1
|
Gu J, Wang Q, Mo J, Qin T, Qian W, Duan W, Han L, Wang Z, Ma Q, Ma J. NEAT1 promotes the perineural invasion of pancreatic cancer via the E2F1/GDNF axis. Cancer Lett 2025; 613:217497. [PMID: 39855379 DOI: 10.1016/j.canlet.2025.217497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Pancreatic cancer is characterized by an insidious onset and high degree of malignancy, with a 5-year survival rate of less than 11 %. Perineural invasion (PNI) is one of the pathological features of pancreatic cancer and provides a pathway for distant tumor metastasis, which leads to a poor prognosis. Although NEAT1 promotes the progression of pancreatic cancer, its impact on PNI has not been studied. In this study, we found that NEAT1 facilitates pancreatic cancer metastasis and PNI by regulating E2F1. In vivo experiments showed that NEAT1 promotes PNI in a mouse model. Furthermore, E2F1 is enriched at the promoter region of GDNF and directly participates in its transcriptional regulation. NEAT1 can also recruit P300 to the GDNF promoter region, thereby inducing the H3K27ac modification to further increase chromatin accessibility. This process ultimately facilitates GDNF transcription and tumor innervation, providing a pathway for tumor metastasis.
Collapse
Affiliation(s)
- Jingtao Gu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Qiqi Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Jiantao Mo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Tao Qin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Weikun Qian
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Wangxing Duan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Liang Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China.
| | - Jiguang Ma
- Department of Anesthesiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
2
|
Yuan H, Zhang Y, Liu F, Wu Y, Huang X, Liu X, Jiang L, Xiao B, Zhu Y, Chen Q, Wu P, Jiang K. Exploring the biological mechanism and clinical value of perineural invasion in pancreatic cancer. Cancer Lett 2025; 613:217515. [PMID: 39892698 DOI: 10.1016/j.canlet.2025.217515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Pancreatic cancer (PC) is an extremely aggressive malignancy, with a 5-year survival rate of only 13 %. Perineural invasion (PNI) is a hallmark pathological feature of PC and is observed in almost all cases. Accordingly, PC ranks highly among solid tumors in terms of PNI incidence. The interaction between PC and the nervous system plays a pivotal role in tumor growth and metastasis. In PC, PNI is a key driver of local tumor progression, distant metastasis, and poor prognosis. Clarification of tumor-nerve crosstalk and the underlying molecular mechanisms is needed to facilitate the development of new therapeutic strategies to slow PC progression and alleviate PNI-associated symptoms. In this review, we present a comprehensive overview of the manifestations and characteristics of PNI in PC, summarize the molecular networks that regulate PNI, examine the relationship between PNI and the tumor microenvironment, and discuss the current research challenges and future directions in this critical area.
Collapse
Affiliation(s)
- Hao Yuan
- Pancreas Centre, First Affiliated Hospital, Nanjing Medical University, Nanjing, China; Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Yufeng Zhang
- Pancreas Centre, First Affiliated Hospital, Nanjing Medical University, Nanjing, China; Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Fengyuan Liu
- Pancreas Centre, First Affiliated Hospital, Nanjing Medical University, Nanjing, China; Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Yang Wu
- Pancreas Centre, First Affiliated Hospital, Nanjing Medical University, Nanjing, China; Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Xumin Huang
- Pancreas Centre, First Affiliated Hospital, Nanjing Medical University, Nanjing, China; Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Xinjian Liu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Luyang Jiang
- Pancreas Centre, First Affiliated Hospital, Nanjing Medical University, Nanjing, China; Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Bin Xiao
- Pancreas Centre, First Affiliated Hospital, Nanjing Medical University, Nanjing, China; Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Yi Zhu
- Pancreas Centre, First Affiliated Hospital, Nanjing Medical University, Nanjing, China; Pancreas Institute, Nanjing Medical University, Nanjing, China; Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, China.
| | - Qun Chen
- Pancreas Centre, First Affiliated Hospital, Nanjing Medical University, Nanjing, China; Pancreas Institute, Nanjing Medical University, Nanjing, China.
| | - Pengfei Wu
- Pancreas Centre, First Affiliated Hospital, Nanjing Medical University, Nanjing, China; Pancreas Institute, Nanjing Medical University, Nanjing, China.
| | - Kuirong Jiang
- Pancreas Centre, First Affiliated Hospital, Nanjing Medical University, Nanjing, China; Pancreas Institute, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Huang G, Chen S, Han B, Zhang G, Bao M, Paka Lubamba G, Hua Y, Li H, Liu W, Shen J, Wang L, Lin J, Tang PMK, Ding Z, Li C. Apolipoprotein D is crucial for promoting perineural invasion in salivary adenoid cystic carcinoma. Br J Cancer 2025:10.1038/s41416-025-02946-1. [PMID: 39962257 DOI: 10.1038/s41416-025-02946-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 12/22/2024] [Accepted: 01/16/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Perineural invasion (PNI) is a prevalent phenomenon in salivary adenoid cystic carcinoma (SACC). Nevertheless, the regulatory mechanism of PNI is largely elusive. METHODS We detected Apolipoprotein D (ApoD) expression and further determined its role in SACC progression. Subsequently, the contributions of SACC-derived ApoD on neurite outgrowth of dorsal root ganglions (DRGs) cells were explored. Moreover, a series of in vivo assays were conducted to elucidate the role of ApoD in the SACC PNI process. RESULTS We observed a dramatic up-regulation of ApoD in the SACC associated with an enhancement of PNI in patient biopsies. We found that SACC-derived ApoD elevated cancer cell migration and invasion. In addition, ApoD could facilitate the neurite outgrowth of cultured DRG cells in a CXCR4-dependent manner in vitro, as well as innervation, angiogenesis, and invasion along peripheral nerves of SACC in vivo. More importantly, by advanced bioinformatic analysis, we unexpectedly revealed a novel phenomenon 'tumour cell to neuron-like cell transition' in the ApoD-rich microenvironment in vivo, contributing to the neurogenesis in the SACC tumour. CONCLUSION we discovered a novel role of cancer-derived ApoD in the pathogenesis of PNI, which may represent an effective therapeutic target for SACC in clinics.
Collapse
Affiliation(s)
- Guangzhao Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Su Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Bo Han
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Gaowei Zhang
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Mingzhe Bao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Grace Paka Lubamba
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yufei Hua
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Honglin Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Wenwen Liu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, 100081, Beijing, China
| | - Jiefei Shen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lei Wang
- Department of Dentistry, The Second People's Hospital of Tibet Autonomous Region, Xizang, 850030, China
| | - Jie Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Department of Anesthesiology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zhangfan Ding
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Chunjie Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Rutkowski K, Gola M, Godlewski J, Starzyńska A, Marvaso G, Mastroleo F, Giulia Vincini M, Porazzi A, Zaffaroni M, Jereczek-Fossa BA. Understanding the role of nerves in head and neck cancers - a review. Oncol Rev 2025; 18:1514004. [PMID: 39906323 PMCID: PMC11791411 DOI: 10.3389/or.2024.1514004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/03/2024] [Indexed: 02/06/2025] Open
Abstract
Worldwide, head and neck cancers (HNCs) account for approximately 900,000 cases and 500,000 deaths annually, with their incidence continuing to rise. Carcinogenesis is a complex, multidimensional molecular process leading to cancer development, and in recent years, the role of nerves in the pathogenesis of various malignancies has been increasingly recognized. Thanks to the abundant innervation of the head and neck region, peripheral nervous system has gained considerable interest for its possible role in the development and progression of HNCs. Intratumoral parasympathetic, sympathetic, and sensory nerve fibers are emerging as key players and potential targets for novel anti-cancer and pain-relieving medications in different tumors, including HNCs. This review explores nerve-cancer interactions, including perineural invasion (PNI), cancer-related axonogenesis, neurogenesis, and nerve reprogramming, with an emphasis on their molecular mechanisms, mediators and clinical implications. PNI, an adverse histopathologic feature, has been widely investigated in HNCs. However, its prognostic value remains debated due to inconsistent results when classified dichotomously (present/absent). Emerging evidence suggests that quantitative and qualitative descriptions of PNI may better reflect its clinical usefulness. The review also examines therapies targeting nerve-cancer crosstalk and highlights the influence of HPV status on tumor innervation. By synthesizing current knowledge, challenges, and future perspectives, this review offers insights into the molecular basis of nerve involvement in HNCs and the potential for novel therapeutic approaches.
Collapse
Affiliation(s)
- Krzysztof Rutkowski
- Department of Hematology, Transplantology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Michał Gola
- Department of Human Histology and Embryology, Collegium Medicum, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
- Department of Oncology and Immuno-Oncology, Clinical Hospital of the Ministry of Internal Affairs and Administration with the Warmia-Mazury Oncology Centre, Olsztyn, Poland
| | - Janusz Godlewski
- Department of Human Histology and Embryology, Collegium Medicum, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
- Department of Surgical Oncology, Clinical Hospital of the Ministry of Internal Affairs and Administration with the Warmia-Mazury Oncology Centre, Olsztyn, Poland
| | - Anna Starzyńska
- Department of Oral Surgery, Medical University of Gdańsk, Gdańsk, Poland
- Department of Otolaryngology, Phoniatrics and Audiology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Giulia Marvaso
- Division of Radiation Oncology, European Institute of Oncology (IEO), Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Federico Mastroleo
- Division of Radiation Oncology, European Institute of Oncology (IEO), Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Maria Giulia Vincini
- Division of Radiation Oncology, European Institute of Oncology (IEO), Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Alice Porazzi
- Division of Radiation Oncology, European Institute of Oncology (IEO), Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Mattia Zaffaroni
- Division of Radiation Oncology, European Institute of Oncology (IEO), Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology, European Institute of Oncology (IEO), Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Choi W, Kim HS, Kim D, Hong YD, Kim HJ, Kim JH, Kim JH, Cho JY. Ethanol extract of lymphanax with gypenoside 17 and ginsenoside Re exerts anti-inflammatory properties by targeting the AKT/NF-κB pathway. J Ginseng Res 2025; 49:22-33. [PMID: 39872284 PMCID: PMC11764085 DOI: 10.1016/j.jgr.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/07/2024] [Accepted: 08/21/2024] [Indexed: 01/30/2025] Open
Abstract
Background Ginseng is processed into several types such as white ginseng, red ginseng, and black ginseng, according to the processing methods such as drying, steaming, and heating. These processing conditions can change the portion of the useful ingredients. Recently, new processing method was established to develop 'lymphanax', an aged fresh white ginseng prepared under anaerobic condition. This aging process was revealed to increase the content of gypenoside 17 (Gyp17) as well as ginsenoside Re, known to have anti-inflammatory effects. As the next step, therefore, we aimed to investigate the anti-inflammatory activity of lymphanax using its ethanol extract of lymphanax (Lymphanax-EE). Methods LC-MS/MS identified the ginsenoside content of lymphanax-EE. A nitric oxide (NO) assay revealed the anti-inflammatory activity of lymphanax-EE. Pro-inflammatory gene expression was analyzed by quantitative PCR. Finally, we identified the underlying mechanism for the anti-inflammatory activity of lymphanax-EE through luciferase analysis, Western blotting, and CETSA. Results The LC-MS/MS analysis revealed lymphanax-EE to contain more protopanaxatriol-type ginsenosides, and Gyp17 than fresh ginseng. Lymphanax-EE (0-200 μg/ml) suppressed NO release and mRNA levels of pro-inflammatory cytokines such as iNOS and COX-2 in LPS-treated RAW264.7 cells. Moreover, lymphanax-EE (200 μg/ml) reduced the activity of NF-κB and phosphorylation of NF-κB signal proteins such as p65, p50, IκBα, and IKKα/β. Finally, lymphanax-EE (200 μg/ml) decreased the phosphorylation of IKKα/β induced by AKT overexpression. Among the components of lymphanax-EE, ginsenoside Re and Gyp17 were found to suppress AKT1 activity. Conclusions Lymphanax-EE-containing ginsenosides and Gyp17 with anti-inflammatory properties suppressed LPS-induced inflammation by reducing the NF-κB signal.
Collapse
Affiliation(s)
- Wooram Choi
- Department of Integrative Biotechnology, Biomedical Institute for Convergence of SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyun Soo Kim
- Research and Innovation Center, AMOREPACIFIC, Yongin, Republic of Korea
| | - Donghyun Kim
- Research and Innovation Center, AMOREPACIFIC, Yongin, Republic of Korea
| | - Yong Deog Hong
- Research and Innovation Center, AMOREPACIFIC, Yongin, Republic of Korea
| | - Hyoung-June Kim
- Research and Innovation Center, AMOREPACIFIC, Yongin, Republic of Korea
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Biomedical Institute for Convergence of SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Jong-Hoon Kim
- Department of Veterinary Physiology College of Medicine, Jeonbuk National University Iksan, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Biomedical Institute for Convergence of SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
6
|
Yang Z, Li H, Wang J, Gao W, Zhao Q, Meng Q, Huang J, Xi Q, Wei J, Yang X. CCL2/CCR2 axis promotes perineural invasion of salivary adenoid cystic carcinoma via ITGβ5-mediated nerve-tumor interaction. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167484. [PMID: 39222826 DOI: 10.1016/j.bbadis.2024.167484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 07/01/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Perineural invasion (PNI) is a notorious feature of salivary adenoid cystic carcinoma (SACC) and other neurotropic tumors. The pathogenesis of PNI that involves the molecular communication between the tumor and the suffered nerve is elusive. The in vitro co-culture assays of SACC cells with dorsal root ganglia (DRG) or neural cells showed that nerve-derived CCL2 activated CCR2 expression in SACC cells, promoting the proliferation, adhesion, migration, and invasion of SACC cells via the ERK1/2/ITGβ5 pathway. Meanwhile, SACC-derived exosomes delivered ITGβ5 to promote the neurite outgrowth of neural cells or DRG. Blocking of CCL2/CCR2 axis or ITGβ5 inhibited the PNI of SACC cells in models in vitro by 3D co-culture of DRG with SACC cells and in vivo by xenografting SACC cells onto the murine sciatic nerve. High levels of ITGβ5 in tissues or plasma exosomes were significantly correlated with CCL2 and CCR2 expression in the tissues and associated with PNI and poor prognosis of SACC cases. Our findings revealed a novel reciprocal loop between neural and tumor cells driven by the CCL2/CCR2 axis and exosomal ITGβ5 during PNI of SACC. The present study may provide a prospective diagnostic and anti-PNI treatment strategy for SACC patients via targeting the nerve-tumor interactions.
Collapse
Affiliation(s)
- Zihui Yang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China
| | - Huan Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China
| | - Jun Wang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China
| | - Wanpeng Gao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China
| | - Qi Zhao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China
| | - Qingzhe Meng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China
| | - Junhong Huang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China
| | - Qi Xi
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China
| | - Jianhua Wei
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China.
| | - Xinjie Yang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
7
|
Cheng J, Li J, Jiang X, Ma X, Li B, Zhai H, Luo X, Zhou Y, Wu J, Zhang Z, Chen S, Wang Y. CD74 facilitates immunotherapy response by shaping the tumor microenvironment of hepatocellular carcinoma. Mol Med 2024; 30:116. [PMID: 39118044 PMCID: PMC11308498 DOI: 10.1186/s10020-024-00884-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND CD74 is ectopically expressed in many tumors and can regulate tumor immunity. However, there are many gaps in the study of the prognostic value of CD74 expression and immune infiltration in hepatocellular carcinoma (HCC). METHODS An online tumor database was searched to obtain data on gene/protein expression. Immune infiltration analysis was performed using the Tumor Immune Estimation Resource and Comprehensive Analysis on Multi-Omics of Immunotherapy in Pan-cancer databases. Single-cell data were obtained from the Tissue-specific Gene Expression and Regulation, Single-cell Transcriptomes of Tumor Immune Microenvironment and Tumor Immune Single-cell Hub 2 databases. RESULTS CD74 was highly expressed in HCC patients. HCC patients with high CD74 expression who consumed alcohol or were negative for hepatitis virus had a better prognosis than patients with low CD74 expression. CD74 was mainly enriched in immune response regulation pathways. Both copy number variations in CD74 and CD74 expression patterns affected the infiltration levels of immune cells. Interestingly, CD74 regulated the differentiation of myeloid cells. CD74 in macrophages and dendritic cells (DCs) forms complex networks with malignant cells and hepatic progenitor cell (HPC)-like cells, respectively. High CD74 expression in HPC-like cells and malignant cells significantly decreased the fraction of C-type lectin domain family 9 A (CLEC9A)-cDC1+ DCs and IL-1B+ macrophages, respectively. Their crosstalk subsequently shaped the tumor microenvironment of HCC, possibly through the CD74-MIF axis. Importantly, patients with high CD74 expression presented higher immune scores and achieved good outcomes after receiving immunotherapy. CONCLUSION High CD74 expression is associated with the abundance of a variety of immune cell types, mediating interactions among tumor and immune cells and shaping the malignant behavior of HCC. In summary, CD74 may be a hallmark for determining the prognosis and immune cell infiltration levels of HCC patients.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/etiology
- Tumor Microenvironment/immunology
- Liver Neoplasms/immunology
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/therapy
- Liver Neoplasms/etiology
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Antigens, Differentiation, B-Lymphocyte/genetics
- Immunotherapy/methods
- Histocompatibility Antigens Class II/metabolism
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/immunology
- Prognosis
- Gene Expression Regulation, Neoplastic
- Biomarkers, Tumor
- Computational Biology/methods
Collapse
Affiliation(s)
- Jianghong Cheng
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, 710021, China
| | - Junyang Li
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, 710021, China
| | - Xinjie Jiang
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, 710021, China
| | - Xi Ma
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, 710021, China
| | - Bixuan Li
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, 710021, China
| | - Han Zhai
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, 710021, China
| | - Xianyang Luo
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, P.R. China
- Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen, 361003, China
| | - Yi Zhou
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, P.R. China
- Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen, 361003, China
| | - Junhua Wu
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, P.R. China
- Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen, 361003, China
| | - Zhiming Zhang
- Department of Breast Surgery, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, P.R. China
- Teaching Hospital of Fujian Medical University, Fuzhou, Fujian, 350004, P.R. China
| | - Shuai Chen
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, P.R. China.
- Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen, 361003, China.
| | - Yang Wang
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, 710021, China.
| |
Collapse
|
8
|
Wang Z, Wang B, Feng Y, Ye J, Mao Z, Zhang T, Xu M, Zhang W, Jiao X, Zhang Q, Zhang Y, Cui B. Targeting tumor-associated macrophage-derived CD74 improves efficacy of neoadjuvant chemotherapy in combination with PD-1 blockade for cervical cancer. J Immunother Cancer 2024; 12:e009024. [PMID: 39107132 PMCID: PMC11308911 DOI: 10.1136/jitc-2024-009024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2024] [Indexed: 08/09/2024] Open
Abstract
BACKGROUND Cervical cancer has the second-highest mortality rate among malignant tumors of the female reproductive system. Immune checkpoint inhibitors such as programmed cell death protein 1 (PD-1) blockade are promising therapeutic agents, but their efficacy when combined with neoadjuvant chemotherapy (NACT) has not been fully tested, and how they alter the tumor microenvironment has not been comprehensively elucidated. METHODS In this study, we conducted single-cell RNA sequencing using 46,950 cells from nine human cervical cancer tissues representing sequential different stages of NACT and PD-1 blockade combination therapy. We delineated the trajectory of cervical epithelial cells and identified the crucial factors involved in combination therapy. Cell-cell communication analysis was performed between tumor and immune cells. In addition, THP-1-derived and primary monocyte-derived macrophages were cocultured with cervical cancer cells and phagocytosis was detected by flow cytometry. The antitumor activity of blocking CD74 was validated in vivo using a CD74 humanized subcutaneous tumor model. RESULTS Pathway enrichment analysis indicated that NACT activated cytokine and complement-related immune responses. Cell-cell communication analysis revealed that after NACT therapy, interaction strength between T cells and cancer cells decreased, but intensified between macrophages and cancer cells. We verified that macrophages were necessary for the PD-1 blockade to exert antitumor effects in vitro. Additionally, CD74-positive macrophages frequently interacted with the most immunoreactive epithelial subgroup 3 (Epi3) cancer subgroup during combination NACT. We found that CD74 upregulation limited phagocytosis and stimulated M2 polarization, whereas CD74 blockade enhanced macrophage phagocytosis, decreasing cervical cancer cell viability in vitro and in vivo. CONCLUSIONS Our study reveals the dynamic cell-cell interaction network in the cervical cancer microenvironment influenced by combining NACT and PD-1 blockade. Furthermore, blocking tumor-associated macrophage-derived CD74 could augment neoadjuvant therapeutic efficacy.
Collapse
Affiliation(s)
- Zixiang Wang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Bingyu Wang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Yuan Feng
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Jinwen Ye
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Zhonghao Mao
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Teng Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Meining Xu
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Wenjing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Xinlin Jiao
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Qing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Youzhong Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Baoxia Cui
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| |
Collapse
|
9
|
Wang D, Li S, Yang Z, Yu C, Wu P, Yang Y, Zhang R, Li Q, Yang J, Li H, Ji G, Wang Y, Xie K, Liu Y, Wang K, Zhu D, Zhang W, Liu D, Chen B, Li W. Single-cell transcriptome analysis deciphers the CD74-mediated immune evasion and tumour growth in lung squamous cell carcinoma with chronic obstructive pulmonary disease. Clin Transl Med 2024; 14:e1786. [PMID: 39113235 PMCID: PMC11306293 DOI: 10.1002/ctm2.1786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) contributes to the incidence and prognosis of lung cancer. The presence of COPD significantly increases the risk of lung squamous cell carcinoma (LSCC). COPD may promote an immunosuppressive microenvironment in LSCC by regulating the expression of immune-inhibitory factors in T cells, although the mechanisms remain unclear. In this study, we aimed to decipher the tumour microenvironment signature for LSCC with COPD at a single-cell level. METHODS We performed single-cell RNA sequencing on tumour tissues from LSCC with or without COPD, then investigated the features of the immune and tumour cells. We employed multiple techniques, including multispectral imaging, flow cytometry, tissue microarray analysis, survival analysis, co-culture systems and in vitro and in vivo treatment experiments, to validate the findings obtained from single-cell analyses. RESULTS LSCC with COPD showed increased proportions of tumour-associated macrophages (TAMs) and higher levels of CD8+ T cell exhaustion molecules, which contributed to an immunosuppressive microenvironment. Further analysis revealed a critical cluster of CD74+ tumour cells that expressed both epithelial and immune cell signatures, exhibited a stronger capacity for tumorigenesis and predicted worse overall survival. Notably, migration inhibitory factor (MIF) secreted by TAMs from LSCC with COPD may promote the activation of CD74. MIF-CD74 may interact with CD8+ T cells and impair their anti-tumour activity by regulating the PI3K-STAT3-programmed cell death-1 ligand 1 signalling pathway, facilitating tumour proliferation and immune evasion. CONCLUSIONS Our comprehensive picture of the tumour ecosystem in LSCC with COPD provides deeper insights into relevant immune evasion mechanisms and potential targets for immunotherapy. HIGHLIGHT Our results demonstrated higher proportions of tumour-associated macrophages (TAMs) and higher levels of exhaustion molecules in CD8+ T cells in the microenvironment of LSCC with COPD. CD74+tumour cells were associated with poor disease prognosis. Migration inhibitory factor (MIF)-CD74 may interact with CD8+ T cells and impair their anti-tumour activity by regulating the PI3K-STAT3-PD-L1 signalling pathway, facilitating immune evasion.
Collapse
Affiliation(s)
- Denian Wang
- Precision Medicine Research CenterPrecision Medicine Key Laboratory of Sichuan ProvinceState Key Laboratory of Respiratory Health and MultimorbidityWest China HospitalSichuan UniversityChengduSichuanChina
- Department of Respiratory and Critical Care MedicinePrecision Medicine CenterFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduSichuanChina
- Research Units of West ChinaChinese Academy of Medical SciencesWest China HospitalChengduSichuanChina
| | - Sixiang Li
- Department of Respiratory and Critical Care MedicinePrecision Medicine CenterFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduSichuanChina
- Department of Respiratory and Critical Care MedicineNational Clinical Research Center for Respiratory DiseaseThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Zhi Yang
- Department of NephrologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Chunyan Yu
- Frontiers Science Center for Disease‐Related Molecular NetworkLaboratory of Omics Technology and BioinformaticsWest China HospitalSichuan UniversityChengduSichuanChina
| | - Pengfei Wu
- Department of Respiratory HealthFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduSichuanChina
| | - Ying Yang
- Department of Respiratory HealthFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduSichuanChina
| | - Rui Zhang
- Department of Respiratory and Critical Care MedicinePrecision Medicine CenterFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduSichuanChina
| | - Qingyan Li
- Department of Respiratory HealthFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jian Yang
- Center of GrowthMetabolism, and AgingKey Laboratory of Bio‐Resources and Eco‐EnvironmentCollege of Life SciencesSichuan UniversityChengduSichuanChina
| | - Hongchun Li
- National Chengdu Center for Safety Evaluation of DrugsState Key Laboratory of Biotherapy/Collaborative Innovation Center for BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Guiyi Ji
- Health Management CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Yan Wang
- Department of Thoracic SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Kang Xie
- Precision Medicine Research CenterPrecision Medicine Key Laboratory of Sichuan ProvinceState Key Laboratory of Respiratory Health and MultimorbidityWest China HospitalSichuan UniversityChengduSichuanChina
| | - Yanyan Liu
- Lung Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Kaige Wang
- Department of Respiratory and Critical Care MedicinePrecision Medicine CenterFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduSichuanChina
| | - Daxing Zhu
- Lung Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Wengeng Zhang
- Precision Medicine Research CenterPrecision Medicine Key Laboratory of Sichuan ProvinceState Key Laboratory of Respiratory Health and MultimorbidityWest China HospitalSichuan UniversityChengduSichuanChina
| | - Dan Liu
- Department of Respiratory and Critical Care MedicinePrecision Medicine CenterFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduSichuanChina
| | - Bojiang Chen
- Precision Medicine Research CenterPrecision Medicine Key Laboratory of Sichuan ProvinceState Key Laboratory of Respiratory Health and MultimorbidityWest China HospitalSichuan UniversityChengduSichuanChina
| | - Weimin Li
- Precision Medicine Research CenterPrecision Medicine Key Laboratory of Sichuan ProvinceState Key Laboratory of Respiratory Health and MultimorbidityWest China HospitalSichuan UniversityChengduSichuanChina
- Department of Respiratory and Critical Care MedicinePrecision Medicine CenterFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduSichuanChina
- Research Units of West ChinaChinese Academy of Medical SciencesWest China HospitalChengduSichuanChina
| |
Collapse
|
10
|
Maqboul A, Elsadek B. Tumor microenvironment (Part I): Tissue integrity in a rat model of peripheral neural cancer. Heliyon 2024; 10:e33932. [PMID: 39050471 PMCID: PMC11268353 DOI: 10.1016/j.heliyon.2024.e33932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
ICAM-1 (intercellular adhesion molecule 1) and MPZ (myelin protein zero) are thought to be a factor in the integrity of nerve tissues. In this report, we attempted to trace the expression of ICAM-1, responsible for cell-to-cell adhesion, and of MPZ, the main constituent of myelin sheath, in malignant tissues of the sciatic nerve (SN) in inbred male Copenhagen rats. AT-1 Cells (anaplastic tumor 1) were injected in the perineurial sheath, and tissues of the SNs were collected after 7, 14 and 21 days and compared to a sham-operated group of rats (n = 6 each). Tissues were sectioned and histologically examined, under light microscope, and stained for measuring the immunoreactivity of ICAM-1 and MPZ under laser scanning microscope. The cancer model was established, and the tumor growth was confirmed. ICAM-1 showed severe decreases, proportional to the growing anaplastic cells, as compared to the sham group. MPZ revealed, however, a distinct defensive pattern before substantially decreasing in a comparison with sham. These results support the notion that malignancies damage peripheral nerves and cause severe axonal injury and loss of neuronal integrity, and clearly define the role of ICAM-1 and MPZ in safeguarding the nerve tissues.
Collapse
Affiliation(s)
- Ahmad Maqboul
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité–School of Medicine Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Department of Biochemistry and Molecular Biology, College of Pharmacy, Al-Azhar University, Asyût, Egypt
| | - Bakheet Elsadek
- Department of Biochemistry and Molecular Biology, College of Pharmacy, Al-Azhar University, Asyût, Egypt
| |
Collapse
|
11
|
Sakaue T, Koga H, Iwamoto H, Nakamura T, Masuda A, Tanaka T, Suzuki H, Suga H, Hirai S, Hisaka T, Naito Y, Ohta K, Nakamura KI, Selvendiran K, Okabe Y, Torimura T, Kawaguchi T. Pancreatic Juice-Derived microRNA-4516 and microRNA-4674 as Novel Biomarkers for Pancreatic Ductal Adenocarcinoma. GASTRO HEP ADVANCES 2024; 3:761-772. [PMID: 39280916 PMCID: PMC11401553 DOI: 10.1016/j.gastha.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/24/2024] [Indexed: 09/18/2024]
Abstract
Background and Aims Precise diagnostic biomarkers are urgently required for pancreatic ductal adenocarcinoma (PDAC). Therefore, the aim of this study was to identify PDAC-specific exosomal microRNAs (Ex-miRs) from pancreatic juice (PJ) and evaluate their diagnostic potential. Methods Exosomes in PJ and serum were extracted using ultracentrifugation and confirmed morphologically and biochemically. PDAC-specific Ex-miRs were identified using our original miR arrays, in which "Ex-miRs derived from the PJ of patients with chronic pancreatitis (CP)" were subtracted from Ex-miRs commonly expressed in both "human PDAC cell lines" and "the PJ of patients with PDAC." We verified the expression of these miRs using quantitative real-time reverse transcription polymerase chain reaction. Changes in serum Ex-miR levels were assessed in 2 patients with PDAC who underwent curative resection. In situ hybridization was performed to directly visualize PDAC-specific miR expression in cancer cells. Results We identified novel Ex-miR-4516 and Ex-miR-4674 from the PJ of patients with PDAC, and they showed 80.0% and 81.8% sensitivity, 80.8% and 73.3% specificity, and 90.9% and 80.8% accuracy, respectively. The sensitivity, specificity, and accuracy of a triple assay of Ex-miR-4516/4674/PJ cytology increased to 93.3%, 81.8%, and 88.5%, respectively. In serum samples (n = 88), the sensitivity, specificity, and accuracy of Ex-miR-4516 were 97.5%, 34.3%, and 68%, respectively. Presurgical levels of serum-derived Ex-miR-4516 in 2 patients with relatively early disease stages declined after curative resection. In situ hybridization demonstrated that Ex-miR-4516 expression exclusively occurred in cancer cells. Conclusion Liquid assays using the in situ-proven Ex-miR-4516 may have a high potential for detecting relatively early-stage PDAC and monitoring its clinical course.
Collapse
Affiliation(s)
- Takahiko Sakaue
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
- Liver Cancer Research Division, Kurume University Research Center for Innovative Cancer Therapy, Kurume, Japan
- Division of Gynecologic Oncology, Department of Obstetrics/Gynecology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Hironori Koga
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
- Liver Cancer Research Division, Kurume University Research Center for Innovative Cancer Therapy, Kurume, Japan
| | - Hideki Iwamoto
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
- Liver Cancer Research Division, Kurume University Research Center for Innovative Cancer Therapy, Kurume, Japan
| | - Toru Nakamura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
- Liver Cancer Research Division, Kurume University Research Center for Innovative Cancer Therapy, Kurume, Japan
| | - Atsutaka Masuda
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
- Liver Cancer Research Division, Kurume University Research Center for Innovative Cancer Therapy, Kurume, Japan
| | - Toshimitsu Tanaka
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
- Liver Cancer Research Division, Kurume University Research Center for Innovative Cancer Therapy, Kurume, Japan
- Center for Multidisciplinary Treatment of Cancer, Kurume University Hospital, Kurume, Japan
| | - Hiroyuki Suzuki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
- Liver Cancer Research Division, Kurume University Research Center for Innovative Cancer Therapy, Kurume, Japan
| | - Hideya Suga
- Department of Gastroenterology and Hepatology, Yanagawa Hospital, Yanagawa, Japan
| | - Shingo Hirai
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Toru Hisaka
- Department of Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Yoshiki Naito
- Department of Clinical Laboratory Medicine, Kurume University Hospital, Kurume, Japan
| | - Keisuke Ohta
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Japan
| | - Kei-Ichiro Nakamura
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Japan
| | - Karuppaiyah Selvendiran
- Division of Gynecologic Oncology, Department of Obstetrics/Gynecology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Yoshinobu Okabe
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Takuji Torimura
- Department of Gastroenterology, Omuta City Hospital, Omuta, Japan
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
12
|
Cheng K, Pan J, Liu Q, Ji Y, Liu L, Guo X, Wang Q, Li S, Sun J, Gong M, Zhang Y, Yuan Y. Exosomal lncRNA XIST promotes perineural invasion of pancreatic cancer cells via miR-211-5p/GDNF. Oncogene 2024; 43:1341-1352. [PMID: 38454138 DOI: 10.1038/s41388-024-02994-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Perineural invasion (PNI) is an essential form of tumor metastasis in multiple malignant cancers, such as pancreatic cancer, prostate cancer, and head and neck cancer. Growing evidence has revealed that pancreatic cancer recurrence and neuropathic pain positively correlate with PNI. Therefore, targeting PNI is a proper strategy for pancreatic cancer treatment. Exosomal lncRNA derived from pancreatic cancer cells is an essential component of the tumor microenvironment. However, whether exosomal lncXIST derived from pancreatic cancer cells can promote PNI and its exact mechanism remains to be elucidated. We show that lncXIST mediates nerve-tumor crosstalk via exosomal delivery. Our data reveal that exosomal lncXIST derived from pancreatic cancer cells is delivered to neural cells and promotes their release of glial-cell-line-derived neurotrophic factor (GDNF), essential in facilitating the PNI of pancreatic cancer. Mechanistically, microRNA-211-5p negatively regulates GDNF, and lncXIST serves as a miR-211-5p sponge. The function of exosomes in the dynamic interplay between nerves and cancer is confirmed in both in vivo and in vitro PNI models. Therefore, targeting pancreatic cancer cell-derived exosomal lncXIST may provide clues for a promising approach for developing a new strategy to combat PNI of pancreatic cancer.
Collapse
Affiliation(s)
- Ke Cheng
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Jinjin Pan
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Qinlong Liu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Yuke Ji
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Liang Liu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Xiangqian Guo
- Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 47500, China
| | - Qiang Wang
- Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 47500, China
| | - Shao Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Jinyue Sun
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Miaomiao Gong
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China.
| | - Ying Zhang
- Sixth Department of liver disease, Dalian Public Health Clinical Center, Dalian, 116044, China.
| | - Yuhui Yuan
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
13
|
Hollands CG, Boyd AL, Zhao X, Reid JC, Henly C, ElRafie A, Boylan D, Broder E, Kalau O, Johnson P, Mark A, McNicol J, Xenocostas A, Berg T, Foley R, Trus M, Leber B, Garcia-Horton A, Campbell C, Bhatia M. Identification of cells of leukemic stem cell origin with non-canonical regenerative properties. Cell Rep Med 2024; 5:101485. [PMID: 38582086 PMCID: PMC11031376 DOI: 10.1016/j.xcrm.2024.101485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/19/2023] [Accepted: 03/04/2024] [Indexed: 04/08/2024]
Abstract
Despite most acute myeloid leukemia (AML) patients entering remission following chemotherapy, outcomes remain poor due to surviving leukemic cells that contribute to relapse. The nature of these enduring cells is poorly understood. Here, through temporal single-cell transcriptomic characterization of AML hierarchical regeneration in response to chemotherapy, we reveal a cell population: AML regeneration enriched cells (RECs). RECs are defined by CD74/CD68 expression, and although derived from leukemic stem cells (LSCs), are devoid of stem/progenitor capacity. Based on REC in situ proximity to CD34-expressing cells identified using spatial transcriptomics on AML patient bone marrow samples, RECs demonstrate the ability to augment or reduce leukemic regeneration in vivo based on transfusion or depletion, respectively. Furthermore, RECs are prognostic for patient survival as well as predictive of treatment failure in AML cohorts. Our study reveals RECs as a previously unknown functional catalyst of LSC-driven regeneration contributing to the non-canonical framework of AML regeneration.
Collapse
Affiliation(s)
- Cameron G Hollands
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Allison L Boyd
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Xueli Zhao
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Jennifer C Reid
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Charisa Henly
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Amro ElRafie
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - David Boylan
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Emily Broder
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Olivia Kalau
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Paige Johnson
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Alyssa Mark
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Jamie McNicol
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Anargyros Xenocostas
- Department of Medicine, Division of Hematology, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 3K7, Canada; Hematology Exploration and Applications in Leukemia (HEAL) Program, Hamilton, ON, Canada
| | - Tobias Berg
- Hematology Exploration and Applications in Leukemia (HEAL) Program, Hamilton, ON, Canada; Department of Oncology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Ronan Foley
- Hematology Exploration and Applications in Leukemia (HEAL) Program, Hamilton, ON, Canada; Department of Oncology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Michael Trus
- Hematology Exploration and Applications in Leukemia (HEAL) Program, Hamilton, ON, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Brian Leber
- Hematology Exploration and Applications in Leukemia (HEAL) Program, Hamilton, ON, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Alejandro Garcia-Horton
- Hematology Exploration and Applications in Leukemia (HEAL) Program, Hamilton, ON, Canada; Department of Oncology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Clinton Campbell
- Hematology Exploration and Applications in Leukemia (HEAL) Program, Hamilton, ON, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Mickie Bhatia
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; Hematology Exploration and Applications in Leukemia (HEAL) Program, Hamilton, ON, Canada.
| |
Collapse
|
14
|
Chen H, Wang C, Chen Z, Huang T, Lin Y, Chen J, Zhang B, He X. The depth of perineural invasion is an independent prognostic factor for stage II colorectal cancer. BMC Cancer 2024; 24:433. [PMID: 38589842 PMCID: PMC11003015 DOI: 10.1186/s12885-024-12206-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/29/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Perineural invasion (PNI) is the invasion of nerves by cancer cells and is associated with poor survival in stage II colorectal cancer. However, PNI can be further subdivided according to the depth of invasion, and the depth of PNI has not been clearly linked to prognosis. METHOD This study aimed to assess the prognostic value of different depths of PNI in stage II colorectal cancer. We defined PNI in the submucosal plexus and myenteric plexus as superficial perineural invasion (sup-PNI) and PNI in the subserous plexus as deep perineural invasion (deep-PNI). Patients were divided into three groups based on the depth of PNI: sup-PNI, deep-PNI and non-PNI. Then, univariate and multivariate Cox regression analyses were conducted to evaluate the role of PNI in the prognosis of stage II colorectal cancer. RESULTS This study enrolled 3508 patients with stage II colorectal cancer who underwent resection for primary colorectal lesions between January 2013 and September 2019. Clinicopathological features, including elevated carcinoembryonic antigen (CEA) levels, T4 stage, poor differentiation, deficient DNA mismatch repair (dMMR), and vascular invasion, were correlated with deep-PNI. Multivariate analyses revealed that deep-PNI was associated with worse overall survival (OS; hazard ratio [HR], 3.546; 95% confidence interval [CI], 2.307-5.449; P < 0.001) and disease-free survival (DFS; HR, 2.921; 95% CI, 2.032-4.198; P < 0.001), compared with non-PNI. Conversely, no significant difference in OS or DFS was observed between the sup-PNI and non-PNI groups in multivariate analyses. CONCLUSIONS The study demonstrated that the depth of PNI was an independent prognostic factor for patients with stage II colorectal cancer, and patients with deep PNI had a worse prognosis. Thus, patients with PNI require further subdivision according to the depth of invasion.
Collapse
Affiliation(s)
- Hao Chen
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Erheng Road, Guangzhou, Guangdong, 510655, China
| | - Chao Wang
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
| | - Zexian Chen
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Erheng Road, Guangzhou, Guangdong, 510655, China
| | - Tianze Huang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Erheng Road, Guangzhou, Guangdong, 510655, China
| | - Yanyun Lin
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Erheng Road, Guangzhou, Guangdong, 510655, China
| | - Junguo Chen
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Erheng Road, Guangzhou, Guangdong, 510655, China
| | - Bin Zhang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Erheng Road, Guangzhou, Guangdong, 510655, China.
| | - Xiaosheng He
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Erheng Road, Guangzhou, Guangdong, 510655, China.
| |
Collapse
|
15
|
Wang J, Li Q, Liang F, Du X, Song P, Wu T, Chen R, Lin X, Liu Q, Hu H, Han P, Huang X. Dickkopf-1 drives perineural invasion via PI3K-AKT signaling pathway in head and neck squamous cancer. MedComm (Beijing) 2024; 5:e518. [PMID: 38525111 PMCID: PMC10959454 DOI: 10.1002/mco2.518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 03/26/2024] Open
Abstract
Perineural invasion (PNI) leads to the poor prognosis of head and neck squamous cancer (HNSCC) patients, but the mechanism of PNI remains unclear. Dickkopf-1 (DKK1), a secretory protein in the Wnt signaling pathway, was found indeed upregulated in HNSCC cells and tissues. Higher expression of DKK1 was statistically relevant to T stage, N stage, PNI, and poor prognosis of HNSCC. DKK1 overexpression enhanced the migration abilities of cancer cells. Moreover, DKK1-overexpressing cancer cells promoted cancer cells invasion of peripheral nerves in vitro and in vivo. Mechanistically, DKK1 could promote the PI3K-AKT signaling pathway. The migration abilities of neuroblastoma cells, which were enhanced by DKK1-overexpressing HNSCC cell lines, could be reversed by an inhibitor of Akt (MK2206). The association of DKK1 with PNI was also confirmed in HNSCC samples. Variables, including T stage, N stage, DKK1 expression, and PNI, were used to establish a nomogram to predict the survival probability and disease-free probability at 3 and 5 years. In summary, DKK1 can promote the PI3K-AKT signaling pathway in tumor cells and then could induce neuritogenesis and facilitate PNI. MK2206 may be a potential therapeutic target drug for HNSCC patients with PNI.
Collapse
Affiliation(s)
- Jingyi Wang
- Department of Otolaryngology‐Head and Neck SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangzhouChina
| | - Qianying Li
- Department of Otolaryngology‐Head and Neck SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangzhouChina
| | - Faya Liang
- Department of Otolaryngology‐Head and Neck SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangzhouChina
| | - Xin Du
- Department of Oncology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Pan Song
- Department of Otolaryngology‐Head and Neck SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangzhouChina
| | - Taowei Wu
- Department of Otolaryngology‐Head and Neck SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangzhouChina
| | - Renhui Chen
- Department of Otolaryngology‐Head and Neck SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangzhouChina
| | - Xiaorong Lin
- Diagnosis and Treatment Center of Breast DiseasesShantou Central HospitalShantouChina
| | - Qinglian Liu
- Department of Oncology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Hai Hu
- Department of Oncology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Ping Han
- Department of Otolaryngology‐Head and Neck SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangzhouChina
| | - Xiaoming Huang
- Department of Otolaryngology‐Head and Neck SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangzhouChina
| |
Collapse
|
16
|
Zhang B, Guo X, Huang L, Zhang Y, Li Z, Su D, Lin L, Zhou P, Ye H, Lu Y, Zhou Q. Tumour-associated macrophages and Schwann cells promote perineural invasion via paracrine loop in pancreatic ductal adenocarcinoma. Br J Cancer 2024; 130:542-554. [PMID: 38135712 PMCID: PMC10876976 DOI: 10.1038/s41416-023-02539-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is frequently accompanied by perineural invasion (PNI), which is associated with excruciating neuropathic pain and malignant progression. However, the relationship between PNI and tumour stromal cells has not been clarified. METHODS The dorsal root ganglia or sciatic nerves nerve model was used to observe the paracrine interaction and the activation effect among Schwann cells, tumour-associated macrophages (TAMs), and pancreatic cancer cells in vitro. Next generation sequencing, enzyme-linked immunosorbent assay and chromatin immunoprecipitation were used to explore the specific paracrine signalling between TAMs and Schwann cells. RESULTS We demonstrated that more macrophages were expressed around nerves that have been infiltrated by pancreatic cancer cells compared with normal nerves in murine and human PNI specimens. In addition, high expression of CD68 or GFAP is associated with an increased incidence of PNI and indicates a poor 5-year survival rate in patients with PDAC. Mechanistically, tumour-associated macrophages (TAMs) activate Schwann cells via the bFGF/PI3K/Akt/c-myc/GFAP pathway. Schwann cells secrete IL-33 to recruit macrophages into the perineural milieu and facilitate the M2 pro-tumourigenic polarisation of macrophages. CONCLUSIONS Our study demonstrates that the bFGF/IL-33 positive feedback loop between Schwann cells and TAMs is essential in the process of PNI of PDAC. The bFGF/PI3K/Akt/c-myc/GFAP pathway would open potential avenues for targeted therapy of PDAC.
Collapse
Affiliation(s)
- Bin Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, Guangdong, People's Republic of China
- Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, Guangdong, People's Republic of China
- Department of General Surgery, Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, 510655, Guangzhou, Guangdong, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, 510655, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, 510655, Guangzhou, Guangdong, People's Republic of China
| | - Xiaofeng Guo
- Center for medical research on innovation and translation, Institute of Clinical Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, 510180, Guangzhou, Guangdong, People's Republic of China
| | - Leyi Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, Guangdong, People's Republic of China
- Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, Guangdong, People's Republic of China
| | - Yuting Zhang
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, 510655, Guangzhou, Guangdong, People's Republic of China
| | - Zhiguo Li
- Department of thoracic surgery, The Second People's Hospital, 528000, Foshan, Guangdong, People's Republic of China
| | - Dan Su
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, People's Republic of China
| | - Longfa Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, Guangdong, People's Republic of China
- Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, Guangdong, People's Republic of China
| | - Peng Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, Guangdong, People's Republic of China
- Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, Guangdong, People's Republic of China
| | - Huilin Ye
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, Guangdong, People's Republic of China.
- Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, Guangdong, People's Republic of China.
| | - Yanan Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, Guangdong, People's Republic of China.
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, Guangdong, People's Republic of China.
| | - Quanbo Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, Guangdong, People's Republic of China.
- Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, Guangdong, People's Republic of China.
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 519041, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
17
|
Wang Y, Fan H, Zou Y, Song W, Li L, Xie J, Chen S. Expression of early growth responsive gene-1 in the lateral geniculate body of kittens with amblyopia caused by monocular form deprivation. Eur J Ophthalmol 2024; 34:408-418. [PMID: 37437134 DOI: 10.1177/11206721231187926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
OBJECTIVE The expression of early growth responsive gene-1 (Egr-1) in the lateral geniculate body in the normal kittens and those affected with amblyopia caused by monocular visual deprivation was compared to explore the potential significance of Egr-1 in the pathogenesis of amblyopia. METHODS A total of 30 healthy kittens were equally and randomly divided into the control (n = 15) and the deprivation group (n = 15). The kittens were raised in natural light and the right eyes of the deprived kittens were covered with a black opaque covering. Pattern visual evoked potential (PVEP) was measured before and 1, 3, and 5 weeks after covering. Five kittens from each group were randomly selected and euthanized with 2% sodium pentobarbital (100 mg/kg) during the 1st, 3rd and 5th week after covering. The expression of Egr-1 in the lateral geniculate body in the two groups was compared by performing immunohistochemistry and in situ hybridization. RESULTS After three weeks of covering, PVEP detection indicated that the P100 wave latency in the deprivation group was significantly higher than that in the control group (P < 0.05), whereas the amplitude decreased markedly (P < 0.05). The number of the positive cells (P < 0.05) and mean optical density (P < 0.05) of Egr-1 protein expression in the lateral geniculate body of the deprivation group were found to be substantially lower in comparison to the normal group, as well as the number (P < 0.05) and mean optical density of Egr-1 mRNA-positive cells (P < 0.05). However, with increase of age, positive expression of Egr-1 in the control group showed an upward trend (P < 0.05), but this trend was not noted in the deprivation group (P > 0.05). CONCLUSIONS Monocular form deprivation can lead to substantially decreased expressions of Egr-1 protein and mRNA in the lateral geniculate body, which in turn can affect the normal expression of neuronal functions in the lateral geniculate body, thereby promoting the occurrence and development of amblyopia.
Collapse
Affiliation(s)
- Ying Wang
- Department of Optometry, North Sichuan Medical College, Nanchong, China
- Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Haobo Fan
- Department of Optometry, North Sichuan Medical College, Nanchong, China
- Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Optometry and Pediatric Ophthalmology, Ineye Hospital of Chengdu University of TCM, Chengdu, China
| | - Yunchun Zou
- Department of Optometry, North Sichuan Medical College, Nanchong, China
- Department of Ophthalmology, the Second Clinical College of North Sichuan Medical College (Nanchong Central Hospital), Nanchong, China
| | - Weiqi Song
- Department of Optometry, North Sichuan Medical College, Nanchong, China
- Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lan Li
- Langzhong People's Hospital, Langzhong, Sichuan, China
| | - Juan Xie
- Department of Optometry, North Sichuan Medical College, Nanchong, China
- Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Siyu Chen
- Department of Optometry, North Sichuan Medical College, Nanchong, China
- Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
18
|
Zhang D, Zhao F, Liu H, Guo P, Li Z, Li S. FABP6 serves as a new therapeutic target in esophageal tumor. Aging (Albany NY) 2024; 16:1640-1662. [PMID: 38277205 PMCID: PMC10866426 DOI: 10.18632/aging.205448] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/04/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Esophageal cancer is one of the most common malignant tumors with high incidence and mortality rates. Despite the continuous development of treatment options, the prognosis for esophageal cancer patients remains poor. Therefore, there is an urgent need for new diagnostic and therapeutic targets in clinical practice to improve the survival of patients with esophageal cancer. METHODS In this study, we conducted a comprehensive scRNA-seq analysis of the tumor microenvironment in primary esophageal tumors to elucidate cell composition and heterogeneity. Using Seurat, we identified eight clusters, encompassing non-immune cells (fibroblasts, myofibroblasts, endothelial cells, and epithelial cells) and immunocytes (myeloid-derived cells, T cells, B cells, and plasma cells). Compared to normal tissues, tumors exhibited an increased proportion of epithelial cells and alterations in immune cell infiltration. Analysis of epithelial cells revealed a cluster (cluster 0) with a high differentiation score and early distribution, suggesting its importance as a precursor cell. RESULTS Cluster 0 was characterized by high expression of FABP6, indicating a potential role in fatty acid metabolism and tumor growth. T cell analysis revealed shifts in the balance between Treg and CD8+ effector T cells in tumor tissues. Cellular communication analysis identified increased interactions between FABP6+ tumor cells and T cells, with the involvement of the MIF-related pathway and the CD74-CD44 interaction. This study provides insights into the cellular landscape and immune interactions within esophageal tumors, contributing to a better understanding of tumor heterogeneity and potential therapeutic targets.
Collapse
Affiliation(s)
- Dengfeng Zhang
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Fangchao Zhao
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Haitao Liu
- College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia 010031, China
| | - Pengfei Guo
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Zhirong Li
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Shujun Li
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| |
Collapse
|
19
|
Yuan J, Yu S. Comprehensive Analysis Reveals Prognostic and Therapeutic Immunity-Related Biomarkers for Pediatric Metastatic Osteosarcoma. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:95. [PMID: 38256356 PMCID: PMC10820594 DOI: 10.3390/medicina60010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024]
Abstract
Background and Objectives: Osteosarcoma, the most prevalent malignant bone tumor in children and adolescents, presents a complex pathogenesis characterized by various genetic and epigenetic alterations. This study aims to identify key differentially expressed genes (DEGs) in pediatric osteosarcoma, with a focus on those influencing metastasis and patient survival. Materials and Methods: We utilized the GSE33382 dataset from the GEO database for a comprehensive bioinformatic analysis. This included a protein-protein interaction (PPI) network analysis, Cox regression, and Kaplan-Meier survival analysis to identify central DEGs associated with osteosarcoma metastasis and patient survival. Results: Our analysis identified 88 DEGs related to osteosarcoma metastasis. Among them, three survival-related central DEGs-C1QA, CD74, and HLA-DMA-were significantly linked to patient outcomes. Further correlation analysis established a strong relationship between these genes, tumor mutation burden (TMB), immune checkpoint gene expression, and overall survival. Notably, C1QA and CD74 exhibited higher expression in non-metastatic osteosarcoma cases, suggesting a potential role in disease progression. Conclusions: The identified DEGs, particularly C1QA, CD74, and HLA-DMA, may serve as critical biomarkers for pediatric osteosarcoma prognosis and potential targets for immunotherapy. These findings provide a deeper understanding of the molecular landscape of osteosarcoma and open new avenues for therapeutic intervention.
Collapse
Affiliation(s)
| | - Shengji Yu
- Department of Orthopedics, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing 100021, China;
| |
Collapse
|
20
|
Huang FF, Cui WH, Ma LY, Chen Q, Liu Y. Crosstalk of nervous and immune systems in pancreatic cancer. Front Cell Dev Biol 2023; 11:1309738. [PMID: 38099290 PMCID: PMC10720593 DOI: 10.3389/fcell.2023.1309738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Pancreatic cancer is a highly malignant tumor known for its extremely low survival rate. The combination of genetic disorders within pancreatic cells and the tumor microenvironment contributes to the emergence and progression of this devastating disease. Extensive research has shed light on the nature of the microenvironmental cells surrounding the pancreatic cancer, including peripheral nerves and immune cells. Peripheral nerves release neuropeptides that directly target pancreatic cancer cells in a paracrine manner, while immune cells play a crucial role in eliminating cancer cells that have not evaded the immune response. Recent studies have revealed the intricate interplay between the nervous and immune systems in homeostatic condition as well as in cancer development. In this review, we aim to summarize the function of nerves in pancreatic cancer, emphasizing the significance to investigate the neural-immune crosstalk during the advancement of this malignant cancer.
Collapse
Affiliation(s)
- Fei-Fei Huang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wen-Hui Cui
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Lan-Yue Ma
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Chen
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Yang Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
21
|
Ni B, Yin Y, Li Z, Wang J, Wang X, Wang K. Crosstalk Between Peripheral Innervation and Pancreatic Ductal Adenocarcinoma. Neurosci Bull 2023; 39:1717-1731. [PMID: 37347365 PMCID: PMC10603023 DOI: 10.1007/s12264-023-01082-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/04/2023] [Indexed: 06/23/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive lethal malignancy, characterized by late diagnosis, aggressive growth, and therapy resistance, leading to a poor overall prognosis. Emerging evidence shows that the peripheral nerve is an important non-tumor component in the tumor microenvironment that regulates tumor growth and immune escape. The crosstalk between the neuronal system and PDAC has become a hot research topic that may provide novel mechanisms underlying tumor progression and further uncover promising therapeutic targets. In this review, we highlight the mechanisms of perineural invasion and the role of various types of tumor innervation in the progression of PDAC, summarize the potential signaling pathways modulating the neuronal-cancer interaction, and discuss the current and future therapeutic possibilities for this condition.
Collapse
Affiliation(s)
- Bo Ni
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yiqing Yin
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Zekun Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Junjin Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xiuchao Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Kaiyuan Wang
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
22
|
Shen K, Chen B, Yang L, Gao W. Integrated analysis of single-cell and bulk RNA-sequencing data reveals the prognostic value and molecular function of THSD7A in gastric cancer. Aging (Albany NY) 2023; 15:11940-11969. [PMID: 37905960 PMCID: PMC10683630 DOI: 10.18632/aging.205158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023]
Abstract
The biological role and prognostic value of thrombospondin domain-containing 7A (THSD7A) in gastric cancer remain unclear. Our purpose was to determine the molecular mechanisms underlying the functioning of THSD7A and its prognostic value in gastric cancer. Gastric cancer-associated single cell and bulk RNA sequencing data obtained from two databases, were analyzed. We used bulk RNA sequencing to examine the differential expression of THSD7A in gastric cancer and normal gastric tissues and explored the relationship between THSD7A expression and clinicopathological characteristics. Kaplan-Meier survival and Cox analyses revealed the prognostic value of THSD7A. Gene set enrichment and immune infiltration analyses were used to determine the cancer-promoting mechanisms of THSD7A and its effect on the immune microenvironment. We explored the relationship between THSD7A expression and sensitivity of anti-tumor drugs and immune checkpoint levels. Biological functions of THSD7A were validated at single-cell and in vitro levels. THSD7A expression was significantly increased in gastric cancer samples. High THSD7A expression was associated with poor clinical phenotypes and prognoses. Cox analysis showed that THSD7A was an independent risk factor for patients with gastric cancer. Enrichment analysis suggested that epithelial-mesenchymal transition and inflammatory responses may be potential pro-cancer mechanisms of THSD7A. Upregulation of THSD7A promoted infiltration by M2 macrophages and regulatory T cells. High THSD7A expression suppressed the sensitivity of patients with gastric cancer to drugs, such as 5-fluorouracil, bleomycin, and cisplatin, and upregulated immune checkpoints, such as HAVCR2, PDCD1LG2, TIGIT, and CTLA4. At the single cell level, THSD7A was an endothelial cell-associated gene and endothelial cells overexpressing THSD7A showed unique pro-oncogenic effects. In vitro experiments confirmed that THSD7A was overexpressed in gastric cancer samples and cells, and that knocking out THSD7A significantly inhibited gastric cancer cell proliferation and invasion. THSD7A overexpression may be a unique prognostic marker and therapeutic target in gastric cancer. Therefore, our study provides a new perspective on the precise treatment of gastric cancer.
Collapse
Affiliation(s)
- Kaiyu Shen
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Binyu Chen
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Liu Yang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wencang Gao
- Department of Oncology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310005, China
| |
Collapse
|
23
|
Bahmad HF, Gogola S, Rejzer M, Stoyanov K, Gomez AS, Valencia AK, Cummings A, Skerry T, Alloush F, Aljamal AA, Deb A, Alghamdi S, Poppiti R. Unraveling the Mysteries of Perineural Invasion in Benign and Malignant Conditions. Curr Oncol 2023; 30:8948-8972. [PMID: 37887547 PMCID: PMC10605475 DOI: 10.3390/curroncol30100647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Perineural invasion (PNI) is defined as the dissemination of neoplastic cells within the perineural space. PNI can be a strong indicator of malignancy and is linked to poor prognosis and adverse outcomes in various malignant neoplasms; nevertheless, it can also be seen in benign pathologic conditions. In this review article, we discuss various signaling pathways and neurotrophic factors implicated in the development and progression of PNI. We also describe the methodology, benefits, and limitations of different in vitro, ex vivo, and in vivo models of PNI. The spectrum of presentation for PNI can range from diffuse spread within large nerves ("named" nerves) all the way through localized spread into unnamed microscopic nerves. Therefore, the clinical significance of PNI is related to its extent rather than its mere presence or absence. In this article, we discuss the guidelines for the identification and quantification of PNI in different malignant neoplasms based on the College of American Pathologists (CAP) and World Health Organization (WHO) recommendations. We also describe benign pathologic conditions and neoplasms demonstrating PNI and potential mimics of PNI. Finally, we explore avenues for the future development of targeted therapy options via modulation of signaling pathways involved in PNI.
Collapse
Affiliation(s)
- Hisham F. Bahmad
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (F.A.); (A.D.); (S.A.); (R.P.)
| | - Samantha Gogola
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (S.G.); (M.R.); (K.S.); (A.S.G.); (A.-K.V.); (A.C.); (T.S.)
| | - Michael Rejzer
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (S.G.); (M.R.); (K.S.); (A.S.G.); (A.-K.V.); (A.C.); (T.S.)
| | - Kalin Stoyanov
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (S.G.); (M.R.); (K.S.); (A.S.G.); (A.-K.V.); (A.C.); (T.S.)
| | - Aaron S. Gomez
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (S.G.); (M.R.); (K.S.); (A.S.G.); (A.-K.V.); (A.C.); (T.S.)
| | - Ann-Katrin Valencia
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (S.G.); (M.R.); (K.S.); (A.S.G.); (A.-K.V.); (A.C.); (T.S.)
| | - Adonicah Cummings
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (S.G.); (M.R.); (K.S.); (A.S.G.); (A.-K.V.); (A.C.); (T.S.)
| | - Timothy Skerry
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (S.G.); (M.R.); (K.S.); (A.S.G.); (A.-K.V.); (A.C.); (T.S.)
| | - Ferial Alloush
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (F.A.); (A.D.); (S.A.); (R.P.)
| | - Abed A. Aljamal
- Department of Medicine, Division of Hematology Oncology, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Arunima Deb
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (F.A.); (A.D.); (S.A.); (R.P.)
| | - Sarah Alghamdi
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (F.A.); (A.D.); (S.A.); (R.P.)
- Department of Pathology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Robert Poppiti
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (F.A.); (A.D.); (S.A.); (R.P.)
- Department of Pathology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
24
|
Sans M, Makino Y, Min J, Rajapakshe KI, Yip-Schneider M, Schmidt CM, Hurd MW, Burks JK, Gomez JA, Thege FI, Fahrmann JF, Wolff RA, Kim MP, Guerrero PA, Maitra A. Spatial Transcriptomics of Intraductal Papillary Mucinous Neoplasms of the Pancreas Identifies NKX6-2 as a Driver of Gastric Differentiation and Indolent Biological Potential. Cancer Discov 2023; 13:1844-1861. [PMID: 37285225 PMCID: PMC10880589 DOI: 10.1158/2159-8290.cd-22-1200] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/18/2023] [Accepted: 06/05/2023] [Indexed: 06/09/2023]
Abstract
Intraductal papillary mucinous neoplasms (IPMN) of the pancreas are bona fide precursor lesions of pancreatic ductal adenocarcinoma (PDAC). The most common subtype of IPMNs harbors a gastric foveolar-type epithelium, and these low-grade mucinous neoplasms are harbingers of IPMNs with high-grade dysplasia and cancer. The molecular underpinning of gastric differentiation in IPMNs is unknown, although identifying drivers of this indolent phenotype might enable opportunities for intercepting progression to high-grade IPMN and cancer. We conducted spatial transcriptomics on a cohort of IPMNs, followed by orthogonal and cross-species validation studies, which established the transcription factor NKX6-2 as a key determinant of gastric cell identity in low-grade IPMNs. Loss of NKX6-2 expression is a consistent feature of IPMN progression, while reexpression of Nkx6-2 in murine IPMN lines recapitulates the aforementioned gastric transcriptional program and glandular morphology. Our study identifies NKX6-2 as a previously unknown transcription factor driving indolent gastric differentiation in IPMN pathogenesis. SIGNIFICANCE Identification of the molecular features driving IPMN development and differentiation is critical to prevent cancer progression and enhance risk stratification. We used spatial profiling to characterize the epithelium and microenvironment of IPMN, which revealed a previously unknown link between NKX6-2 and gastric differentiation, the latter associated with indolent biological potential. See related commentary by Ben-Shmuel and Scherz-Shouval, p. 1768. This article is highlighted in the In This Issue feature, p. 1749.
Collapse
Affiliation(s)
- Marta Sans
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yuki Makino
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jimin Min
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kimal I. Rajapakshe
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Michele Yip-Schneider
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - C Max Schmidt
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mark W. Hurd
- Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jared K. Burks
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Javier A. Gomez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Fredrik I. Thege
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Robert A. Wolff
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Michael P. Kim
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Paola A. Guerrero
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
25
|
Huang T, Lin Y, Chen J, Hu J, Chen H, Zhang Y, Zhang B, He X. CD51 Intracellular Domain Promotes Cancer Cell Neurotropism through Interacting with Transcription Factor NR4A3 in Colorectal Cancer. Cancers (Basel) 2023; 15:cancers15092623. [PMID: 37174090 PMCID: PMC10177513 DOI: 10.3390/cancers15092623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
The abundant nervous system in intestine provides the basis for perineural invasion (PNI) of colorectal cancer (CRC). PNI is defined as the invasion of the nerves by cancer cells. Although PNI is already known to be an independent prognostic factor in CRC, the molecular mechanism underlying PNI remains obscure. In this study, we first demonstrated that CD51 could promote the neurotropism of tumor cells through cleavage with γ-secretase to generate an intracellular domain (ICD). Mechanistically, ICD of CD51 could bind to the transcription factor NR4A3, and act as a coactivator to promote the expression of downstream effectors, such as NTRK1, NTRK3, and SEMA3E. Pharmacological inhibition of γ-secretase impedes PNI mediated by CD51 in CRC both in vitro and in vivo and may become a potential therapeutic target for PNI in CRC.
Collapse
Affiliation(s)
- Tianze Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| | - Yanyun Lin
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| | - Junguo Chen
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| | - Jiancong Hu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| | - Hao Chen
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| | - Yanhong Zhang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| | - Bin Zhang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| | - Xiaosheng He
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| |
Collapse
|
26
|
Ha AT, Cho JY, Kim D. MLK3 Regulates Inflammatory Response via Activation of AP-1 Pathway in HEK293 and RAW264.7 Cells. Int J Mol Sci 2022; 23:ijms231810874. [PMID: 36142785 PMCID: PMC9501218 DOI: 10.3390/ijms231810874] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
Inflammation is a critically important barrier found in innate immunity. However, severe and sustained inflammatory conditions are regarded as causes of many different serious diseases, such as cancer, atherosclerosis, and diabetes. Although numerous studies have addressed how inflammatory responses proceed and what kinds of proteins and cells are involved, the exact mechanism and protein components regulating inflammatory reactions are not fully understood. In this paper, to determine the regulatory role of mixed lineage kinase 3 (MLK3), which functions as mitogen-activated protein kinase kinase kinase (MAP3K) in cancer cells in inflammatory response to macrophages, we employed an overexpression strategy with MLK3 in HEK293 cells and used its inhibitor URMC-099 in lipopolysaccharide (LPS)-treated RAW264.7 cells. It was found that overexpressed MLK3 increased the mRNA expression of inflammatory genes (COX-2, IL-6, and TNF-α) via the activation of AP-1, according to a luciferase assay carried out with AP-1-Luc. Overexpression of MLK3 also induced phosphorylation of MAPKK (MEK1/2, MKK3/6, and MKK4/7), MAPK (ERK, p38, and JNK), and AP-1 subunits (c-Jun, c-Fos, and FRA-1). Phosphorylation of MLK3 was also observed in RAW264.7 cells stimulated by LPS, Pam3CSK, and poly(I:C). Finally, inhibition of MLK3 by URMC-099 reduced the expression of COX-2 and CCL-12, phosphorylation of c-Jun, luciferase activity mediated by AP-1, and phosphorylation of MAPK in LPS-treated RAW264.7 cells. Taken together, our findings strongly suggest that MLK3 plays a central role in controlling AP-1-mediated inflammatory responses in macrophages and that this enzyme can serve as a target molecule for treating AP-1-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Anh Thu Ha
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
- Correspondence: (J.Y.C.); (D.K.); Tel.: +82-31-290-7868 (J.Y.C.); +82-10-9530-5269 (D.K.)
| | - Daewon Kim
- Laboratory of Bio-Informatics, Department of Multimedia Engineering, Dankook University, Yongin 16890, Korea
- Correspondence: (J.Y.C.); (D.K.); Tel.: +82-31-290-7868 (J.Y.C.); +82-10-9530-5269 (D.K.)
| |
Collapse
|
27
|
Liu Q, Ma Z, Cao Q, Zhao H, Guo Y, Liu T, Li J. Perineural invasion-associated biomarkers for tumor development. Biomed Pharmacother 2022; 155:113691. [PMID: 36095958 DOI: 10.1016/j.biopha.2022.113691] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Perineural invasion (PNI) is the process of neoplastic invasion of peripheral nerves and is considered to be the fifth mode of cancer metastasis. PNI has been detected in head and neck tumors and pancreatic, prostate, bile duct, gastric, and colorectal cancers. It leads to poor prognostic outcomes and high local recurrence rates. Despite the increasing number of studies on PNI, targeted therapeutic modalities have not been proposed. The identification of PNI-related biomarkers would facilitate the non-invasive and early diagnosis of cancers, the establishment of prognostic panels, and the development of targeted therapeutic approaches. In this review, we compile information on the molecular mediators involved in PNI-associated cancers. The expression and prognostic significance of molecular mediators and their receptors in PNI-associated cancers are analyzed, and the possible mechanisms of action of these mediators in PNI are explored, as well as the association of cells in the microenvironment where PNI occurs.
Collapse
Affiliation(s)
- Qi Liu
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Zhiming Ma
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Qian Cao
- Department of Education, The Second Hospital of Jilin University, Changchun 130041, China
| | - Hongyu Zhao
- Gastroenterology and Center of Digestive Endoscopy, The Second Hospital of Jilin University, Changchun 130041, China
| | - Yu Guo
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Tongjun Liu
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
28
|
Kim H, Rahmawati L, Hong YH, Choi SY, Cho JY. NK cell-mediated immunostimulatory effects of ethanol extract of Morinda citrifolia (noni) fruit. BMC Complement Med Ther 2022; 22:222. [PMID: 35996139 PMCID: PMC9394078 DOI: 10.1186/s12906-022-03700-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/27/2022] [Indexed: 11/10/2022] Open
Abstract
Background Morinda citrifolia (Noni) is a plant that has long been used in various products such as foods and cosmetics. Although noni has been known to have immunostimulatory activity, detailed mechanism at the cellular level has not been fully elucidated yet. In this study, we focused on understanding as to how noni fruit can positively stimulate body’s immune responses. Methods To do this, an ethanol extract of noni fruit (Mc-fEE) was prepared and administered for 30 days to male C57BL/6 mice for in vivo experiment. NK cell activity and cytokine production level from Mc-fEE-treated mice were analyzed by flowcytometry, real-time PCR, and ELISA. Mc-fEE-triggered molecular events were detected from RAW264.7 cells and splenocytes using Western blotting and real-time PCR analyses. Results The mRNA expression levels of cytokines such as interleukin families, interferon (IFN)-β, and tumor necrosis factor (TNF)-α were increased by Mc-fEE treatment in vitro and in vivo. Western blotting analysis showed that the phosphorylation levels of nuclear factor (NF)-κB and activator protein (AP)-1 subunits these were enhanced in Mc-fEE-treated RAW264.7 cells. In addition, according to in vivo experiments, it was considered that Mc-fEE can increase the population of splenic NK cells and subsequent upregulation of their cytotoxic activity against YAC-1 cells, a T- cell lymphoma. Conclusion In this paper, we could confirm that Mc-fEE has remarkable immunostimulatory effects by activation and increase of the NK cell population. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03700-3.
Collapse
|
29
|
In Vitro Human Cancer Models for Biomedical Applications. Cancers (Basel) 2022; 14:cancers14092284. [PMID: 35565413 PMCID: PMC9099454 DOI: 10.3390/cancers14092284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/16/2022] [Accepted: 04/30/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Cancer is a leading cause of death worldwide. While numerous studies have been conducted on cancer treatment, clinical treatment options for cancers are still limited. To date, animal cancer models for cancer therapeutic studies have faced multiple challenges, including inaccuracy in the representation of human cancers, high cost and ethical concerns. Therefore, lab-grown human cancer models are being developed quickly to fulfill the increasing demand for more relevant models in order to improve knowledge of human cancers and to find novel treatments. This review summarizes the development of lab-grown human cancer models for biomedical applications, including cancer therapeutic development, assessment of human tumor biology and discovery of key cancer markers. Abstract Cancer is one of the leading causes of death worldwide, and its incidence is steadily increasing. Although years of research have been conducted on cancer treatment, clinical treatment options for cancers are still limited. Animal cancer models have been widely used for studies of cancer therapeutics, but these models have been associated with many concerns, including inaccuracy in the representation of human cancers, high cost and ethical issues. Therefore, in vitro human cancer models are being developed quickly to fulfill the increasing demand for more relevant models in order to get a better knowledge of human cancers and to find novel treatments. This review summarizes the development of in vitro human cancer models for biomedical applications. We first review the latest development in the field by detailing various types of in vitro human cancer models, including transwell-based models, tumor spheroids, microfluidic tumor-microvascular systems and scaffold-based models. The advantages and limitations of each model, as well as their biomedical applications, are summarized, including therapeutic development, assessment of tumor cell migration, metastasis and invasion and discovery of key cancer markers. Finally, the existing challenges and future perspectives are briefly discussed.
Collapse
|
30
|
Jiang SH, Zhang S, Wang H, Xue JL, Zhang ZG. Emerging experimental models for assessing perineural invasion in human cancers. Cancer Lett 2022; 535:215610. [PMID: 35283209 DOI: 10.1016/j.canlet.2022.215610] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 12/13/2022]
Abstract
Cancer neuroscience has emerged as a burgeoning field for the investigation of cancer-nervous system interactions. Perineural invasion (PNI) is defined as the presence of cancer cells that surround and/or invade the nerves infiltrating the tumor microenvironment. PNI is closely associated with increased tumor recurrence and diminished survival in many cancer types. Based on diverse in vitro, ex vivo, and in vivo models, mounting evidence suggests that the reciprocal crosstalk between nerves and cancer cells drives PNI, which is mediated by several factors including secreted neurotrophins, chemokines, exosomes, and inflammatory cells. Typical in vitro models using dorsal root ganglia (DRG) cells cocultured with cancer cells or other cell types allow the study of isolated factors. Ex vivo PNI models created by cocultivating cancer cells with explanted vagus and sciatic nerves enable the study of neuroaffinity in a time-saving and cost-efficient manner. In vivo models such as genetically engineered mouse models (GEMMs) and the chicken embryo chorioallantoic membrane (CAM)-DRG model, provide the nerve microenvironment needed to recapitulate the complex pathophysiological processes of PNI. Here, we summarize the current methods commonly used for modeling PNI and discuss the inherent pros and cons of these approaches for understanding PNI biology.
Collapse
Affiliation(s)
- Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Shan Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Hao Wang
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200123, PR China
| | - Jun-Li Xue
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200123, PR China.
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
31
|
Goluba K, Kunrade L, Riekstina U, Parfejevs V. Schwann Cells in Digestive System Disorders. Cells 2022; 11:832. [PMID: 35269454 PMCID: PMC8908985 DOI: 10.3390/cells11050832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
Proper functioning of the digestive system is ensured by coordinated action of the central and peripheral nervous systems (PNS). Peripheral innervation of the digestive system can be viewed as intrinsic and extrinsic. The intrinsic portion is mainly composed of the neurons and glia of the enteric nervous system (ENS), while the extrinsic part is formed by sympathetic, parasympathetic, and sensory branches of the PNS. Glial cells are a crucial component of digestive tract innervation, and a great deal of research evidence highlights the important status of ENS glia in health and disease. In this review, we shift the focus a bit and discuss the functions of Schwann cells (SCs), the glial cells of the extrinsic innervation of the digestive system. For more context, we also provide information on the basic findings regarding the function of innervation in disorders of the digestive organs. We find diverse SC roles described particularly in the mouth, the pancreas, and the intestine. We note that most of the scientific evidence concerns the involvement of SCs in cancer progression and pain, but some research identifies stem cell functions and potential for regenerative medicine.
Collapse
Affiliation(s)
| | | | | | - Vadims Parfejevs
- Faculty of Medicine, University of Latvia, House of Science, Jelgavas Str. 3, LV-1004 Riga, Latvia; (K.G.); (L.K.); (U.R.)
| |
Collapse
|
32
|
Master Regulators of Epithelial-Mesenchymal Transition and WNT Signaling Pathways in Juvenile Nasopharyngeal Angiofibromas. Biomedicines 2021; 9:biomedicines9091258. [PMID: 34572445 PMCID: PMC8469518 DOI: 10.3390/biomedicines9091258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 02/08/2023] Open
Abstract
Juvenile nasopharyngeal angiofibroma (JNA) is a rare fibrovascular benign tumor showing an invasive growth pattern and affecting mainly male adolescents. We investigated the role of epithelial–mesenchymal transition (EMT) and WNT signaling pathways in JNA. Gene expression profiles using nine JNA paired with four inferior nasal turbinate samples were interrogated using a customized 2.3K microarray platform containing genes mainly involved in EMT and WNT/PI3K pathways. The expression of selected genes (BCL2, CAV1, CD74, COL4A2, FZD7, ING1, LAMB1, and RAC2) and proteins (BCL2, CAV1, CD74, FZD7, RAF1, WNT5A, and WNT5B) was investigated by RT-qPCR (28 cases) and immunohistochemistry (40 cases), respectively. Among 104 differentially expressed genes, we found a significantly increased expression of COL4A2 and LAMB1 and a decreased expression of BCL2 and RAC2 by RT-qPCR. The immunohistochemistry analysis revealed a low expression of BCL2 and a negative to moderate expression of FZD7 in most samples, while increased CAV1 and RAF1 expression were detected. Moderate to strong CD74 protein expression was observed in endothelial and inflammatory cells. A significant number of JNAs (78%) presented reduced WNT5A and increased WNT5B expression. Overall, the transcript and protein profile indicated the involvement of EMT and WNT pathways in JNA. These candidates are promising druggable targets for treating JNA.
Collapse
|
33
|
Mallya K, Gautam SK, Aithal A, Batra SK, Jain M. Modeling pancreatic cancer in mice for experimental therapeutics. Biochim Biophys Acta Rev Cancer 2021; 1876:188554. [PMID: 33945847 DOI: 10.1016/j.bbcan.2021.188554] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy that is characterized by early metastasis, low resectability, high recurrence, and therapy resistance. The experimental mouse models have played a central role in understanding the pathobiology of PDAC and in the preclinical evaluation of various therapeutic modalities. Different mouse models with targetable pathological hallmarks have been developed and employed to address the unique challenges associated with PDAC progression, metastasis, and stromal heterogeneity. Over the years, mouse models have evolved from simple cell line-based heterotopic and orthotopic xenografts in immunocompromised mice to more complex and realistic genetically engineered mouse models (GEMMs) involving multi-gene manipulations. The GEMMs, mostly driven by KRAS mutation(s), have been widely accepted for therapeutic optimization due to their high penetrance and ability to recapitulate the histological, molecular, and pathological hallmarks of human PDAC, including comparable precursor lesions, extensive metastasis, desmoplasia, perineural invasion, and immunosuppressive tumor microenvironment. Advanced GEMMs modified to express fluorescent proteins have allowed cell lineage tracing to provide novel insights and a new understanding about the origin and contribution of various cell types in PDAC pathobiology. The syngeneic mouse models, GEMMs, and target-specific transgenic mice have been extensively used to evaluate immunotherapies and study therapy-induced immune modulation in PDAC yielding meaningful results to guide various clinical trials. The emerging mouse models for parabiosis, hepatic metastasis, cachexia, and image-guided implantation, are increasingly appreciated for their high translational significance. In this article, we describe the contribution of various experimental mouse models to the current understanding of PDAC pathobiology and their utility in evaluating and optimizing therapeutic modalities for this lethal malignancy.
Collapse
Affiliation(s)
- Kavita Mallya
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | - Abhijit Aithal
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|