1
|
Zhuang S, Liu Z, Wu J, Yao Y, Li Z, Shen Y, Yu B, Wu D. Can O-GIcNAc Transferase (OGT) Complex Be Used as a Target for the Treatment of Hematological Malignancies? Pharmaceuticals (Basel) 2024; 17:664. [PMID: 38931332 PMCID: PMC11206344 DOI: 10.3390/ph17060664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/03/2024] [Accepted: 03/14/2024] [Indexed: 06/28/2024] Open
Abstract
The circulatory system is a closed conduit system throughout the body and consists of two parts as follows: the cardiovascular system and the lymphatic system. Hematological malignancies usually grow and multiply in the circulatory system, directly or indirectly affecting its function. These malignancies include multiple myeloma, leukemia, and lymphoma. O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) regulates the function and stability of substrate proteins through O-GlcNAc modification. Abnormally expressed OGT is strongly associated with tumorigenesis, including hematological malignancies, colorectal cancer, liver cancer, breast cancer, and prostate cancer. In cells, OGT can assemble with a variety of proteins to form complexes to exercise related biological functions, such as OGT/HCF-1, OGT/TET, NSL, and then regulate glucose metabolism, gene transcription, cell proliferation, and other biological processes, thus affecting the development of hematological malignancies. This review summarizes the complexes involved in the assembly of OGT in cells and the role of related OGT complexes in hematological malignancies. Unraveling the complex network regulated by the OGT complex will facilitate a better understanding of hematologic malignancy development and progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Donglu Wu
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (S.Z.); (Z.L.); (J.W.); (Y.Y.); (Z.L.); (Y.S.); (B.Y.)
| |
Collapse
|
2
|
Yang L, Wei X, Gong Y. Prognosis and risk factors for ASXL1 mutations in patients with newly diagnosed acute myeloid leukemia and myelodysplastic syndrome. Cancer Med 2024; 13:e6871. [PMID: 38146893 PMCID: PMC10807681 DOI: 10.1002/cam4.6871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/29/2023] [Accepted: 12/13/2023] [Indexed: 12/27/2023] Open
Abstract
OBJECTIVE The objective of the study was to determine the prognosis and risk factors for additional sex combs like 1 (ASXL1) mutations in patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). POPULATION AND METHODS This retrospective study enrolled 219 adult patients with newly diagnosed AML and MDS, who were treated in West China Hospital from October 2018 to January 2022. The primary clinical outcome was evaluated by overall survival (OS) followed up to January 2023. Kaplan-Meier analysis and Cox multivariate regression analysis were performed to identify potential prognostic parameters in patients with ASXL1 mutations (mt). RESULTS A total of 34 (15.53%) ASXL1mt were detected, which occurred more frequently in the elderly and MDS cohorts (p < 0.001). Significantly lower blasts% (p < 0.001) and higher frequencies of mutant RUNX1, SRSF2, STAG2, EZH2, and SETBP1 (p < 0.02) were observed in the ASXL1mt cohort. Patients with ASXL1mt manifested with a worse complete remission rate (p = 0.011), and an inferior OS was shown in subgroups with MDS, co-mutations of RUNX1, SRSF2, or NRAS, as well as mutations in G646W (p < 0.05). Multivariate analysis considering age, diagnosis, co-mutations, and mutation site confirmed an independently adverse prognosis of mutations in G646W (HR = 4.302, 95% CI: 1.150-16.097) or RUNX1 co-mutations (HR = 4.620, 95% CI: 1.385-15.414) in the ASXL1mt cohort. CONCLUSION Our study indicated that mutations in G646W or RUNX1 co-mutations are closely associated with a dismal clinical outcome in patients with AML and MDS harboring ASXL1mt. Considering the poor prognosis and risk factors in patients with ASXL1mt, more available treatments should be pursued.
Collapse
Affiliation(s)
- Liqing Yang
- Department of Hematology, West China HospitalSichuan UniversityChengduSichuanChina
- Department of HematologyFujian Medical University Union Hospital, Fujian Medical UniversityFuzhouFujianChina
| | - Xiaoyu Wei
- Department of Hematology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yuping Gong
- Department of Hematology, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
3
|
Doyle EJ, Morey L, Conway E. Know when to fold 'em: Polycomb complexes in oncogenic 3D genome regulation. Front Cell Dev Biol 2022; 10:986319. [PMID: 36105358 PMCID: PMC9464936 DOI: 10.3389/fcell.2022.986319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Chromatin is spatially and temporally regulated through a series of orchestrated processes resulting in the formation of 3D chromatin structures such as topologically associating domains (TADs), loops and Polycomb Bodies. These structures are closely linked to transcriptional regulation, with loss of control of these processes a frequent feature of cancer and developmental syndromes. One such oncogenic disruption of the 3D genome is through recurrent dysregulation of Polycomb Group Complex (PcG) functions either through genetic mutations, amplification or deletion of genes that encode for PcG proteins. PcG complexes are evolutionarily conserved epigenetic complexes. They are key for early development and are essential transcriptional repressors. PcG complexes include PRC1, PRC2 and PR-DUB which are responsible for the control of the histone modifications H2AK119ub1 and H3K27me3. The spatial distribution of the complexes within the nuclear environment, and their associated modifications have profound effects on the regulation of gene transcription and the 3D genome. Nevertheless, how PcG complexes regulate 3D chromatin organization is still poorly understood. Here we glean insights into the role of PcG complexes in 3D genome regulation and compaction, how these processes go awry during tumorigenesis and the therapeutic implications that result from our insights into these mechanisms.
Collapse
Affiliation(s)
- Emma J. Doyle
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Lluis Morey
- Sylvester Comprehensive Cancer Centre, Miami, FL, United States
- Department of Human Genetics, Biomedical Research Building, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Eric Conway
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Kim H, Rahmawati L, Hong YH, Choi SY, Cho JY. NK cell-mediated immunostimulatory effects of ethanol extract of Morinda citrifolia (noni) fruit. BMC Complement Med Ther 2022; 22:222. [PMID: 35996139 PMCID: PMC9394078 DOI: 10.1186/s12906-022-03700-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/27/2022] [Indexed: 11/10/2022] Open
Abstract
Background Morinda citrifolia (Noni) is a plant that has long been used in various products such as foods and cosmetics. Although noni has been known to have immunostimulatory activity, detailed mechanism at the cellular level has not been fully elucidated yet. In this study, we focused on understanding as to how noni fruit can positively stimulate body’s immune responses. Methods To do this, an ethanol extract of noni fruit (Mc-fEE) was prepared and administered for 30 days to male C57BL/6 mice for in vivo experiment. NK cell activity and cytokine production level from Mc-fEE-treated mice were analyzed by flowcytometry, real-time PCR, and ELISA. Mc-fEE-triggered molecular events were detected from RAW264.7 cells and splenocytes using Western blotting and real-time PCR analyses. Results The mRNA expression levels of cytokines such as interleukin families, interferon (IFN)-β, and tumor necrosis factor (TNF)-α were increased by Mc-fEE treatment in vitro and in vivo. Western blotting analysis showed that the phosphorylation levels of nuclear factor (NF)-κB and activator protein (AP)-1 subunits these were enhanced in Mc-fEE-treated RAW264.7 cells. In addition, according to in vivo experiments, it was considered that Mc-fEE can increase the population of splenic NK cells and subsequent upregulation of their cytotoxic activity against YAC-1 cells, a T- cell lymphoma. Conclusion In this paper, we could confirm that Mc-fEE has remarkable immunostimulatory effects by activation and increase of the NK cell population. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03700-3.
Collapse
|
5
|
Drula R, Iluta S, Gulei D, Iuga C, Dima D, Ghiaur G, Buzoianu AD, Ciechanover A, Tomuleasa C. Exploiting the ubiquitin system in myeloid malignancies. From basic research to drug discovery in MDS and AML. Blood Rev 2022; 56:100971. [PMID: 35595613 DOI: 10.1016/j.blre.2022.100971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/19/2022]
Abstract
The ubiquitin-proteasome system is the crucial homeostatic mechanism responsible for the degradation and turnover of proteins. As such, alterations at this level are often associated with oncogenic processes, either through accumulation of undegraded pathway effectors or, conversely, excessive degradation of tumor-suppressing factors. Therefore, investigation of the ubiquitin- proteasome system has gained much attraction in recent years, especially in the context of hematological malignancies, giving rise to efficient therapeutics such as bortezomib for multiple myeloma. Current investigations are now focused on manipulating protein degradation via fine-tuning of the ubiquitination process through inhibition of deubiquitinating enzymes or development of PROTAC systems for stimulation of ubiquitination and protein degradation. On the other hand, the efficiency of Thalidomide derivates in myelodysplastic syndromes (MDS), such as Lenalidomide, acted as the starting point for the development of targeted leukemia-associated protein degradation molecules. These novel molecules display high efficiency in overcoming the limitations of current therapeutic regimens, such as refractory diseases. Therefore, in this manuscript we will address the therapeutic opportunities and strategies based on the ubiquitin-proteasome system, ranging from the modulation of deubiquitinating enzymes and, conversely, describing the potential of modern targeted protein degrading molecules and their progress into clinical implementation.
Collapse
Affiliation(s)
- Rares Drula
- Research Center for Advanced Medicine - MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Sabina Iluta
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania
| | - Diana Gulei
- Research Center for Advanced Medicine - MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Cristina Iuga
- Research Center for Advanced Medicine - MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Pharmaceutical Analysis, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania
| | - Gabriel Ghiaur
- Department of Oncology, The Johns Hopkins Hospital, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Anca Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Aaron Ciechanover
- Research Center for Advanced Medicine - MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Rappaport Technion Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel; Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Ciprian Tomuleasa
- Research Center for Advanced Medicine - MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.
| |
Collapse
|
6
|
Lan H, Gao Y, Zhao Z, Mei Z, Wang F. Ferroptosis: Redox Imbalance and Hematological Tumorigenesis. Front Oncol 2022; 12:834681. [PMID: 35155264 PMCID: PMC8826956 DOI: 10.3389/fonc.2022.834681] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/03/2022] [Indexed: 01/19/2023] Open
Abstract
Ferroptosis is a novel characterized form of cell death featured with iron-dependent lipid peroxidation, which is distinct from any known programmed cell death in the biological processes and morphological characteristics. Recent evidence points out that ferroptosis is correlated with numerous metabolic pathways, including iron homeostasis, lipid metabolism, and redox homeostasis, associating with the occurrence and treatment of hematological malignancies, such as multiple myeloma, leukemia, and lymphoma. Nowadays, utilizing ferroptosis as the target to prevent and treat hematological malignancies has become an active and challenging topic of research, and the regulatory network and physiological function of ferroptosis also need to be further elucidated. This review will summarize the recent progress in the molecular regulation of ferroptosis and the physiological roles and therapeutic potential of ferroptosis as the target in hematological malignancies.
Collapse
Affiliation(s)
- Hongying Lan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yu Gao
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhengyang Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Ziqing Mei
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Feng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|