphatic metastasis of BCa, suggesting that UBE2S represents a potent and promising therapeutic target for metastatic BCa.
Collapse
Affiliation(s)
- Kanghua Xiao
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, PR China
| | - Shengmeng Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, PR China
| | - Junlin Lu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, PR China
| | - Ting Zhou
- Biobank of Sun Yat-sen University Cancer Center, Guangzhou, 510120, Guangdong, PR China
| | - Xuwei Hong
- Department of Urology, Shantou Central Hospital, Shantou, 515031, PR China
| | - Siting Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, PR China
| | - Guangyao Liu
- School of Medicine, South China University of Technology, Guangzhou, 510120, Guangdong, PR China
| | - Hong Li
- BioMed Laboratory, Guangzhou Jingke Biotech Group, Guangzhou, 510120, Guangdong, PR China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, PR China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, PR China.
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, 510120, Guangdong, PR China.
| | - Xu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, PR China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, PR China.
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, 510120, Guangdong, PR China.
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, PR China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, PR China.
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, 510120, Guangdong, PR China.
| |
Collapse
|
28
|
Zhu Z, Li X, Liu D, Li Z. A novel signature of aging-related genes associated with lymphatic metastasis for survival prediction in patients with bladder cancer. Front Oncol 2023; 13:1140891. [PMID: 37441420 PMCID: PMC10335803 DOI: 10.3389/fonc.2023.1140891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Background The predominant and most prevalent form of metastatic bladder cancer (BCa) is lymphatic metastasis, which is associated with a highly dismal prognosis for patients. Aging-related genes (ARGs) are believed to contribute significantly to tumor development. However, the effect of ARGs on lymphatic metastasis of BCa is unclear. This research sought to establish a prognosis model based on ARGs associated with lymphatic metastasis in BCa. Methods We downloaded BCa data from the TCGA and GEO databases and ARGs from the Aging Atlas database. The least absolute shrinkage and selection operator (LASSO) approach was applied to obtain the characteristic ARGs of risk signature in the TCGA cohort. Verification was done using the GSE13507 dataset. The R package 'ConsensusClusterPlus' was employed to identify the molecular subtypes based on the characteristic ARGs. Protein-Protein interaction network, MCODE analysis, enrichment analysis (KEGG, GO, GSEA), and immune infiltration analysis were performed to investigate underlying mechanisms. EdU, migration and invasion assays, wound healing assays, immunofluorescence staining, and quantitative polymerase chain reaction were conducted to evaluate the impact of ELN on the proliferative, migratory, and invasive capacities of BCa cells. Results We identified 20 differently expressed ARGs. A four ARGs risk signature (EFEMP1, UCHL1, TP63, ELN) was constructed in the TCGA cohort. The high-risk group (category) recorded a reduced overall survival (OS) rate relative to the low-risk category (hazard ratio, 2.15; P <0.001). The risk score could predict lymphatic metastasis in TCGA cohort (AUC=0.67). The GSE13507 dataset was employed to verify the validity of this risk score. Based on the four ARGs, two distinct aging profiles (Cluster 1 and Cluster 2) were discovered utilizing the ConsensusClusterPlus, and Cluster 2 possessed a favorable OS in contrast with Cluster 1 (hazard ratio, 0.69; P =0.02). Classical tumor signaling pathways, ECM-associated signaling pathways, and immune-related signaling pathways participate in BCa progression. ELN recombinant protein affected the expression of collagen and increased migration and invasiveness in BCa cells. Conclusion We constructed a four-ARG risk signature and identified two aging molecular subtypes. This signature could serve as an effective survival predictor for patients with BCa.
Collapse
Affiliation(s)
- Zhiguo Zhu
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- Medical Research Center, Postdoctoral Mobile Station of Shandong University of Traditional Chinese Medicine, Jining, China
- The Seventh Affiliated Hospital (Shenzhen), Sun Yet-sen University, Shenzhen, China
| | - Xiaoli Li
- The Seventh Affiliated Hospital (Shenzhen), Sun Yet-sen University, Shenzhen, China
| | - Deqian Liu
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Zhonghai Li
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| |
Collapse
|
29
|
Li X, Li L, Xiong X, Kuang Q, Peng M, Zhu K, Luo P. Identification of the Prognostic Biomarkers CBX6 and CBX7 in Bladder Cancer. Diagnostics (Basel) 2023; 13:diagnostics13081393. [PMID: 37189494 DOI: 10.3390/diagnostics13081393] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/22/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Chromobox (CBX) proteins are essential components of polycomb group proteins and perform essential functions in bladder cancer (BLCA). However, research on CBX proteins is still limited, and the function of CBXs in BLCA has not been well illustrated. METHODS AND RESULTS We analyzed the expression of CBX family members in BLCA patients from The Cancer Genome Atlas database. By Cox regression analysis and survival analysis, CBX6 and CBX7 were identified as potential prognostic factors. Subsequently, we identified genes associated with CBX6/7 and performed enrichment analysis, and they were enriched in urothelial carcinoma and transitional carcinoma. Mutation rates of TP53 and TTN correlate with expression of CBX6/7. In addition, differential analysis indicated that the roles played by CBX6 and CBX7 may be related to immune checkpoints. The CIBERSORT algorithm was used to screen out immune cells that play a role in the prognosis of bladder cancer patients. Multiplex immunohistochemistry staining confirmed a negative correlation between CBX6 and M1 macrophages, as well as a consistent alteration in CBX6 and regulatory T cells (Tregs), a positive correlation between CBX7 and resting mast cells, and a negative correlation between CBX7 and M0 macrophages. CONCLUSIONS CBX6 and CBX7 expression levels may assist in predicting the prognosis of BLCA patients. CBX6 may contribute to a poor prognosis in patients by inhibiting M1 polarization and promoting Treg recruitment in the tumor microenvironment, while CBX7 may contribute to a better prognosis in patients by increasing resting mast cell numbers and decreasing macrophage M0 content.
Collapse
Affiliation(s)
- Xinxin Li
- Department of Urology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan 430060, China
| | - Lili Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xi Xiong
- Department of Urology, Wuhan Third Hospital, School of Medicine, Wuhan University of Science and Technology, Wuhan 430060, China
| | - Qihui Kuang
- Department of Urology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan 430060, China
| | - Min Peng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Kai Zhu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Pengcheng Luo
- Department of Urology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
30
|
Zhang Q, Liu S, Wang H, Xiao K, Lu J, Chen S, Huang M, Xie R, Lin T, Chen X. ETV4 Mediated Tumor-Associated Neutrophil Infiltration Facilitates Lymphangiogenesis and Lymphatic Metastasis of Bladder Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205613. [PMID: 36670069 PMCID: PMC10104629 DOI: 10.1002/advs.202205613] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/21/2022] [Indexed: 05/08/2023]
Abstract
As a key step of tumor lymphatic metastasis, lymphangiogenesis is regulated by VEGFC-VEGFR3 signaling pathway mediated by immune cells, mainly macrophages, in the tumor microenvironment. However, little is known whether tumor associated neutrophils are involved in lymphangiogenesis. Here, it is found that TANs infiltration is increased in LN-metastatic BCa and is associated with poor prognosis. Neutrophil depletion results in significant reduction in popliteal LN metastasis and lymphangiogenesis. Mechanistically, transcription factor ETV4 enhances BCa cells-derived CXCL1/8 to recruit TANs, leading to the increase of VEGFA and MMP9 from TANs, and then facilitating lymphangiogenesis and LN metastasis of BCa. Moreover, phosphorylation of ETV4 at tyrosine 392 by tyrosine kinase PTK6 increases nuclear translocation of ETV4 and is essential for its function in BCa. Overall, the findings reveal a novel mechanism of how tumor cells regulate TANs-induced lymphangiogenesis and LN metastasis and identify ETV4 as a therapeutic target of LN metastasis in BCa.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Clinical Research Center for Urological DiseasesGuangzhouGuangdong510000P. R. China
| | - Sen Liu
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Clinical Research Center for Urological DiseasesGuangzhouGuangdong510000P. R. China
| | - Hongjin Wang
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Clinical Research Center for Urological DiseasesGuangzhouGuangdong510000P. R. China
| | - Kanghua Xiao
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Clinical Research Center for Urological DiseasesGuangzhouGuangdong510000P. R. China
| | - Junlin Lu
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Clinical Research Center for Urological DiseasesGuangzhouGuangdong510000P. R. China
| | - Siting Chen
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Clinical Research Center for Urological DiseasesGuangzhouGuangdong510000P. R. China
| | - Ming Huang
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Clinical Research Center for Urological DiseasesGuangzhouGuangdong510000P. R. China
| | - Ruihui Xie
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Clinical Research Center for Urological DiseasesGuangzhouGuangdong510000P. R. China
| | - Tianxin Lin
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Clinical Research Center for Urological DiseasesGuangzhouGuangdong510000P. R. China
| | - Xu Chen
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Clinical Research Center for Urological DiseasesGuangzhouGuangdong510000P. R. China
| |
Collapse
|
31
|
Tu Y, Mao Z. Identification and Validation of Molecular Subtype and Prognostic Signature for Bladder Cancer Based on Neutrophil Extracellular Traps. Cancer Invest 2023; 41:354-368. [PMID: 36762827 DOI: 10.1080/07357907.2023.2179063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Neutrophil extracellular traps (NETs) could promote tumor growth and distant metastases. Molecular subtypes of bladder cancer were identified with consensus cluster analysis. A NETs-related prognostic signature was constructed with LASSO cox regression analysis. As a result, we identified three subtypes of bladder cancer, which had a distinct difference in prognosis, immune microenvironment, TIDE score, mRNAsi score and IC50 score. We also developed a prognostic signature based on 5 NETs-related genes, which had a good performance in clinical outcome prediction of bladder cancer. These results may provide more data about the vital role of NETs in bladder cancer.
Collapse
Affiliation(s)
- Yaofen Tu
- Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zujie Mao
- Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
32
|
Ashrafizadeh M, Zarrabi A, Karimi‐Maleh H, Taheriazam A, Mirzaei S, Hashemi M, Hushmandi K, Makvandi P, Nazarzadeh Zare E, Sharifi E, Goel A, Wang L, Ren J, Nuri Ertas Y, Kumar AP, Wang Y, Rabiee N, Sethi G, Ma Z. (Nano)platforms in bladder cancer therapy: Challenges and opportunities. Bioeng Transl Med 2023; 8:e10353. [PMID: 36684065 PMCID: PMC9842064 DOI: 10.1002/btm2.10353] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 01/25/2023] Open
Abstract
Urological cancers are among the most common malignancies around the world. In particular, bladder cancer severely threatens human health due to its aggressive and heterogeneous nature. Various therapeutic modalities have been considered for the treatment of bladder cancer although its prognosis remains unfavorable. It is perceived that treatment of bladder cancer depends on an interdisciplinary approach combining biology and engineering. The nanotechnological approaches have been introduced in the treatment of various cancers, especially bladder cancer. The current review aims to emphasize and highlight possible applications of nanomedicine in eradication of bladder tumor. Nanoparticles can improve efficacy of drugs in bladder cancer therapy through elevating their bioavailability. The potential of genetic tools such as siRNA and miRNA in gene expression regulation can be boosted using nanostructures by facilitating their internalization and accumulation at tumor sites and cells. Nanoparticles can provide photodynamic and photothermal therapy for ROS overgeneration and hyperthermia, respectively, in the suppression of bladder cancer. Furthermore, remodeling of tumor microenvironment and infiltration of immune cells for the purpose of immunotherapy are achieved through cargo-loaded nanocarriers. Nanocarriers are mainly internalized in bladder tumor cells by endocytosis, and proper design of smart nanoparticles such as pH-, redox-, and light-responsive nanocarriers is of importance for targeted tumor therapy. Bladder cancer biomarkers can be detected using nanoparticles for timely diagnosis of patients. Based on their accumulation at the tumor site, they can be employed for tumor imaging. The clinical translation and challenges are also covered in current review.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural SciencesSabanci University, Orta MahalleIstanbulTurkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural SciencesIstinye UniversityIstanbulTurkey
| | - Hassan Karimi‐Maleh
- School of Resources and EnvironmentUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
- Department of Chemical EngineeringQuchan University of TechnologyQuchanIran
- Department of Chemical SciencesUniversity of JohannesburgJohannesburgSouth Africa
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of medicineTehran Medical Sciences, Islamic Azad UniversityTehranIran
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical Sciences, Islamic Azad UniversityTehranIran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of ScienceIslamic Azad University, Science and Research BranchTehranIran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical Sciences, Islamic Azad UniversityTehranIran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Pooyan Makvandi
- Istituto Italiano di TecnologiaCentre for Materials InterfacePontederaPisa56025Italy
| | | | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and TechnologiesHamadan University of Medical SciencesHamadanIran
| | - Arul Goel
- La Canada High SchoolLa Cañada FlintridgeCaliforniaUSA
| | - Lingzhi Wang
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Jun Ren
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Shanghai Institute of Cardiovascular Diseases, Department of CardiologyZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Yavuz Nuri Ertas
- Department of Biomedical EngineeringErciyes UniversityKayseriTurkey
- ERNAM—Nanotechnology Research and Application CenterErciyes UniversityKayseriTurkey
| | - Alan Prem Kumar
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate CentreUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Navid Rabiee
- School of EngineeringMacquarie UniversitySydneyNew South Wales2109Australia
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)PohangGyeongbuk37673South Korea
| | - Gautam Sethi
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Zhaowu Ma
- Health Science CenterYangtze UniversityJingzhouHubeiChina
| |
Collapse
|
33
|
Zhu LK, Li ZJ, Wang ZB, Chen JT, Zhang HJ, Zhao XW, Liu HY. A rare case of bladder cancer that metastasized to brain, heart, and lung lymph nodes benefited from immunotherapy. World J Surg Oncol 2022; 20:402. [PMID: 36529739 PMCID: PMC9762084 DOI: 10.1186/s12957-022-02876-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Bladder cancer is a common malignant tumor of the genitourinary system, with the primary cause of death being metastasis. The most common metastatic sites are the lymph nodes, liver, lung, bone, peritoneum, pleura, kidney, adrenal gland, and the intestine. Brain and heart metastases are rare. In this report, we describe a patient who had pulmonary lymph node metastases more than a year after being diagnosed with bladder cancer, followed by brain and cardiac metastases more than two years later. Following the failure of standard first-line chemotherapy, the patient accepted 6 cycles of tislelizumab immunotherapy. The re-examination revealed that the bilateral frontal brain metastases had vanished, the right temporal lobe metastases had been greatly decreased, the neurological symptoms had been alleviated, and the cardiac metastases had disappeared. This is a rare clinical case with encouraging effects of tislelizumab and can serve as a model for the treatment of similar patients.
Collapse
Affiliation(s)
- Lian-kai Zhu
- grid.470966.aThird Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032 China
| | - Zhong-jian Li
- grid.470966.aThird Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032 China
| | - Zhi-bo Wang
- grid.470966.aThird Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032 China
| | - Jin-tao Chen
- grid.470966.aThird Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032 China
| | - Hua-jun Zhang
- grid.470966.aThird Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032 China
| | - Xu-wei Zhao
- grid.470966.aThird Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032 China
| | - Hong-yao Liu
- grid.470966.aThird Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032 China
| |
Collapse
|
34
|
Chen Z, Qin C, Wang G, Shang D, Tian Y, Yuan L, Cao R. A tumor microenvironment preoperative nomogram for prediction of lymph node metastasis in bladder cancer. Front Oncol 2022; 12:1099965. [PMID: 36591526 PMCID: PMC9798213 DOI: 10.3389/fonc.2022.1099965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Background Growing evidence suggests that tumor metastasis necessitates multi-step microenvironmental regulation. Lymph node metastasis (LNM) influences both pre- and post-operative bladder cancer (BLCA) treatment strategies. Given that current LNM diagnosis methods are still insufficient, we intend to investigate the microenvironmental changes in BLCA with and without LNM and develop a prediction model to confirm LNM status. Method "Estimation of Stromal and Immune cells in Malignant Tumors using Expression data" (ESTIMATE) algorithm was used to characterize the tumor microenvironment pattern of TCGA-BLCA cohort, and dimension reduction, feature selection, and StrLNM signature construction were accomplished using least absolute shrinkage and selection operator (LASSO) regression. StrLNM signature was combined with the genomic mutation to establish an LNM nomogram by using multivariable logistic regression. The performance of the nomogram was evaluated in terms of calibration, discrimination, and clinical utility. The testing set from the TCGA-BLCA cohort was used for internal validation. Moreover, three independent cohorts were used for external validation, and BLCA patients from our cohort were also used for further validation. Results The StrLNM signature, consisting of 22 selected features, could accurately predict LNM status in the TCGA-BLCA cohort and several independent cohorts. The nomogram performed well in discriminating LNM status, with the area under curve (AUC) of 75.1% and 65.4% in training and testing datasets from the TCGA-BLCA cohort. Furthermore, the StrLNM nomogram demonstrated good calibration with p >0.05 in the Hosmer-Lemeshow goodness of fit test. Decision curve analysis (DCA) revealed that the StrLNM nomogram had a high potential for clinical utility. Additionally, 14 of 22 stably expressed genes were identified by survival analysis and confirmed by qPCR in BLCA patient samples in our cohort. Conclusion In summary, we developed a nomogram that included an StrLNM signature and facilitated the preoperative prediction of LNM status in BLCA patients.
Collapse
Affiliation(s)
- Zhenghao Chen
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chuan Qin
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Donghao Shang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ye Tian
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lushun Yuan
- Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, Leiden, Netherlands,*Correspondence: Rui Cao, ; Lushun Yuan,
| | - Rui Cao
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China,*Correspondence: Rui Cao, ; Lushun Yuan,
| |
Collapse
|
35
|
An M, Zheng H, Huang J, Lin Y, Luo Y, Kong Y, Pang M, Zhang D, Yang J, Chen J, Li Y, Chen C, Lin T. Aberrant Nuclear Export of circNCOR1 Underlies SMAD7-Mediated Lymph Node Metastasis of Bladder Cancer. Cancer Res 2022; 82:2239-2253. [PMID: 35395674 PMCID: PMC9359746 DOI: 10.1158/0008-5472.can-21-4349] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/28/2022] [Accepted: 04/06/2022] [Indexed: 01/07/2023]
Abstract
Circular RNAs (circRNA) containing retained introns are normally sequestered in the nucleus. Dysregulation of cellular homeostasis can drive their nuclear export, which may be involved in cancer metastasis. However, the mechanism underlying circRNA nuclear export and its role in lymph node (LN) metastasis of bladder cancer remain unclear. Here, we identify an intron-retained circRNA, circNCOR1, that is significantly downregulated in LN metastatic bladder cancer and is negatively associated with poor prognosis of patients. Overexpression of circNCOR1 inhibited lymphangiogenesis and LN metastasis of bladder cancer in vitro and in vivo. Nuclear circNCOR1 epigenetically promoted SMAD7 transcription by increasing heterogeneous nuclear ribonucleoprotein L (hnRNPL)-induced H3K9 acetylation in the SMAD7 promoter, leading to inhibition of the TGFβ-SMAD signaling pathway. Nuclear retention of circNCOR1 was regulated by small ubiquitin-like modifier (SUMO)ylation of DDX39B, an essential regulatory factor responsible for circRNA nuclear-cytoplasmic transport. Reduced SUMO2 binding to DDX39B markedly increased circNCOR1 retention in the nucleus to suppress bladder cancer LN metastasis. By contrast, SUMOylated DDX39B activated nuclear export of circNCOR1, impairing the suppressive role of circNCOR1 on TGFβ-SMAD cascade activation and bladder cancer LN metastasis. In patient-derived xenograft (PDX) models, overexpression of circNCOR1 and inhibition of TGFβ signaling significantly repressed tumor growth and LN metastasis. This study highlights SUMOylation-induced nuclear export of circNCOR1 as a key event regulating TGFβ-SMAD signaling and bladder cancer lymphangiogenesis, thus supporting circNCOR1 as a novel therapeutic agent for patients with LN metastatic bladder cancer. SIGNIFICANCE This study identifies the novel intron-retained circNCOR1 and elucidates a SUMOylation-mediated DDX39B-circNCOR1-SMAD7 axis that regulates lymph node metastasis of bladder cancer.
Collapse
Affiliation(s)
- Mingjie An
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Hanhao Zheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yan Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yuming Luo
- Pancreatic Center, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yao Kong
- Pancreatic Center, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Mingrui Pang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Dingwen Zhang
- Pancreatic Center, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Jiabin Yang
- Pancreatic Center, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Jiancheng Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yuanlong Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Changhao Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.,Corresponding Authors: Tianxin Lin, Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiangyi Road, Yuexiu District, Guangzhou, Guangdong Province 510120, P. R. China. Phone: 8620-3407-0447; Fax: 8620-8133-2336; E-mail:; and Changhao Chen,
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.,Corresponding Authors: Tianxin Lin, Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiangyi Road, Yuexiu District, Guangzhou, Guangdong Province 510120, P. R. China. Phone: 8620-3407-0447; Fax: 8620-8133-2336; E-mail:; and Changhao Chen,
| |
Collapse
|
36
|
Liu Q. Current Advances in N6-Methyladenosine Methylation Modification During Bladder Cancer. Front Genet 2022; 12:825109. [PMID: 35087575 PMCID: PMC8787278 DOI: 10.3389/fgene.2021.825109] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022] Open
Abstract
N6-methyladenosine (m6A) is a dynamic, reversible post-transcriptional modification, and the most common internal modification of eukaryotic messenger RNA (mRNA). Considerable evidence now shows that m6A alters gene expression, thereby regulating cell self-renewal, differentiation, invasion, and apoptotic processes. M6A methylation disorders are directly related to abnormal RNA metabolism, which may lead to tumor formation. M6A methyltransferase is the dominant catalyst during m6A modification; it removes m6A demethylase, promotes recognition by m6A binding proteins, and regulates mRNA metabolic processes. Bladder cancer (BC) is a urinary system malignant tumor, with complex etiology and high incidence rates. A well-differentiated or moderately differentiated pathological type at initial diagnosis accounts for most patients with BC. For differentiated superficial bladder urothelial carcinoma, the prognosis is normally good after surgery. However, due to poor epithelial cell differentiation, BC urothelial cell proliferation and infiltration may lead to invasive or metastatic BC, which lowers the 5-years survival rate and significantly affects clinical treatments in elderly patients. Here, we review the latest progress in m6A RNA methylation research and investigate its regulation on BC occurrence and development.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
37
|
Liu S, Chen X, Lin T. Emerging strategies for the improvement of chemotherapy in bladder cancer: Current knowledge and future perspectives. J Adv Res 2021; 39:187-202. [PMID: 35777908 PMCID: PMC9263750 DOI: 10.1016/j.jare.2021.11.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/01/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022] Open
Abstract
The response of chemotherapy and prognosis in bladder cancer is unsatisfied. Immunotherapy, targeted therapy, and ADC improve the efficacy of chemotherapy. Emerging targets in cancer cells and TME spawned novel preclinical agents. Novel drug delivery, such as nanotechnology, enhances effects of chemotherapeutics. The organoid and PDX model are promising to screen and evaluate the target therapy.
Background Chemotherapy is a first-line treatment for advanced and metastatic bladder cancer, but the unsatisfactory objective response rate to this treatment yields poor 5-year patient survival. Only PD-1/PD-L1-based immune checkpoint inhibitors, FGFR3 inhibitors and antibody-drug conjugates are approved by the FDA to be used in bladder cancer, mainly for platinum-refractory or platinum-ineligible locally advanced or metastatic urothelial carcinoma. Emerging studies indicate that the combination of targeted therapy and chemotherapy shows better efficacy than targeted therapy or chemotherapy alone. Newly identified targets in cancer cells and various functions of the tumour microenvironment have spawned novel agents and regimens, which give impetus to sensitizing chemotherapy in the bladder cancer setting. Aim of Review This review aims to present the current evidence for potentiating the efficacy of chemotherapy in bladder cancer. We focus on combining chemotherapy with other treatments as follows: targeted therapy, including immunotherapy and antibody-drug conjugates in clinic; novel targeted drugs and nanoparticles in preclinical models and potential targets that may contribute to chemosensitivity in future clinical practice. The prospect of precision therapy is also discussed in bladder cancer. Key Scientific Concepts of Review Combining chemotherapy drugs with immune checkpoint inhibitors, antibody-drug conjugates and VEGF inhibitors potentially elevates the response rate and survival. Novel targets, including cancer stem cells, DNA damage repair, antiapoptosis, drug metabolism and the tumour microenvironment, contribute to chemosensitization. Gene alteration-based drug selection and patient-derived xenograft- and organoid-based drug validation are the future for precision therapy.
Collapse
|
38
|
Luo C, Huang B, Wu Y, Xu Y, Ou W, Chen J, Chen L. Identification of Lymph Node Metastasis-Related Key Genes and Prognostic Risk Model in Bladder Cancer by Co-Expression Analysis. Front Mol Biosci 2021; 8:633299. [PMID: 34368222 PMCID: PMC8339436 DOI: 10.3389/fmolb.2021.633299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Lymph node metastasis (LNM) is an important pathological characteristic of bladder cancer (BCa). However, the molecular mechanism underlying LNM was not thoroughly elaborated. Identification for LNM-related biomarkers may contribute to making suitable therapies. So, the current study was aimed to identify key genes and construct a prognostic signature. Methods: Based on the Cancer Genome Atlas (TCGA) database, gene expression and clinical information were obtained. Then, the weighted gene co-expression network analysis (WGCNA) was performed to identify the key modules and hub genes. A function analysis and a gene set enrichment analysis were applied to explore biological functions and pathways of interested genes. Furthermore, a prognostic model based on LNM-related genes was constructed by using the least absolute shrinkage and selection operator (LASSO) Cox regression analysis. Results: Finally, nine co-expression modules were constructed, and two modules (turquoise and green) were significantly associated with LNM. Three hub genes were identified as DACT3, TNS1, and MSRB3, which were annotated in actin binding, actin cytoskeleton, adaptive immune response, and cell adhesion molecular binding by the GSEA method. Further analysis demonstrated that three hub genes were associated with the overall survival of BCa patients. In addition, we built a prognostic signature based on the genes from LNM-related modules and evaluated the prognostic value of this signature. Conclusion: In general, this study revealed the key genes related to LNM and prognostic signature, which might provide new insights into therapeutic target of BCa.
Collapse
Affiliation(s)
- Cheng Luo
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Bin Huang
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yukun Wu
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yadong Xu
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wei Ou
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Junxing Chen
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lingwu Chen
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|