1
|
Jin X, Chen Z, Yu D, Jiang Q, Chen Z, Yan B, Qin J, Liu Y, Wang J. TPepPro: a deep learning model for predicting peptide-protein interactions. BIOINFORMATICS (OXFORD, ENGLAND) 2024; 41:btae708. [PMID: 39585721 DOI: 10.1093/bioinformatics/btae708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/23/2024] [Accepted: 11/24/2024] [Indexed: 11/26/2024]
Abstract
MOTIVATION Peptides and their derivatives hold potential as therapeutic agents. The rising interest in developing peptide drugs is evidenced by increasing approval rates by the FDA of USA. To identify the most potential peptides, study on peptide-protein interactions (PepPIs) presents a very important approach but poses considerable technical challenges. In experimental aspects, the transient nature of PepPIs and the high flexibility of peptides contribute to elevated costs and inefficiency. Traditional docking and molecular dynamics simulation methods require substantial computational resources, and the predictive accuracy of their results remain unsatisfactory. RESULTS To address this gap, we proposed TPepPro, a Transformer-based model for PepPI prediction. We trained TPepPro on a dataset of 19,187 pairs of peptide-protein complexes with both sequential and structural features. TPepPro utilizes a strategy that combines local protein sequence feature extraction with global protein structure feature extraction. Moreover, TPepPro optimizes the architecture of structural featuring neural network in BN-ReLU arrangement, which notably reduced the amount of computing resources required for PepPIs prediction. According to comparison analysis, the accuracy reached 0.855 in TPepPro, achieving an 8.1% improvement compared to the second-best model TAGPPI. TPepPro achieved an AUC of 0.922, surpassing the second-best model TAGPPI with 0.844. Moreover, the newly developed TPepPro identify certain PepPIs that can be validated according to previous experimental evidence, thus indicating the efficiency of TPepPro to detect high potential PepPIs that would be helpful for amino acid drug applications. AVAILABILITY AND IMPLEMENTATION The source code of TPepPro is available at https://github.com/wanglabhku/TPepPro.
Collapse
Affiliation(s)
- Xiaohong Jin
- School of Electronic Information, Guangxi University for Nationalities, Nanning 530000, China
| | - Zimeng Chen
- Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Dan Yu
- Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Qianhui Jiang
- Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Zhuobin Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Bin Yan
- Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Jing Qin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yong Liu
- School of Artificial Intelligence, Guangxi University for Nationalities, Nanning 530000, China
| | - Junwen Wang
- Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- HKU Shenzhen Hospital, Shenzhen 518000, China
| |
Collapse
|
2
|
Kumar S, Basu M, Ghosh MK. E3 ubiquitin ligases and deubiquitinases in colorectal cancer: Emerging molecular insights and therapeutic opportunities. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119827. [PMID: 39187067 DOI: 10.1016/j.bbamcr.2024.119827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
Colorectal cancer (CRC) presents ongoing challenges due to limited treatment effectiveness and a discouraging prognosis, underscoring the need for ground-breaking therapeutic approaches. This review delves into the pivotal role of E3 ubiquitin ligases and deubiquitinases (DUBs), underscoring their role as crucial regulators for tumor suppression and oncogenesis in CRC. We spotlight the diverse impact of E3 ligases and DUBs on CRC's biological processes and their remarkable versatility. We closely examine their specific influence on vital signaling pathways, particularly Wnt/β-catenin and NF-κB. Understanding these regulatory mechanisms is crucial for unravelling the complexities of CRC progression. Importantly, we explore the untapped potential of E3 ligases and DUBs as novel CRC treatment targets, discussing aspects that may guide more effective therapeutic strategies. In conclusion, our concise review illuminates the E3 ubiquitin ligases and deubiquitinases pivotal role in CRC, offering insights to inspire innovative approaches for transforming the treatment landscape in CRC.
Collapse
Affiliation(s)
- Sunny Kumar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Paraganas, PIN - 743372, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India.
| |
Collapse
|
3
|
Scarisbrick IA. PARting Neuroinflammation with Protease-Activated Receptor 2 Pepducins. J Pharmacol Exp Ther 2024; 388:8-11. [PMID: 38169447 DOI: 10.1124/jpet.123.001893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/26/2023] [Indexed: 01/05/2024] Open
Affiliation(s)
- Isobel A Scarisbrick
- Center for Regenerative Biotherapeutics, Department of Physical Medicine and Rehabilitation, and Department of Physiology and Biomedical Engineering, Mayo Clinic Graduate School of Biomedical Sciences, Regenerative Sciences, Rochester, Minnesota
| |
Collapse
|
4
|
Ma J, Liu Y, Yuan J, Ma Y, Zhao X, Chen K, Zhang X, Zhang F, Wang H. Bcl-xL mediates interferon-beta secretion by protease-activated receptor 2 deficiency through the mitochondrial permeability transition pore in colorectal cancer metastasis. Cancer Lett 2024; 580:216483. [PMID: 37972702 DOI: 10.1016/j.canlet.2023.216483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Cellular plasticity and immune escape are synergistic drivers of tumor colonization in metastatic organs. Activation of protease-activated receptor 2 (PAR2) signaling promotes metastasis of colorectal carcinoma (CRC). The role of PAR2 in regulating the immune microenvironment and cancer progression remains unclear. We demonstrated that the regulation of liver metastasis by PAR2 requires a competent immune system. PAR2 knockdown enhanced liver infiltration of activated CD8+ T cells prior to metastatic foci formation in an interferon receptor-dependent manner. PAR2 depletion increased interferon (IFN)-β production via the cGAS-STING and RIG-1 pathways. PAR2 inhibition increased mitochondrial permeability and cytosolic accumulation of mitochondrial DNA, which was reversed by Bcl-xL expression. Strikingly, shRNA against PAR2 with an immune checkpoint blocker (ICB) acted synergistically to suppress liver metastasis. Analysis of single-cell sequence data and 24 paired samples confirmed the regulatory effect of PAR2 on the metastatic immune environment in human CRC. Therefore, PAR2 signaling is involved in stabilizing the mitochondrial membrane and regulating the immune microenvironment through IFN-β during liver metastasis in CRC. The synergistic effect of the PAR2 inhibitor and ICB provides a potential therapeutic strategy for metastatic CRC treatment.
Collapse
Affiliation(s)
- Jianhui Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yu Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Junhu Yuan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yiming Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xinhua Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Kun Chen
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaoli Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Department of Injury and Repair, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Fanyu Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hongying Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| |
Collapse
|
5
|
Chen J, Feng H, Wang Y, Bai X, Sheng S, Li H, Huang M, Chu X, Lei Z. The involvement of E3 ubiquitin ligases in the development and progression of colorectal cancer. Cell Death Discov 2023; 9:458. [PMID: 38104139 PMCID: PMC10725464 DOI: 10.1038/s41420-023-01760-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023] Open
Abstract
To date, colorectal cancer (CRC) still has limited therapeutic efficacy and poor prognosis and there is an urgent need for novel targets to improve the outcome of CRC patients. The highly conserved ubiquitination modification mediated by E3 ubiquitin ligases is an important mechanism to regulate the expression and function of tumor promoters or suppressors in CRC. In this review, we provide an overview of E3 ligases in modulating various biological processes in CRC, including proliferation, migration, stemness, metabolism, cell death, differentiation and immune response of CRC cells, emphasizing the pluripotency of E3 ubiquitin ligases. We further focus on the role of E3 ligases in regulating vital cellular signal pathways in CRC, such as Wnt/β-catenin pathway and NF-κB pathway. Additionally, considering the potential of E3 ligases as novel targets in the treatment of CRC, we discuss what aspects of E3 ligases can be utilized and exploited for efficient therapeutic strategies.
Collapse
Affiliation(s)
- Jie Chen
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Haimei Feng
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Yiting Wang
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiaoming Bai
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Siqi Sheng
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Huiyu Li
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Mengxi Huang
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical university, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu Province, China.
| | - Zengjie Lei
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical university, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
6
|
Bi B, Qiu M, Liu P, Wang Q, Wen Y, Li Y, Li B, Li Y, He Y, Zhao J. Protein post-translational modifications: A key factor in colorectal cancer resistance mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194977. [PMID: 37625568 DOI: 10.1016/j.bbagrm.2023.194977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/16/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related death. Despite advances in treatment, drug resistance remains a critical impediment. Post-translational modifications (PTMs) regulate protein stability, localization, and activity, impacting vital cellular processes. Recent research has highlighted the essential role of PTMs in the development of CRC resistance. This review summarizes recent advancements in understanding PTMs' roles in CRC resistance, focusing on the latest discoveries. We discuss the functional impact of PTMs on signaling pathways and molecules involved in CRC resistance, progress in drug development, and potential therapeutic targets. We also summarize the primary enrichment methods for PTMs. Finally, we discuss current challenges and future directions, including the need for more comprehensive PTM analysis methods and PTM-targeted therapies. This review identifies potential therapeutic interventions for addressing medication resistance in CRC, proposes prospective therapeutic options, and gives an overview of the function of PTMs in CRC resistance.
Collapse
Affiliation(s)
- Bo Bi
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Miaojuan Qiu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China; Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Peng Liu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Qiang Wang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yingfei Wen
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - You Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Binbin Li
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China; Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yongshu Li
- Hubei Normal University, College of Life Sciences Huangshi, Hubei, China.
| | - Yulong He
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China.
| | - Jing Zhao
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China; Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
7
|
Shah H, Hill TA, Lim J, Fairlie DP. Protease-activated receptor 2 attenuates doxorubicin-induced apoptosis in colon cancer cells. J Cell Commun Signal 2023:10.1007/s12079-023-00791-6. [PMID: 37991681 DOI: 10.1007/s12079-023-00791-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 11/02/2023] [Indexed: 11/23/2023] Open
Abstract
Drug resistance represents a major problem in cancer treatment. Doxorubicin (adriamycin) is an injectable DNA intercalating drug that halts cancer cell growth by inhibiting topoisomerase 2, but its long-term effectiveness is compromised by onset of resistance. This study demonstrates that expression of the PAR2 gene in human colon adenocarcinoma tissue samples was the highest among 32 different cancer types (n = 10,989), and higher in colon adenocarcinoma tissues (n = 331) than normal colon tissues (n = 308), revealing an association between PAR2 expression and human colon cancer. HT29 cells are a human colorectal adenocarcinoma cell line that is sensitive to the chemotherapeutic drug doxorubicin and also expresses PAR2. We find that PAR2 activation in HT29 cells, either by an endogenous protease agonist (trypsin) or an exogenous peptide agonist (2f-LIGRL-NH2), significantly reduces doxorubicin-induced cell death, reactive oxygen species production, caspase 3/7 activity and cleavage of caspase-8 and caspase-3. Moreover, PAR2-mediated MEK1/2-ERK1/2 pathway induced by 2f-LIGRL-NH2 leads to upregulated anti-apoptotic MCL-1 and Bcl-xL proteins that promote cellular survival. These findings suggest that activation of PAR2 compromises efficacy of doxorubicin in colon cancer. Further support for this conclusion came from experiments with human colon cancer HT29 cells, either with the PAR2 gene deleted or in the presence of a pharmacological antagonist of PAR2, which showed full restoration of all doxorubicin-mediated effects. Together, these findings reveal a strong link between PAR2 activation and signalling in human colon cancer cells and increased survival against doxorubicin-induced cell death. They support PAR2 antagonism as a possible new strategy for enhancing doxorubicin therapy.
Collapse
Affiliation(s)
- Himani Shah
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Timothy A Hill
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Junxian Lim
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia.
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia.
| | - David P Fairlie
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia.
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
8
|
Hanson EK, Whelan RJ. Application of the Nicoya OpenSPR to Studies of Biomolecular Binding: A Review of the Literature from 2016 to 2022. SENSORS (BASEL, SWITZERLAND) 2023; 23:4831. [PMID: 37430747 DOI: 10.3390/s23104831] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 07/12/2023]
Abstract
The Nicoya OpenSPR is a benchtop surface plasmon resonance (SPR) instrument. As with other optical biosensor instruments, it is suitable for the label-free interaction analysis of a diverse set of biomolecules, including proteins, peptides, antibodies, nucleic acids, lipids, viruses, and hormones/cytokines. Supported assays include affinity/kinetics characterization, concentration analysis, yes/no assessment of binding, competition studies, and epitope mapping. OpenSPR exploits localized SPR detection in a benchtop platform and can be connected with an autosampler (XT) to perform automated analysis over an extended time period. In this review article, we provide a comprehensive survey of the 200 peer-reviewed papers published between 2016 and 2022 that use the OpenSPR platform. We highlight the range of biomolecular analytes and interactions that have been investigated using the platform, provide an overview on the most common applications for the instrument, and point out some representative research that highlights the flexibility and utility of the instrument.
Collapse
Affiliation(s)
- Eliza K Hanson
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Rebecca J Whelan
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
9
|
Leveraging Tumor Microenvironment Infiltration in Pancreatic Cancer to Identify Gene Signatures Related to Prognosis and Immunotherapy Response. Cancers (Basel) 2023; 15:cancers15051442. [PMID: 36900234 PMCID: PMC10000708 DOI: 10.3390/cancers15051442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
The hallmark of pancreatic ductal adenocarcinoma (PDAC) is an exuberant tumor microenvironment (TME) comprised of diverse cell types that play key roles in carcinogenesis, chemo-resistance, and immune evasion. Here, we propose a gene signature score through the characterization of cell components in TME for promoting personalized treatments and further identifying effective therapeutic targets. We identified three TME subtypes based on cell components quantified by single sample gene set enrichment analysis. A prognostic risk score model (TMEscore) was established based on TME-associated genes using a random forest algorithm and unsupervised clustering, followed by validation in immunotherapy cohorts from the GEO dataset for its performance in predicting prognosis. Importantly, TMEscore positively correlated with the expression of immunosuppressive checkpoints and negatively with the gene signature of T cells' responses to IL2, IL15, and IL21. Subsequently, we further screened and verified F2R-like Trypsin Receptor1 (F2RL1) among the core genes related to TME, which promoted the malignant progression of PDAC and has been confirmed as a good biomarker with therapeutic potential in vitro and in vivo experiments. Taken together, we proposed a novel TMEscore for risk stratification and selection of PDAC patients in immunotherapy trials and validated effective pharmacological targets.
Collapse
|
10
|
Berger M, Guiraud L, Dumas A, Sagnat D, Payros G, Rolland C, Vergnolle N, Deraison C, Cenac N, Racaud-Sultan C. Prenatal stress induces changes in PAR2- and M3-dependent regulation of colon primitive cells. Am J Physiol Gastrointest Liver Physiol 2022; 323:G609-G626. [PMID: 36283083 PMCID: PMC9722261 DOI: 10.1152/ajpgi.00061.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Prenatal stress is associated with a high risk of developing adult intestinal pathologies, such as irritable bowel syndrome, chronic inflammation, and cancer. Although epithelial stem cells and progenitors have been implicated in intestinal pathophysiology, how prenatal stress could impact their functions is still unknown. We have investigated the proliferative and differentiation capacities of primitive cells using epithelial crypts isolated from colons of adult male and female mice whose mothers have been stressed during late gestation. Our results show that stem cell/progenitor proliferation and differentiation in vitro are negatively impacted by prenatal stress in male progeny. This is promoted by a reinforcement of the negative proliferative/differentiation control by the protease-activated receptor 2 (PAR2) and the muscarinic receptor 3 (M3), two G protein-coupled receptors present in the crypt. Conversely, prenatal stress does not change in vitro proliferation of colon primitive cells in female progeny. Importantly, this maintenance is associated with a functional switch in the M3 negative control of colonoid growth, becoming proliferative after prenatal stress. In addition, the proliferative role of PAR2 specific to females is maintained under prenatal stress, even though PAR2-targeted stress signals Dusp6 and activated GSK3β are increased, reaching the levels of males. An epithelial serine protease could play a critical role in the activation of the survival kinase GSK3β in colonoids from prenatally stressed female progeny. Altogether, our results show that following prenatal stress, colon primitive cells cope with stress through sexually dimorphic mechanisms that could pave the way to dysregulated crypt regeneration and intestinal pathologies.NEW & NOTEWORTHY Primitive cells isolated from mouse colon following prenatal stress and exposed to additional stress conditions such as in vitro culture, present sexually dimorphic mechanisms based on PAR2- and M3-dependent regulation of proliferation and differentiation. Whereas prenatal stress reinforces the physiological negative control exerted by PAR2 and M3 in crypts from males, in females, it induces a switch in M3- and PAR2-dependent regulation leading to a resistant and proliferative phenotype of progenitor.
Collapse
Affiliation(s)
- Mathieu Berger
- 1Institut de Recherche en Santé Digestive, INSERM U1220, Institut
National de Recherche pour l’Agriculture, l’Alimentation et
l’Environnement, Ecole Nationale Vétérinaire de Toulouse, University of Toulouse, Toulouse, France
| | - Laura Guiraud
- 1Institut de Recherche en Santé Digestive, INSERM U1220, Institut
National de Recherche pour l’Agriculture, l’Alimentation et
l’Environnement, Ecole Nationale Vétérinaire de Toulouse, University of Toulouse, Toulouse, France
| | - Alexia Dumas
- 1Institut de Recherche en Santé Digestive, INSERM U1220, Institut
National de Recherche pour l’Agriculture, l’Alimentation et
l’Environnement, Ecole Nationale Vétérinaire de Toulouse, University of Toulouse, Toulouse, France
| | - David Sagnat
- 1Institut de Recherche en Santé Digestive, INSERM U1220, Institut
National de Recherche pour l’Agriculture, l’Alimentation et
l’Environnement, Ecole Nationale Vétérinaire de Toulouse, University of Toulouse, Toulouse, France
| | - Gaëlle Payros
- 1Institut de Recherche en Santé Digestive, INSERM U1220, Institut
National de Recherche pour l’Agriculture, l’Alimentation et
l’Environnement, Ecole Nationale Vétérinaire de Toulouse, University of Toulouse, Toulouse, France
| | - Corinne Rolland
- 1Institut de Recherche en Santé Digestive, INSERM U1220, Institut
National de Recherche pour l’Agriculture, l’Alimentation et
l’Environnement, Ecole Nationale Vétérinaire de Toulouse, University of Toulouse, Toulouse, France
| | - Nathalie Vergnolle
- 1Institut de Recherche en Santé Digestive, INSERM U1220, Institut
National de Recherche pour l’Agriculture, l’Alimentation et
l’Environnement, Ecole Nationale Vétérinaire de Toulouse, University of Toulouse, Toulouse, France,2Department of Physiology and Pharmacology, Cumming School of
Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Céline Deraison
- 1Institut de Recherche en Santé Digestive, INSERM U1220, Institut
National de Recherche pour l’Agriculture, l’Alimentation et
l’Environnement, Ecole Nationale Vétérinaire de Toulouse, University of Toulouse, Toulouse, France
| | - Nicolas Cenac
- 1Institut de Recherche en Santé Digestive, INSERM U1220, Institut
National de Recherche pour l’Agriculture, l’Alimentation et
l’Environnement, Ecole Nationale Vétérinaire de Toulouse, University of Toulouse, Toulouse, France
| | - Claire Racaud-Sultan
- 1Institut de Recherche en Santé Digestive, INSERM U1220, Institut
National de Recherche pour l’Agriculture, l’Alimentation et
l’Environnement, Ecole Nationale Vétérinaire de Toulouse, University of Toulouse, Toulouse, France
| |
Collapse
|