1
|
Klein Nulent TJW, van Es RJJ, Breimer GE, Valstar MH, Smit LA, Speksnijder CM, de Bree R, Willems SM. MYB immunohistochemistry as a predictor of MYB::NFIB fusion in the diagnosis of adenoid cystic carcinoma of the head and neck. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 138:772-780. [PMID: 39218775 DOI: 10.1016/j.oooo.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/02/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVES Diagnosing adenoid cystic carcinoma (AdCC) is challenging due to histopathological variability and similarities with other tumors. In AdCC pathogenesis, the cellular myeloblastosis gene (c-MYB) often exhibits a MYB::NFIB fusion from a reciprocal translocation. This study aimed to assess the predictive accuracy of MYB immunohistochemistry for detecting this translocation compared to fluorescence in situ hybridization (FISH). STUDY DESIGN This study included 110 AdCC patients (1999-2017) from two Dutch head and neck centers using tissue microarrays and full slides. Median MYB expression levels by immunohistochemistry were compared based on translocation status by FISH, and differences within clinicopathological parameters were examined. An immunohistochemical cut-off was established to estimate the translocation. RESULTS MYB immunohistochemistry was available in 90/110 patients, with a median expression of 27%. FISH was interpretable in 79/108 tumors, identifying MYB::NFIB fusion in 44 (56%). Among 62 patients with both MYB expression and translocation data, the fusion was present in 38 (61%). These tumors had higher MYB expression (30%) than nontranslocated tumors (6%); P = .02. A 60% MYB expression cut-off yielded 100% specificity for detecting the translocation but had no prognostic value. CONCLUSIONS Although MYB protein expression alone lacks diagnostic precision, protein expression >60% predicted the MYB::NFIB fusion in all tumors.
Collapse
Affiliation(s)
- Thomas J W Klein Nulent
- Department of Head and Neck Surgical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Oral and Maxillofacial Surgery, Haaglanden Medical Center, The Hague, The Netherlands; Department of Oral and Maxillofacial Surgery, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Robert J J van Es
- Department of Head and Neck Surgical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Oral and Maxillofacial Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gerben E Breimer
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Matthijs H Valstar
- Department of Head and Neck Oncology and Surgery, Netherlands Cancer Institute/Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Laura A Smit
- Department of Pathology, Netherlands Cancer Institute/Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Caroline M Speksnijder
- Department of Head and Neck Surgical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Remco de Bree
- Department of Head and Neck Surgical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Stefan M Willems
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Jia Y, Liu Y, Yang H, Yao F. Adenoid cystic carcinoma: insights from molecular characterization and therapeutic advances. MedComm (Beijing) 2024; 5:e734. [PMID: 39263605 PMCID: PMC11387731 DOI: 10.1002/mco2.734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024] Open
Abstract
Adenoid cystic carcinoma (ACC) is a malignant tumor primarily originating from the salivary glands, capable of affecting multiple organs. Although ACC typically exhibits slow growth, it is notorious for its propensity for neural invasion, local recurrence, and distant metastasis, making it a particularly challenging cancer to treat. The complexity of ACC's histological and molecular features poses significant challenges to current treatment modalities, which often show limited effectiveness. Recent advancements in single-cell RNA-sequencing (scRNA-seq) have begun to unravel unprecedented insights into the heterogeneity and subpopulation diversity within ACC, revealing distinct cellular phenotypes and origins. This review delves into the intricate pathological and molecular characteristics of ACC, focusing on recent therapeutic advancements. We particularly emphasize the insights gained from scRNA-seq studies that shed light on the cellular landscape of ACC, underscoring its heterogeneity and pathobiology. Moreover, by integrating analyses from public databases, this review proposes novel perspectives for advancing treatment strategies in ACC. This review contributes to the academic understanding of ACC by proposing novel therapeutic approaches informed by cutting-edge molecular insights, paving the way for more effective, personalized therapeutic approaches for this challenging malignancy.
Collapse
Affiliation(s)
- Yunxuan Jia
- Department of Thoracic Surgery Shanghai Chest Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yupeng Liu
- Department of Thoracic Surgery Tumor Hospital Affiliated to Nantong University Nantong Tumor Hospital Nantong China
| | - Haitang Yang
- Department of Thoracic Surgery Shanghai Chest Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Feng Yao
- Department of Thoracic Surgery Shanghai Chest Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
3
|
Lourenço P, Miranda A, Campello MPC, Paulo A, Louis-Mergny J, Cruz C. Targeting proto-oncogene B-MYB G-quadruplex with a nucleic acid-based fluorescent probe. Int J Biol Macromol 2024; 266:131055. [PMID: 38522681 DOI: 10.1016/j.ijbiomac.2024.131055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 03/26/2024]
Abstract
The B-MYB gene encodes a transcription factor (B-MYB) that regulates cell growth and survival. Abnormal expression of B-MYB is frequently observed in lung cancer and poses challenges for targeted drug therapy. Oncogenes often contain DNA structures called G-quadruplexes (G4s) in their promoter regions, and B-MYB is no exception. These G4s play roles in genetic regulation and are potential cancer treatment targets. In this study, a probe was designed to specifically identify a G4 within the promoter region of the B-MYB gene. This probe combines an acridine derivative ligand with a DNA segment complementary to the target sequence, enabling it to hybridize with the adjacent sequence of the G4 being investigated. Biophysical studies demonstrated that the acridine derivative ligands C5NH2 and C8NH2 not only effectively stabilized the G4 structure but also exhibited moderate affinity. They were capable of altering the G4 topology and exhibited enhanced fluorescence emission in the presence of this quadruplex. Additionally, these ligands increased the number of G4s observed in cellular studies. Through various biophysical studies, the target sequence was shown to form a G4 structure, even with an extra nucleotide tail added to its flanking region. Cellular studies confirmed the co-localization between the target sequence and the developed probe.
Collapse
Affiliation(s)
- Pedro Lourenço
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - André Miranda
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Maria Paula Cabral Campello
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal
| | - António Paulo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal
| | - Jean Louis-Mergny
- Laboratoire d'Optique et Biosciences, École Polytechnique, Institut Polytechnique de Paris, CNRS, INSERM, 91120 Palaiseau, France
| | - Carla Cruz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal; Departamento de Química da Faculdade de Ciências da Universidade da Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal.
| |
Collapse
|
4
|
Biersack B, Höpfner M. Emerging role of MYB transcription factors in cancer drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:15. [PMID: 38835346 PMCID: PMC11149108 DOI: 10.20517/cdr.2023.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/19/2024] [Accepted: 04/04/2024] [Indexed: 06/06/2024]
Abstract
Decades ago, the viral myeloblastosis oncogene v-myb was identified as a gene responsible for the development of avian leukemia. However, the relevance of MYB proteins for human cancer diseases, in particular for solid tumors, remained basically unrecognized for a very long time. The human family of MYB transcription factors comprises MYB (c-MYB), MYBL2 (b-MYB), and MYBL1 (a-MYB), which are overexpressed in several cancers and are associated with cancer progression and resistance to anticancer drugs. In addition to overexpression, the presence of activated MYB-fusion proteins as tumor drivers was described in certain cancers. The identification of anticancer drug resistance mediated by MYB proteins and their underlying mechanisms are of great importance in understanding failures of current therapies and establishing new and more efficient therapy regimens. In addition, new drug candidates targeting MYB transcription factor activity and signaling have emerged as a promising class of potential anticancer therapeutics that could tackle MYB-dependent drug-resistant cancers in a more selective way. This review describes the correlation of MYB transcription factors with the formation and persistence of cancer resistance to various approved and investigational anticancer drugs.
Collapse
Affiliation(s)
- Bernhard Biersack
- Organic Chemistry Laboratory, University of Bayreuth, Bayreuth 95440, Germany
| | - Michael Höpfner
- Institute for Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin 10117, Germany
| |
Collapse
|
5
|
Clarke ML, Gabrielsen OS, Frampton J. MYB as a Critical Transcription Factor and Potential Therapeutic Target in AML. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:341-358. [PMID: 39017851 DOI: 10.1007/978-3-031-62731-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Myb was identified over four decades ago as the transforming component of acute leukemia viruses in chickens. Since then it has become increasingly apparent that dysregulated MYB activity characterizes many blood cancers, including acute myeloid leukemia, and that it represents the most "addictive" oncoprotein in many, if not all, such diseases. As a consequence of this tumor-specific dependency for MYB, it has become a major focus of efforts to develop specific antileukemia drugs. Much attention is being given to ways to interrupt the interaction between MYB and cooperating factors, in particular EP300/KAT3B and CBP/KAT3A. Aside from candidates identified through screening of small molecules, the most exciting prospect for novel drugs seems to be the design of peptide mimetics that interfere directly at the interface between MYB and its cofactors. Such peptides combine a high degree of target specificity with good efficacy including minimal effects on normal hematopoietic cells.
Collapse
Affiliation(s)
- Mary Louise Clarke
- Department of Biomedical Sciences, College of Medicine & Health, University of Birmingham, Edgbaston, Birmingham, UK
- Department of Cancer & Genomic Sciences, College of Medicine & Health, University of Birmingham, Edgbaston, Birmingham, UK
| | | | - Jon Frampton
- Department of Cancer & Genomic Sciences, College of Medicine & Health, University of Birmingham, Edgbaston, Birmingham, UK.
| |
Collapse
|
6
|
Cicirò Y, Ragusa D, Nevado PT, Lattanzio R, Sala G, DesRochers T, Millard M, Andersson MK, Stenman G, Sala A. The mitotic checkpoint kinase BUB1 is a direct and actionable target of MYB in adenoid cystic carcinoma. FEBS Lett 2024; 598:252-265. [PMID: 38112379 DOI: 10.1002/1873-3468.14786] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/16/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023]
Abstract
Adenoid cystic carcinoma (ACC) is a head and neck cancer that frequently originates in salivary glands, but can also strike other exocrine glands such as the breast. A key molecular alteration found in the majority of ACC cases is MYB gene rearrangements, leading to activation of the oncogenic transcription factor MYB. In this study, we used immortalised breast epithelial cells and an inducible MYB transgene as a model of ACC. Molecular profiling confirmed that MYB-driven gene expression causes a transition into an ACC-like state. Using this new cell model, we identified BUB1 as a targetable kinase directly controlled by MYB, whose pharmacological inhibition caused MYB-dependent synthetic lethality, growth arrest and apoptosis of patient-derived cells and organoids.
Collapse
Affiliation(s)
- Ylenia Cicirò
- Department of Life Sciences, Centre for Inflammation Research and Molecular Medicine (CIRTM), Brunel University London, Uxbridge, UK
| | - Denise Ragusa
- Department of Life Sciences, Centre for Genomic Engineering and Maintenance (CenGEM), Brunel University London, Uxbridge, UK
| | - Paloma Tejera Nevado
- Sahlgrenska Center for Cancer Research Department of Pathology, University of Gothenburg, Sweden
| | - Rossano Lattanzio
- Center for Advanced Studies and Technology (CAST); Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, Italy
| | - Gianluca Sala
- Center for Advanced Studies and Technology (CAST); Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, Italy
| | | | | | - Mattias K Andersson
- Sahlgrenska Center for Cancer Research Department of Pathology, University of Gothenburg, Sweden
| | - Göran Stenman
- Sahlgrenska Center for Cancer Research Department of Pathology, University of Gothenburg, Sweden
| | - Arturo Sala
- Department of Life Sciences, Centre for Inflammation Research and Molecular Medicine (CIRTM), Brunel University London, Uxbridge, UK
| |
Collapse
|
7
|
da Silva FJ, Carvalho de Azevedo J, Ralph ACL, Pinheiro JDJV, Freitas VM, Calcagno DQ. Salivary glands adenoid cystic carcinoma: a molecular profile update and potential implications. Front Oncol 2023; 13:1191218. [PMID: 37476370 PMCID: PMC10354556 DOI: 10.3389/fonc.2023.1191218] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/01/2023] [Indexed: 07/22/2023] Open
Abstract
Adenoid cystic carcinoma (ACC) is an aggressive tumor with a high propensity for distant metastasis and perineural invasion. This tumor is more commonly found in regions of the head and neck, mainly the salivary glands. In general, the primary treatment modality for ACC is surgical resection and, in some cases, postoperative radiotherapy. However, no effective systemic treatment is available for patients with advanced disease. Furthermore, this tumor type is characterized by recurrent molecular alterations, especially rearrangements involving the MYB, MYBL1, and NFIB genes. In addition, they also reported copy number alterations (CNAs) that impact genes. One of them is C-KIT, mutations that affect signaling pathways such as NOTCH, PI3KCA, and PTEN, as well as alterations in chromatin remodeling genes. The identification of new molecular targets enables the development of specific therapies. Despite ongoing investigations into immunotherapy, tyrosine kinase inhibitors, and anti-angiogenics, no systemic therapy is approved by the FDA for ACC. In this review, we report the genetic and cytogenetic findings on head and neck ACC, highlighting possible targets for therapeutic interventions.
Collapse
Affiliation(s)
- Fernanda Jardim da Silva
- Núcleo de Pesquisas em Oncologia, Programa de Pós-Graduação em Oncologia e Ciências Médicas, Universidade Federal do Pará, Belém, Brazil
| | - Juscelino Carvalho de Azevedo
- Núcleo de Pesquisas em Oncologia, Programa de Pós-Graduação em Oncologia e Ciências Médicas, Universidade Federal do Pará, Belém, Brazil
- Hospital Universitário João de Barros Barreto, Programa de Residência Multiprofissional em Saúde (Oncologia), Universidade Federal do Pará, Belém, Brazil
| | - Ana Carolina Lima Ralph
- Faculdade de Farmácia, Faculdade Estácio, Carapicuíba, Brazil
- Instituto de Ciências da Saúde, Programa de Pós-Graduação em Odontologia, Universidade Federal do Pará, Belém, Brazil
| | - João de Jesus Viana Pinheiro
- Laboratório de Microambiente Tumoral, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Vanessa Morais Freitas
- Instituto de Ciências da Saúde, Programa de Pós-Graduação em Odontologia, Universidade Federal do Pará, Belém, Brazil
| | - Danielle Queiroz Calcagno
- Núcleo de Pesquisas em Oncologia, Programa de Pós-Graduação em Oncologia e Ciências Médicas, Universidade Federal do Pará, Belém, Brazil
- Hospital Universitário João de Barros Barreto, Programa de Residência Multiprofissional em Saúde (Oncologia), Universidade Federal do Pará, Belém, Brazil
- Laboratório de Microambiente Tumoral, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Liu S, Zhou J, Ye X, Chen D, Chen W, Lin Y, Chen Z, Chen B, Shang J. A novel lncRNA SNHG29 regulates EP300- related histone acetylation modification and inhibits FLT3-ITD AML development. Leukemia 2023; 37:1421-1434. [PMID: 37157016 DOI: 10.1038/s41375-023-01923-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
Internal tandem duplication (ITD) mutations within the FMS-like tyrosine kinase-3 (FLT3) occur in up to 25% of acute myeloid leukemia (AML) patients and indicate a very poor prognosis. The role of long noncoding RNAs (lncRNAs) in FLT3-ITD AML progression remains unexplored. We identified a novel lncRNA, SNHG29, whose expression is specifically regulated by the FLT3-STAT5 signaling pathway and is abnormally down-regulated in FLT3-ITD AML cell lines. SNHG29 functions as a tumor suppressor, significantly inhibiting FLT3-ITD AML cell proliferation and decreasing sensitivity to cytarabine in vitro and in vivo models. Mechanistically, we demonstrated that SNHG29's molecular mechanism is EP300-binding dependent and identified the EP300-interacting region of SNHG29. SNHG29 modulates genome-wide EP300 genomic binding, affecting EP300-mediated histone modification and consequently influencing the expression of varies downstream AML-associated genes. Our study uncovers a novel molecular mechanism for SNHG29 in mediating FLT3-ITD AML biological behaviors through epigenetic modification, suggesting that SNHG29 could be a potential therapeutic target for FLT3-ITD AML.
Collapse
Affiliation(s)
- Shan Liu
- Department of Hematology-Oncology, Fujian Children's Hospital; College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Jie Zhou
- Shengli Clinical Medical College of Fujian Medical University; Department of Hematology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Xiangling Ye
- Shengli Clinical Medical College of Fujian Medical University; Department of Hematology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Danni Chen
- Shengli Clinical Medical College of Fujian Medical University; Department of Hematology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Weimin Chen
- Shengli Clinical Medical College of Fujian Medical University; Department of Hematology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Yaobin Lin
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Zhizhong Chen
- Shengli Clinical Medical College of Fujian Medical University; Department of Pathology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Biyun Chen
- Shengli Clinical Medical College of Fujian Medical University; Department of Hematology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Jin Shang
- Shengli Clinical Medical College of Fujian Medical University; Department of Hematology, Fujian Provincial Hospital, Fuzhou, Fujian, China.
| |
Collapse
|
9
|
Tejera Nevado P, Tešan Tomić T, Atefyekta A, Fehr A, Stenman G, Andersson MK. Synthetic oleanane triterpenoids suppress MYB oncogene activity and sensitize T-cell acute lymphoblastic leukemia cells to chemotherapy. Front Oncol 2023; 13:1126354. [PMID: 37077825 PMCID: PMC10106619 DOI: 10.3389/fonc.2023.1126354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy with poor prognosis. The MYB oncogene encodes a master transcription factor that is activated in the majority of human T-ALLs. In the present study, we have performed a large-scale screening with small-molecule drugs to find clinically useful inhibitors of MYB gene expression in T-ALL. We identified several pharmacological agents that potentially could be used to treat MYB-driven malignancies. In particular, treatment with the synthetic oleanane triterpenoids (OTs) bardoxolone methyl and omaveloxolone decreased MYB gene activity and expression of MYB downstream target genes in T-ALL cells with constitutive MYB gene activation. Notably, treatment with bardoxolone methyl and omaveloxolone led to a dose-dependent reduction in cell viability and induction of apoptosis at low nanomolar concentrations. In contrast, normal bone marrow-derived cells were unaffected at these concentrations. Bardoxolone methyl and omaveloxolone treatment downregulated the expression of DNA repair genes and sensitized T-ALL cells to doxorubicin, a drug that is part of the standard therapy of T-ALL. OT treatment may thus potentiate DNA-damaging chemotherapy through attenuation of DNA repair. Taken together, our results indicate that synthetic OTs may be useful in the treatment of T-ALL and potentially also in other MYB-driven malignancies.
Collapse
|
10
|
Duan X, Hu T, Cai H, Lin L, Zeng L, Wang H, Cao L, Li X. Radiotherapy for primary thyroid adenoid cystic carcinoma. Open Life Sci 2023; 18:20220547. [PMID: 36910470 PMCID: PMC9993328 DOI: 10.1515/biol-2022-0547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 03/09/2023] Open
Abstract
Primary thyroid adenoid cystic carcinoma (PTACC) is an extremely rare type of mucin-secreting adenocarcinoma. Currently, it is difficult to diagnose, and it lacks standard treatment protocols. We report the case of a 53-year-old female patient with PTACC who underwent additional intensity-modulated radiotherapy 1 month after surgical treatment with an uneventful course. No invasion or distant metastasis was detected at the 7-month follow-up after radiotherapy, and the prognosis was favorable. In this case, herein, we have summarized the diagnostic features of the disease and proposed that postoperative adjuvant radiotherapy can significantly improve the patient's prognosis. Finally, we further confirmed the important role of radiotherapy in PTACC by reviewing relevant literature, which may provide clinicians with valuable treatment experience.
Collapse
Affiliation(s)
- Xiaoyu Duan
- The First Clinical Medical College, Gansu University of Chinese Medicine, Number 35 Ding Xing East Road, Lanzhou, 730000 China.,Department of Radiotherapy, Gansu Provincial Hospital, Number 204 Dong Gang West Road, Lanzhou, 730000 China
| | - Tingting Hu
- Department of Radiotherapy, Gansu Provincial Hospital, Number 204 Dong Gang West Road, Lanzhou, 730000 China
| | - Hongyi Cai
- Department of Radiotherapy, Gansu Provincial Hospital, Number 204 Dong Gang West Road, Lanzhou, 730000 China
| | - Lili Lin
- The First Clinical Medical College, Gansu University of Chinese Medicine, Number 35 Ding Xing East Road, Lanzhou, 730000 China.,Department of Radiotherapy, Gansu Provincial Hospital, Number 204 Dong Gang West Road, Lanzhou, 730000 China
| | - Lu Zeng
- The First Clinical Medical College, Gansu University of Chinese Medicine, Number 35 Ding Xing East Road, Lanzhou, 730000 China.,Department of Radiotherapy, Gansu Provincial Hospital, Number 204 Dong Gang West Road, Lanzhou, 730000 China
| | - Huixia Wang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Number 35 Ding Xing East Road, Lanzhou, 730000 China.,Department of Radiotherapy, Gansu Provincial Hospital, Number 204 Dong Gang West Road, Lanzhou, 730000 China
| | - Lei Cao
- The First Clinical Medical College, Gansu University of Chinese Medicine, Number 35 Ding Xing East Road, Lanzhou, 730000 China.,Department of Radiotherapy, Gansu Provincial Hospital, Number 204 Dong Gang West Road, Lanzhou, 730000 China
| | - Xuxia Li
- The First Clinical Medical College, Gansu University of Chinese Medicine, Number 35 Ding Xing East Road, Lanzhou, 730000 China.,Department of Radiotherapy, Gansu Provincial Hospital, Number 204 Dong Gang West Road, Lanzhou, 730000 China
| |
Collapse
|
11
|
Wagner VP, Bingle CD, Bingle L. MYB-NFIB fusion transcript in Adenoid Cystic Carcinoma: current state of knowledge and future directions. Crit Rev Oncol Hematol 2022; 176:103745. [PMID: 35738530 DOI: 10.1016/j.critrevonc.2022.103745] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/11/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022] Open
Abstract
Adenoid cystic carcinoma (ACC) is the most common type of salivary gland cancer that can also arise in other primary sites. Regardless of the site, most ACC cases carry a recurrent chromosomal translocation - t(6;9)(q22-23;p23-24) - involving the MYB oncogene and the NFIB transcription factor. Generally, a long sequence of MYB is fused to the terminal exons of NFIB, yet the break can occur in different exons for both genes, resulting in multiple chimeric variants. The fusion status can be determined by a number of methods, each of them with particular advantages. In vitro and in vivo studies have been conducted to understand the biological consequences of MYB-NFIB translocation, and such findings could contribute to improving the current inefficient therapeutic options for disseminated ACC. This review provides a discussion on relevant evidence in the context of ACC MYB-NFIB translocations to determine the current state of knowledge and discuss future directions.
Collapse
Affiliation(s)
- Vivian P Wagner
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, Department of Clinical Dentistry, University of Sheffield, Sheffield, UK.
| | - Colin D Bingle
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Lynne Bingle
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, Department of Clinical Dentistry, University of Sheffield, Sheffield, UK
| |
Collapse
|
12
|
Biyanee A, Yusenko MV, Klempnauer KH. Src-Family Protein Kinase Inhibitors Suppress MYB Activity in a p300-Dependent Manner. Cells 2022; 11:1162. [PMID: 35406726 PMCID: PMC8997952 DOI: 10.3390/cells11071162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/05/2023] Open
Abstract
Recent studies have disclosed transcription factor MYB as a potential drug target for malignancies that are dependent on deregulated MYB function, including acute myeloid leukemia (AML) and adenoid cystic carcinoma (ACC). Although transcription factors are often regarded as undruggable, successful targeting of MYB by low-molecular-weight compounds has recently been demonstrated. In an attempt to repurpose known drugs as novel MYB-inhibitory agents, we have screened libraries of approved drugs and drug-like compounds for molecules with MYB-inhibitory potential. Here, we present initial evidence for the MYB-inhibitory activity of the protein kinase inhibitors bosutinib, PD180970 and PD161570, that we identified in a recent screen. We show that these compounds interfere with the activity of the MYB transactivation domain, apparently by disturbing the ability of MYB to cooperate with the coactivator p300. We show that treatment of the AML cell line HL60 with these compounds triggers the up-regulation of the myeloid differentiation marker CD11b and induces cell death. Importantly, we show that these effects are significantly dampened by forced expression of an activated version of MYB, confirming that the ability to suppress MYB function is a relevant activity of these compounds. Overall, our work identifies several protein kinase inhibitors as novel MYB-inhibitory agents and suggests that the inhibition of MYB function may play a role in their pharmacological impact on leukemic cells.
Collapse
Affiliation(s)
| | | | - Karl-Heinz Klempnauer
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany; (A.B.); (M.V.Y.)
| |
Collapse
|
13
|
A Contemporary Review of Molecular Therapeutic Targets for Adenoid Cystic Carcinoma. Cancers (Basel) 2022; 14:cancers14040992. [PMID: 35205740 PMCID: PMC8869877 DOI: 10.3390/cancers14040992] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 01/17/2023] Open
Abstract
Simple Summary Adenoid cystic carcinoma (ACC) is a salivary malignancy known for slow growth, a propensity for perineural spread, local recurrence following resection, and indolent distant metastases. Current treatments in recurrent/metastatic (R/M) ACC are generally of limited impact and often palliative in nature. Herein, we review the preclinical and clinical literature on molecular alterations in ACC with the potential for targeted therapeutics. We further review other molecular targets of ongoing investigation and active clinical trials for patients with ACC, offering a contemporary summary and insight into future therapeutic strategies. Abstract ACC is a rare malignant tumor of the salivary glands. In this contemporary review, we explore advances in identification of targetable alterations and clinical trials testing these druggable targets. A search of relevant articles and abstracts from national meetings and three databases, including PubMed, Medline, and Web of Science, was performed. Following keyword search analysis and double peer review of abstracts to ensure appropriate fit, a total of 55 manuscripts were included in this review detailing advances in molecular targets for ACC. The most researched pathway associated with ACC is the MYB–NFIB translocation, found to lead to dysregulation of critical cellular pathways and thought to be a fundamental driver in a subset of ACC disease pathogenesis. Other notable molecular targets that have been studied include the cKIT receptor, the EGFR pathway, and NOTCH1, all with limited efficacy in clinical trials. The ongoing investigation of molecular abnormalities underpinning ACC that may be responsible for carcinogenesis is critical to identifying and developing novel targeted therapies.
Collapse
|
14
|
Xing S, Nong F, Wang Y, Huang D, Qin J, Chen YF, He DH, Wu PE, Huang H, Zhan R, Xu H, Liu YQ. Brusatol has therapeutic efficacy in non-small cell lung cancer by targeting Skp1 to inhibit cancer growth and metastasis. Pharmacol Res 2022; 176:106059. [PMID: 34998973 DOI: 10.1016/j.phrs.2022.106059] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 11/23/2022]
Abstract
Skp1-Cul1-F-box protein (SCF) ubiquitin E3 ligases play important roles in cancer development and serve as a promising therapeutic target in cancer therapy. Brusatol (Bru), a known Nrf2 inhibitor, holds promise for treating a wide range of tumors; however, the direct targets of Bru and its anticancer mode of action remain unclear. In our study, 793 Bru-binding candidate proteins were identified by using a biotin-brusatol conjugate (Bio-Bru) followed by streptavidin-affinity pull down-based mass spectrometry. We found that Bru can directly bind to Skp1 and disrupt the interactions of Skp1 with the F-box protein Skp2, leading to the inhibition of the Skp2-SCF E3 ligase. Bru inhibited both proliferation and migration via promoting the accumulation of the substrates p27 and E-cadherin; Skp1 overexpression attenuated while Skp1 knockdown enhanced these effects of Bru in non-small cell lung cancer (NSCLC) cells. Moreover, Bru binding to Skp1 also inhibited the β-TRCP-SCF E3 ligase. In both subcutaneous and orthotopic NSCLC xenografts, Bru significantly inhibited the growth and metastasis of NSCLC through targeting SCF complex and upregulating p27 and E-cadherin protein levels. These data demonstrate that Bru is a Skp1-targeting agent that may have therapeutic potentials in lung cancer.
Collapse
Affiliation(s)
- Shangping Xing
- Research Center of Chinese Herbal Resources Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Feifei Nong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yaqin Wang
- Research Center of Chinese Herbal Resources Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Da Huang
- Research Center of Chinese Herbal Resources Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jialiang Qin
- Research Center of Chinese Herbal Resources Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yu-Fei Chen
- Research Center of Chinese Herbal Resources Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Dan-Hua He
- Research Center of Chinese Herbal Resources Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Pei-En Wu
- Research Center of Chinese Herbal Resources Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Huicai Huang
- Research Center of Chinese Herbal Resources Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resources Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Hui Xu
- Research Center of Chinese Herbal Resources Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yong-Qiang Liu
- Research Center of Chinese Herbal Resources Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
15
|
Transcription factor c-Myb: novel prognostic factor in osteosarcoma. Clin Exp Metastasis 2022; 39:375-390. [PMID: 34994868 DOI: 10.1007/s10585-021-10145-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/28/2021] [Indexed: 12/21/2022]
Abstract
The transcription factor c-Myb is an oncoprotein promoting cell proliferation and survival when aberrantly activated/expressed, thus contributing to malignant transformation. Overexpression of c-Myb has been found in leukemias, breast, colon and adenoid cystic carcinoma. Recent studies revealed its expression also in osteosarcoma cell lines and suggested its functional importance during bone development. However, the relevance of c-Myb in control of osteosarcoma progression remains unknown. A retrospective clinical study was carried out to assess a relationship between c-Myb expression in archival osteosarcoma tissues and prognosis in a cohort of high-grade osteosarcoma patients. In addition, MYB was depleted in metastatic osteosarcoma cell lines SAOS-2 LM5 and 143B and their growth, chemosensitivity, migration and metastatic activity were determined. Immunohistochemical analysis revealed that high c-Myb expression was significantly associated with poor overall survival in the cohort and metastatic progression in young patients. Increased level of c-Myb was detected in metastatic osteosarcoma cell lines and its depletion suppressed their growth, colony-forming capacity, migration and chemoresistance in vitro in a cell line-dependent manner. MYB knock-out resulted in reduced metastatic activity of both SAOS-2 LM5 and 143B cell lines in immunodeficient mice. Transcriptomic analysis revealed the c-Myb-driven functional programs enriched for genes involved in the regulation of cell growth, stress response, cell adhesion and cell differentiation/morphogenesis. Wnt signaling pathway was identified as c-Myb target in osteosarcoma cells. Taken together, we identified c-Myb as a negative prognostic factor in osteosarcoma and showed its involvement in the regulation of osteosarcoma cell growth, chemosensitivity, migration and metastatic activity.
Collapse
|
16
|
Yusenko MV, Klempnauer KH. Characterization of the MYB-inhibitory potential of the Pan-HDAC inhibitor LAQ824. BBA ADVANCES 2022; 2:100034. [PMID: 37082582 PMCID: PMC10074929 DOI: 10.1016/j.bbadva.2021.100034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/23/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
A large body of work has shown that MYB acts as a master transcription regulator in hematopoietic cells and has pinpointed MYB as a potential drug target for acute myeloid leukemia (AML). Here, we have examined the MYB-inhibitory potential of the HDAC inhibitor LAQ824, which was identified in a screen for novel MYB inhibitors. We show that nanomolar concentrations of LAQ824 and the related HDAC inhibitors vorinostat and panobinostat interfere with MYB function in two ways, by inducing its degradation and inhibiting its activity. Reporter assays show that the inhibition of MYB activity by LAQ824 involves the MYB transactivation domain and the cooperation of MYB with co-activator p300, a key MYB interaction partner and driver of MYB activity. In AML cells, LAQ824-induced degradation of MYB is accompanied by expression of myeloid differentiation markers and apoptotic and necrotic cell death. The ability of LAQ824 to inhibit MYB activity is supported by the observation that down-regulation of direct MYB target genes MYC and GFI1 occurs without apparent decrease of MYB expression already after 2 h of treatment with LAQ824. Furthermore, ectopic expression of an activated version of MYB In HL60 cells counteracts the induction of myeloid differentiation by LAQ824. Overall, our data identify LAQ824 and related HDAC inhibitors as potent MYB-inhibitory agents that exert dual effects on MYB expression and activity in AML cells.
Collapse
|
17
|
Yusenko MV, Biyanee A, Frank D, Köhler LHF, Andersson MK, Khandanpour C, Schobert R, Stenman G, Biersack B, Klempnauer KH. Bcr-TMP, a Novel Nanomolar-Active Compound That Exhibits Both MYB- and Microtubule-Inhibitory Activity. Cancers (Basel) 2021; 14:cancers14010043. [PMID: 35008207 PMCID: PMC8750090 DOI: 10.3390/cancers14010043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022] Open
Abstract
Simple Summary Recent work has identified the transcription regulator MYB as an interesting therapeutic target for the treatment of certain leukemias and other cancers that are dependent on deregulated MYB activity, such as acute myeloid leukemia (AML) and adenoid cystic carcinoma (ACC). Here we report the identification and characterization of 2-amino-4-(3,4,5-trimethoxyphenyl)-4H-naphtho[1,2-b]pyran-3-carbonitrile (Bcr-TMP), a novel highly active MYB inhibitory compound. We show that nanomolar concentrations of Bcr-TMP are sufficient to down-regulate the expression of MYB target genes and induce both cell-death and differentiation in AML cell lines. Importantly, Bcr-TMP also and exerts stronger anti-proliferative effects on MYB-addicted primary AML cells and patient-derived ACC cells than on their non-oncogenic counterparts. Preliminary work shows that Bcr-TMP acts through p300, a protein interacting with MYB and stimulating its activity. Interestingly, Bcr-TMP has an additional activity as an anti-microtubule agent. Overall, Bcr-TMP is an interesting compound that warrants further research to understand its mechanism of action and its therapeutic potential for MYB-dependent malignancies. Abstract Studies of the role of MYB in human malignancies have highlighted MYB as a potential drug target for acute myeloid leukemia (AML) and adenoid cystic carcinoma (ACC). Here, we present the initial characterization of 2-amino-4-(3,4,5-trimethoxyphenyl)-4H-naphtho[1,2-b]pyran-3-carbonitrile (Bcr-TMP), a nanomolar-active MYB-inhibitory compound identified in a screen for novel MYB inhibitors. Bcr-TMP affects MYB function in a dual manner by inducing its degradation and suppressing its transactivation potential by disrupting its cooperation with co-activator p300. Bcr-TMP also interferes with the p300-dependent stimulation of C/EBPβ, a transcription factor co-operating with MYB in myeloid cells, indicating that Bcr-TMP is a p300-inhibitor. Bcr-TMP reduces the viability of AML cell lines at nanomolar concentrations and induces cell-death and expression of myeloid differentiation markers. It also down-regulates the expression of MYB target genes and exerts stronger anti-proliferative effects on MYB-addicted primary murine AML cells and patient-derived ACC cells than on their non-oncogenic counterparts. Surprisingly, we observed that Bcr-TMP also has microtubule-disrupting activity, pointing to a possible link between MYB-activity and microtubule stability. Overall, Bcr-TMP is a highly potent multifunctional MYB-inhibitory agent that warrants further investigation of its therapeutic potential and mechanism(s) of action.
Collapse
Affiliation(s)
- Maria V. Yusenko
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, 48149 Munster, Germany; (M.V.Y.); (A.B.)
| | - Abhiruchi Biyanee
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, 48149 Munster, Germany; (M.V.Y.); (A.B.)
| | - Daria Frank
- Department of Medicine A, Hematology and Oncology, University Hospital, Westfälische-Wilhelms-Universität, 48149 Munster, Germany; (D.F.); (C.K.)
| | - Leonhard H. F. Köhler
- Organic Chemistry Laboratory, Universität Bayreuth, 95440 Bayreuth, Germany; (L.H.F.K.); (R.S.); (B.B.)
| | - Mattias K. Andersson
- Sahlgrenska Center for Cancer Research, Department of Pathology, University of Gothenburg, 41345 Gothenburg, Sweden; (M.K.A.); (G.S.)
| | - Cyrus Khandanpour
- Department of Medicine A, Hematology and Oncology, University Hospital, Westfälische-Wilhelms-Universität, 48149 Munster, Germany; (D.F.); (C.K.)
| | - Rainer Schobert
- Organic Chemistry Laboratory, Universität Bayreuth, 95440 Bayreuth, Germany; (L.H.F.K.); (R.S.); (B.B.)
| | - Göran Stenman
- Sahlgrenska Center for Cancer Research, Department of Pathology, University of Gothenburg, 41345 Gothenburg, Sweden; (M.K.A.); (G.S.)
| | - Bernhard Biersack
- Organic Chemistry Laboratory, Universität Bayreuth, 95440 Bayreuth, Germany; (L.H.F.K.); (R.S.); (B.B.)
| | - Karl-Heinz Klempnauer
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, 48149 Munster, Germany; (M.V.Y.); (A.B.)
- Correspondence: ; Tel.: +49-251-8333203; Fax: +49-251-8333206
| |
Collapse
|