1
|
Zhao X, Cheng X, Liu Z, Chen W, Hao W, Ma S, Zhang J, Huang W, Yao D. Design, synthesis and biological evaluation of plant-derived miliusol derivatives achieve TNBC profound regression in vivo. Eur J Med Chem 2024; 279:116882. [PMID: 39305634 DOI: 10.1016/j.ejmech.2024.116882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 10/28/2024]
Abstract
Triple-negative breast cancer has become a major problem in clinical treatment due to its high heterogeneity, and Plant-derived drug discovery has been the focus of attention for novel anti-tumor therapeutics. In this study, Miliusol, a natural product isolated from the rarely reported plant Miliusa tenuistipitata, was identified as the lead compound, and 25 miliusol derivatives were designed and synthesized under antiproliferative activity guidance. The results revealed that ZMF-24 was demonstrated to have potent anti-TNBC proliferation with IC50 values of 0.22 μM and 0.44 μM in BT-549 cells and MDA-MB-231 cells respectively with low cytotoxicity to MCF10A cells, and could significantly downregulate proliferation and migration markers. Through RNAseq analysis, molecular docking and CETSA experiment, we found that ZMF-24 could inhibit Eukaryotic translation initiation factor 3 subunit D (EIF3D) that further disrupted the energy supply of TNBC by inhibiting glycolysis, induced profound TNBC apoptosis by stimulating persistent ER stress. Importantly, ZMF-24 exhibited remarkable anti-proliferation and anti-metastasis potential in nude mice xenograft TNBC model without obvious toxicity. Collectively, the findings demonstrate ZMF-24 has significant potential as a potent chemotherapy agent against triple-negative breast cancer.
Collapse
Affiliation(s)
- Xi Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Xiaoling Cheng
- School of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Zhiying Liu
- School of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Weiji Chen
- School of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China; School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Wenli Hao
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Shuangshuang Ma
- School of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Jin Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Dahong Yao
- School of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China.
| |
Collapse
|
2
|
Dong Z, Ojha A, Barlow L, Luo L, Liu JY, Zhang JT. The eIF3a translational control axis in the Wnt/β-catenin signaling pathway and colon tumorigenesis. Cancer Lett 2024; 605:217303. [PMID: 39413959 DOI: 10.1016/j.canlet.2024.217303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
Translational initiation in protein synthesis is an important regulatory step in gene expression and its dysregulation may result in diseases such as cancer. Translational control by eIF4E/4E-BP has been well studied and contributes to mTOR signaling in various biological processes. Here, we report a novel translational control axis in the Wnt/β-catenin signaling pathway in colon tumorigenesis by eIF3a, a Yin-Yang factor in tumorigenesis and prognosis. We show that eIF3a expression is upregulated in human colon cancer tissues, pre-cancerous adenoma polyps, and associates with β-catenin level and APC mutation in human samples, and that eIF3a overexpression transforms intestinal epithelial cells. We also show that eIF3a expression is regulated by the Wnt/β-catenin signaling pathway with an active TCF/LEF binding site in its promoter and that eIF3a knockdown inhibits APC mutation-induced spontaneous colon tumorigenesis in APCmin/+ mice. Together, we conclude that eIF3a upregulation in colon cancer is due to APC mutation and it participates in colon tumorigenesis by adding a translational control axis in the Wnt/β-catenin signaling pathway and that it can serve as a potential target for colon cancer intervention.
Collapse
Affiliation(s)
- Zizheng Dong
- Department of Cell and Cancer Biology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Anuj Ojha
- Department of Cell and Cancer Biology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Lincoln Barlow
- Department of Cell and Cancer Biology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Liyun Luo
- Department of Cell and Cancer Biology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Jing-Yuan Liu
- Department of Cell and Cancer Biology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Jian-Ting Zhang
- Department of Cell and Cancer Biology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.
| |
Collapse
|
3
|
Yu S, Si Y, Yu J, Jiang C, Cheng F, Xu M, Fan Z, Liu F, Liu C, Wang Y, Wang N, Liu C, Bi C, Sun H. SNRPB2 promotes triple-negative breast cancer progression by controlling alternative splicing of MDM4 pre-mRNA. Cancer Sci 2024. [PMID: 39329452 DOI: 10.1111/cas.16356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Alternative splicing generates cancer-specific transcripts and is now recognized as a hallmark of cancer. However, the critical oncogenic spliceosome-related proteins involved in triple-negative breast cancer (TNBC) remain elusive. Here, we explored the expression pattern of spliceosome-related proteins in TNBC, non-TNBC, and normal breast tissues from The Cancer Genome Atlas breast cancer (TCGA-BRCA) cohort, revealing higher expression of nearly half of spliceosome-related proteins in TNBC than their counterparts. Among these TNBC-specific spliceosome-related proteins, the expression of SNRPB2 was associated with poor prognosis in patients with TNBC. In TNBC cells, the knockdown of SNRPB2 strongly suppressed cell proliferation and invasion and induced cell cycle arrest. Mechanistically, transcriptome data showed that SNRPB2 knockdown inactivated E2F1 signaling, which regulated the cell cycle. We further validated the downregulation of several cell cycle genes in SNRPB2 knockdown cells. Moreover, the analysis showed that SNRPB2 knockdown triggered the alteration of many alternative splicing events, most of which were skipping of exon. In TNBC cells, it was found that SNRPB2 knockdown led to the skipping of exon 6 in MDM4 pre-mRNA, generating MDM4-S transcript and downregulating MDM4 protein expression. More importantly, downregulation of MDM4 decreased retinoblastoma 1 (Rb1) protein expression, which is a target of MDM4 and a regulator of E2F1 signaling. In summary, the current study revealed an SNRPB2/MDM4/Rb axis in promoting the progression of TNBC, providing novel insights and novel targets for combating TNBC.
Collapse
Affiliation(s)
- Shiyi Yu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| | - Yue Si
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| | - Jianzhong Yu
- Department of Internal Medicine, Haian Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nantong, China
| | - Chengyang Jiang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| | - Fei Cheng
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| | - Miao Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| | - Zhehao Fan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| | - Fangchen Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| | - Chang Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| | - Ying Wang
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Ning Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| | - Chenxu Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| | - Caili Bi
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| | - Haibo Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Tian W, Zhu L, Luo Y, Tang Y, Tan Q, Zou Y, Chen K, Deng X, Tang H, Li H, Cai M, Xie X, Ye F. Autophagy Deficiency Induced by SAT1 Potentiates Tumor Progression in Triple-Negative Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309903. [PMID: 39073262 PMCID: PMC11423137 DOI: 10.1002/advs.202309903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/18/2024] [Indexed: 07/30/2024]
Abstract
Aggressive triple-negative breast cancer (TNBC) still lacks approved targeted therapies, requiring more exploration of its underlying mechanisms. Previous studies have suggested a potential role of SAT1 (Spermidine/Spermine N1-acetyltransferase 1) in cancer, which needs to be further elucidated in breast cancer. In this study, highly expressed SAT1 in TNBC signified worse patient prognoses. And SAT1 knockdown effectively inhibited the proliferation and migration abilities of TNBC cells in vitro and in vivo. In terms of mechanism, the transcription factor JUN enhanced SAT1 transcriptional activity by binding to its promoter region. Then, SAT1 protein in the cytoplasm engaged in directly binding with YBX1 for sustaining YBX1 protein stability via deubiquitylation mediated by the E3 ligase HERC5. Further, SAT1 was found to suppress autophagy remarkably via stabilization of mTOR mRNA with the accumulation of YBX1-mediated methyl-5-cytosine (m5C) modification. These findings proved that SAT1 drives TNBC progression through the SAT1/YBX1/mTOR axis, which may provide a potential candidate for targeted therapy in advanced TNBC.
Collapse
Affiliation(s)
- Wenwen Tian
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, P. R. China
| | - Lewei Zhu
- The First People's Hospital of Foshan, Foshan, 528000, P. R. China
| | - Yongzhou Luo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yuhui Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Qingjian Tan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yutian Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Kun Chen
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P. R. China
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Hongsheng Li
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, P. R. China
| | - Manbo Cai
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P. R. China
| | - Xiaoming Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Feng Ye
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| |
Collapse
|
5
|
Li SY, Zhang N, Zhang H, Wang N, Du YY, Li HN, Huang CS, Li XR. Deciphering the TCF19/miR-199a-5p/SP1/LOXL2 pathway: Implications for breast cancer metastasis and epithelial-mesenchymal transition. Cancer Lett 2024; 597:216995. [PMID: 38851313 DOI: 10.1016/j.canlet.2024.216995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/11/2024] [Accepted: 05/22/2024] [Indexed: 06/10/2024]
Abstract
Globally, breast cancer (BC) is the predominant malignancy with a significant death rate due to metastasis. The epithelial-mesenchymal transition (EMT) is a fundamental initiator for metastatic progression. Through advanced computational strategies, TCF19 was identified as a critical EMT-associated gene with diagnostic and prognostic significance in BC, based on a novel EMT score. Molecular details and the pro-EMT impact of the TCF19/miR-199a-5p/SP1/LOXL2 axis were explored in BC cell lines through in vitro validations, and the oncogenic and metastatic potential of TCF19 and LOXL2 were investigated using subcutaneous and tail-vein models. Additionally, BC-specific enrichment of TCF19 and LOXL2 was measured using a distribution landscape driven by diverse genomic analysis techniques. Molecular pathways revealed that TCF19-induced LOXL2 amplification facilitated migratory, invasive, and EMT activities of BC cells in vitro, and promoted the growth and metastatic establishment of xenografts in vivo. TCF19 decreases the expression of miR-199a-5p and alters the nuclear dynamics of SP1, modulating SP1's affinity for the LOXL2 promoter, leading to increased LOXL2 expression and more malignant characteristics in BC cells. These findings unveil a novel EMT-inducing pathway, the TCF19/miR-199a-5P/SP1/LOXL2 axis, highlighting the pivotal role of TCF19 and suggesting potential for novel therapeutic approaches for more focused BC interventions.
Collapse
Affiliation(s)
- Shu-Yu Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - Ning Wang
- Huzhou Central Hospital, Affiliated Hospital of Zhejiang University, Huzhou, PR China
| | - Ya-Ying Du
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Han-Ning Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Chen-Shen Huang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, PR China.
| | - Xing-Rui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
6
|
Yang ZY, Zhao C, Liu SL, Pan LJ, Zhu YD, Zhao JW, Wang HK, Ye YY, Qiang J, Shi LQ, Mei JW, Xie Y, Gong W, Shu YJ, Dong P, Xiang SS. NONO promotes gallbladder cancer cell proliferation by enhancing oncogenic RNA splicing of DLG1 through interaction with IGF2BP3/RBM14. Cancer Lett 2024; 587:216703. [PMID: 38341127 DOI: 10.1016/j.canlet.2024.216703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Gallbladder cancer (GBC) is a highly malignant and rapidly progressing tumor of the human biliary system, and there is an urgent need to develop new therapeutic targets and modalities. Non-POU domain-containing octamer-binding protein (NONO) is an RNA-binding protein involved in the regulation of transcription, mRNA splicing, and DNA repair. NONO expression is elevated in multiple tumors and can act as an oncogene to promote tumor progression. Here, we found that NONO was highly expressed in GBC and promoted tumor cells growth. The dysregulation of RNA splicing is a molecular feature of almost all tumor types. Accordingly, mRNA-seq and RIP-seq analysis showed that NONO promoted exon6 skipping in DLG1, forming two isomers (DLG1-FL and DLG1-S). Furthermore, lower Percent-Spliced-In (PSI) values of DLG1 were detected in tumor tissue relative to the paraneoplastic tissue, and were associated with poor patient prognosis. Moreover, DLG1-S and DLG1-FL act as tumor promoters and tumor suppressors, respectively, by regulating the YAP1/JUN pathway. N6-methyladenosine (m6A) is the most common and abundant RNA modification involved in alternative splicing processes. We identified an m6A reader, IGF2BP3, which synergizes with NONO to promote exon6 skipping in DLG1 in an m6A-dependent manner. Furthermore, IP/MS results showed that RBM14 was bound to NONO and interfered with NONO-mediated exon6 skipping of DLG1. In addition, IGF2BP3 disrupted the binding of RBM14 to NONO. Overall, our data elucidate the molecular mechanism by which NONO promotes DLG1 exon skipping, providing a basis for new therapeutic targets in GBC treatment.
Collapse
Affiliation(s)
- Zi-Yi Yang
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Cheng Zhao
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Shi-Lei Liu
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Li-Jia Pan
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Yi-di Zhu
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Jing-Wei Zhao
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Hua-Kai Wang
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Yuan-Yuan Ye
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Jing Qiang
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Liu-Qing Shi
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Jia-Wei Mei
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Yang Xie
- Department of Gastroenterology, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Wei Gong
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Yi-Jun Shu
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Ping Dong
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Shan-Shan Xiang
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
7
|
Zhao H, Feng K, Lei J, Shu Y, Bo L, Liu Y, Wang L, Liu W, Ning S, Wang L. Identification of somatic mutation-driven enhancers and their clinical utility in breast cancer. iScience 2024; 27:108780. [PMID: 38303701 PMCID: PMC10831879 DOI: 10.1016/j.isci.2024.108780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/04/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
Somatic mutations contribute to cancer development by altering the activity of enhancers. In the study, a total of 135 mutation-driven enhancers, which displayed significant chromatin accessibility changes, were identified as candidate risk factors for breast cancer (BRCA). Furthermore, we identified four mutation-driven enhancers as independent prognostic factors for BRCA subtypes. In Her2 subtype, enhancer G > C mutation was associated with poorer prognosis through influencing its potential target genes FBXW9, TRIR, and WDR83. We identified aminoglutethimide and quinpirole as candidate drugs targeting the mutated enhancer. In normal subtype, enhancer G > A mutation was associated with poorer prognosis through influencing its target genes ALOX15B, LINC00324, and MPDU1. We identified eight candidate drugs such as erastin, colforsin, and STOCK1N-35874 targeting the mutated enhancer. Our findings suggest that somatic mutations contribute to breast cancer subtype progression by altering enhancer activity, which could be potential candidates for cancer therapy.
Collapse
Affiliation(s)
- Hongying Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Ke Feng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Junjie Lei
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaopeng Shu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Lin Bo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Ying Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Lixia Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Wangyang Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Li Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
8
|
Tao Y, Zhang Q, Wang H, Yang X, Mu H. Alternative splicing and related RNA binding proteins in human health and disease. Signal Transduct Target Ther 2024; 9:26. [PMID: 38302461 PMCID: PMC10835012 DOI: 10.1038/s41392-024-01734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
Alternative splicing (AS) serves as a pivotal mechanism in transcriptional regulation, engendering transcript diversity, and modifications in protein structure and functionality. Across varying tissues, developmental stages, or under specific conditions, AS gives rise to distinct splice isoforms. This implies that these isoforms possess unique temporal and spatial roles, thereby associating AS with standard biological activities and diseases. Among these, AS-related RNA-binding proteins (RBPs) play an instrumental role in regulating alternative splicing events. Under physiological conditions, the diversity of proteins mediated by AS influences the structure, function, interaction, and localization of proteins, thereby participating in the differentiation and development of an array of tissues and organs. Under pathological conditions, alterations in AS are linked with various diseases, particularly cancer. These changes can lead to modifications in gene splicing patterns, culminating in changes or loss of protein functionality. For instance, in cancer, abnormalities in AS and RBPs may result in aberrant expression of cancer-associated genes, thereby promoting the onset and progression of tumors. AS and RBPs are also associated with numerous neurodegenerative diseases and autoimmune diseases. Consequently, the study of AS across different tissues holds significant value. This review provides a detailed account of the recent advancements in the study of alternative splicing and AS-related RNA-binding proteins in tissue development and diseases, which aids in deepening the understanding of gene expression complexity and offers new insights and methodologies for precision medicine.
Collapse
Affiliation(s)
- Yining Tao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Qi Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
| | - Haoyu Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Xiyu Yang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Haoran Mu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China.
- Shanghai Bone Tumor Institution, 200000, Shanghai, China.
| |
Collapse
|
9
|
Wu S, Lu J, Zhu H, Wu F, Mo Y, Xie L, Song C, Liu L, Xie X, Li Y, Lin H, Tang H. A novel axis of circKIF4A-miR-637-STAT3 promotes brain metastasis in triple-negative breast cancer. Cancer Lett 2024; 581:216508. [PMID: 38029538 DOI: 10.1016/j.canlet.2023.216508] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Among patients with triple-negative breast cancer (TNBC), distant metastasis is the leading cause of death. Our previous studies have shown that TNBC progression is greatly facilitated by circKIF4A, but uncertainty remains regarding its role in TNBC brain metastasis and the molecular mechanism. In this study, we found notable upregulation of circKIF4A in TNBC cell lines and brain metastases. Inhibition of circKIF4A impaired the ability of TNBC to proliferate, migrate, and cause brain metastasis. Luciferase reporter assays confirmed that circKIF4A competed for binding to miR-637 with STAT3 3' UTR. Western blot analysis revealed that inhibition of circKIF4A decreased STAT3 and p62 expression, while increased the LC3B-II/LC3B-I ratio and the expression of Beclin, indicating that downregulation of circKIF4A induced autophagy by competing with STAT3 for binding to miR-637. By employing a competitive endogenous RNA (ceRNA) mechanism, the circKIF4A-miR-637-STAT3 axis coordinates brain metastasis in TNBC. circKIF4A can therefore be used as a prognostic biomarker for brain metastasis in TNBC and as a therapeutic target.
Collapse
Affiliation(s)
- Song Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jibu Lu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hongbo Zhu
- The First Affiliated Hospital of Hengyang Medical School, University of South China, Hengyang, China
| | - Feiyue Wu
- Guizhou Provincial People's Hospital, Guiyang, China
| | - Yunxian Mo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Liming Xie
- The First Affiliated Hospital of Hengyang Medical School, University of South China, Hengyang, China
| | - Cailu Song
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Lingrui Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiaoming Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yuehua Li
- The First Affiliated Hospital of Hengyang Medical School, University of South China, Hengyang, China.
| | - Huan Lin
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
10
|
Ichinose Y, Hasebe T, Hirasaki M, Sakakibara A, Yokogawa H, Nukui A, Hiratsuka M, Fujimoto A, Iso C, Wakui N, Shibasaki S, Kamada K, Suzuki N, Kamakura Y, Yasuda M, Aya A, Shimada H, Matsuura K, Ishiguro H, Osaki A, Saeki T. Vimentin-positive invasive breast carcinoma of no special type: A breast carcinoma with lethal biological characteristics. Pathol Int 2023; 73:413-433. [PMID: 37378453 DOI: 10.1111/pin.13350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
Vimentin is a stable mesenchymal immunohistochemical marker and is widely recognized as a major marker of mesenchymal tumors. The purpose of the present study was to investigate if the vimentin expression status might serve as a significant predictor of outcomes in patients with invasive breast carcinoma of no special type (IBC-NST) and to investigate, by comprehensive RNA sequencing analyses, the mechanisms involved in the heightened malignant potential of vimentin-positive IBC-NSTs. This study, conducted using the data of 855 patients with IBC-NST, clearly identified vimentin expression status as a very important independent biological parameter for accurately predicting the outcomes in patients with IBC-NST. RNA sequence analyses clearly demonstrated significant upregulation of coding RNAs known to be closely associated with cell proliferation or cellular senescence, and significant downregulation of coding RNAs known to be closely associated with transmembrane transport in vimentin-positive IBC-NSTs. We conclude that vimentin-positive IBC-NSTs show heightened malignant biological characteristics, possibly attributable to the upregulation of RNAs closely associated with proliferative activity and cellular senescence, and downregulation of RNAs closely associated with transmembrane transport in IBC-NSTs.
Collapse
Affiliation(s)
- Yuki Ichinose
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Takahiro Hasebe
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Masataka Hirasaki
- Department of Clinical Cancer Genomics, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Ayaka Sakakibara
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Hideki Yokogawa
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Asami Nukui
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Miyuki Hiratsuka
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Akihiro Fujimoto
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Chihiro Iso
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Noriko Wakui
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Satomi Shibasaki
- Community Health Science Center, Saitama Medical University, Iruma, Saitama, Japan
| | - Koichi Kamada
- Department of Pathology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Nobuyuki Suzuki
- Department of Pathology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Yasuo Kamakura
- Department of Clinical Cancer Genomics, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Masanori Yasuda
- Department of Pathology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Asano Aya
- Department of Breast Oncology, Saitama Medical University, Iruma, Saitama, Japan
| | - Hiroko Shimada
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Kazuo Matsuura
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Hiroshi Ishiguro
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Akihiko Osaki
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| | - Toshiaki Saeki
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka City, Saitama, Japan
| |
Collapse
|