1
|
Chen T, Ye W, Gao S, Li Y, Luan J, Lv X, Wang S. Emerging importance of m6A modification in liver cancer and its potential therapeutic role. Biochim Biophys Acta Rev Cancer 2025; 1880:189299. [PMID: 40088993 DOI: 10.1016/j.bbcan.2025.189299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/04/2025] [Accepted: 03/09/2025] [Indexed: 03/17/2025]
Abstract
Liver cancer refers to malignant tumors that form in the liver and is usually divided into several types, the most common of which is hepatocellular carcinoma (HCC), which originates in liver cells. Other rare types of liver cancer include intrahepatic cholangiocarcinoma (iCCA). m6A modification is a chemical modification of RNA that usually manifests as the addition of a methyl group to adenine in the RNA molecule to form N6-methyladenosine. This modification exerts a critical role in various biological processes by regulating the metabolism of RNA, affecting gene expression. Recent studies have shown that m6A modification is closely related to the occurrence and development of liver cancer, and m6A regulators can further participate in the pathogenesis of liver cancer by regulating the expression of key genes and the function of specific cells. In this review, we provided an overview of the latest advances in m6A modification in liver cancer research and explored in detail the specific functions of different m6A regulators. Meanwhile, we deeply analyzed the mechanisms and roles of m6A modification in liver cancer, aiming to provide novel insights and references for the search for potential therapeutic targets. Finally, we discussed the prospects and challenges of targeting m6A regulators in liver cancer therapy.
Collapse
Affiliation(s)
- Tao Chen
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province 241001, China
| | - Wufei Ye
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province 241001, China
| | - Songsen Gao
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province 230022, China
| | - Yueran Li
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province 241001, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province 241001, China
| | - Xiongwen Lv
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province 230032, China.
| | - Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province 241001, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province 230032, China.
| |
Collapse
|
2
|
Jiang X, Tan H. Mechanism of METTL3 in the proliferation, invasion, and migration of intrahepatic cholangiocarcinoma cells via m6A modification. Exp Cell Res 2025; 444:114353. [PMID: 39608479 DOI: 10.1016/j.yexcr.2024.114353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a primary invasive malignant tumor. This study was conducted to explore the role of methyltransferase-like 3 (METTL3)-mediated m6A modification in ICC cells and provide novel targets for ICC treatment. Levels of METTL3/YTH N6-methyladenosine RNA binding protein 2 (YTHDF2)/Nedd4 family interacting protein 1 (NDFIP1) in cells were determined. Cell viability, proliferation, invasion, and migration were evaluated. The enrichments of METTL3, YTHDF2, and m6A on NDFIP1 mRNA were analyzed. The mRNA stability was determined. Inhibition of YTHDF2 or NDFIP1 was combined with si-METTL3 to confirm the mechanism. The role of METTL3 in vivo was verified. METTL3 was overexpressed in ICC cells. METTL3 silencing suppressed ICC cell malignant behaviors, which were reversed by METTL3 overexpression. METTL3 increased m6A modification on NDFIP1 mRNA, facilitated YTHDF2 recognition of m6A, and promoted NDFIP1 mRNA degradation, thereby suppressing NDFIP1 expression. YTHDF2 inhibition increased NDFIP1 mRNA levels. NDFIP1 downregulation partially reversed the inhibitory effects of si-METTL3 on ICC cell behaviors, while NDFIP1 overexpression partially reversed the promotive effects of METTL3 on ICC cell behaviors. METTL3 downregulation suppressed ICC growth by increasing NDFIP1 expression. In conclusion, METTL3 aggravates ICC cell proliferation, invasion, and migration by promoting the degradation of NDFIP1 mRNA in a YTHDF2-dependent manner.
Collapse
Affiliation(s)
- Xinmiao Jiang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of University of South China, Hengyang, 421001, China
| | - Hui Tan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of University of South China, Hengyang, 421001, China; Department of Pathology, The First Affiliated Hospital of University of South China, Hengyang, 421001, China.
| |
Collapse
|
3
|
Zheng X, Li H, Lin J, Li P, Yang X, Luo Z, Jin L. METTL3-mediated m6A modification promotes chemoresistance of intrahepatic cholangiocarcinoma by up-regulating NRF2 to inhibit ferroptosis in cisplatin-resistant cells. J Chemother 2024:1-11. [PMID: 39482926 DOI: 10.1080/1120009x.2024.2421700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024]
Abstract
This study explores the relationship between m6A modification and ferroptosis in intrahepatic cholangiocarcinoma (ICC) and its impact on cisplatin resistance. We established cisplatin-resistant cells. CCK-8 and Transwell assays were conducted to evaluate the effects of METTL3 on drug resistance, migration, and invasion. RT-qPCR and Western blotting were used to measure target gene expression and the effects of overexpression and suppression. RIP, luciferase reporter assay, and other experiments were utilized to investigate the interaction between METTL3 and NRF2. Additionally, rescue experiments were performed to confirm the role of the METTL3/NRF2 axis in tumor drug resistance. METTL3 was found to be highly expressed in cisplatin-resistant cells, enhancing m6A modification levels, stabilizing NRF2 mRNA, and increasing NRF2 protein expression to inhibit ferroptosis. These findings indicate that the METTL3/NRF2 axis inhibits ferroptosis in cisplatin-resistant cells, thereby promoting chemotherapy resistance in ICC. This provides a potential direction for future research and treatment of ICC.
Collapse
Affiliation(s)
- Xiaoping Zheng
- Department of Infectious Diseases, Pingyang Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huiying Li
- Outpatient Department, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Lin
- Department of Infectious Diseases, Pingyang Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ping Li
- Department of Oncology Radiation, Sichuan Cancer Hospital & Institute, Chengdu, Sichuan, China
| | - Xuexi Yang
- Department of Oncology Radiation, Sichuan Cancer Hospital & Institute, Chengdu, Sichuan, China
| | - Zhumei Luo
- Department of Oncology Radiation, Sichuan Cancer Hospital & Institute, Chengdu, Sichuan, China
| | - Li Jin
- Department of Oncology Radiation, Sichuan Cancer Hospital & Institute, Chengdu, Sichuan, China
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| |
Collapse
|
4
|
Winnard PT, Vesuna F, Bol GM, Gabrielson KL, Chenevix-Trench G, Ter Hoeve ND, van Diest PJ, Raman V. Targeting RNA helicase DDX3X with a small molecule inhibitor for breast cancer bone metastasis treatment. Cancer Lett 2024; 604:217260. [PMID: 39306228 DOI: 10.1016/j.canlet.2024.217260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/03/2024]
Abstract
Patients who present with breast cancer bone metastasis only have limited palliative treatment strategies and efficacious drug treatments are needed. In breast cancer patient data, high levels of the RNA helicase DDX3 are associated with poor overall survival and bone metastasis. Consequently, our objective was to target DDX3 in a mouse breast cancer bone metastasis model using a small molecule inhibitor of DDX3, RK-33. Histologically confirmed live imaging indicated no bone metastases in the RK-33 treated cohort, as opposed to placebo-treated mice. We generated a cell line from a bone metastatic lesion in mouse and found that it along with a patient-derived bone metastasis cell line gained resistance to conventional chemotherapeutics but not to RK-33. Finally, differential levels of DDX3 were observed in breast cancer patient metastatic bone samples. Overall, this study indicates that DDX3 is a relevant clinical target in breast cancer bone metastasis and that RK-33 can be a safe and effective treatment for these patients.
Collapse
Affiliation(s)
- Paul T Winnard
- Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Farhad Vesuna
- Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Guus M Bol
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Medical Oncology, University Medical Center Utrecht Cancer Center, GA, Utrecht, the Netherlands
| | - Kathleen L Gabrielson
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Georgia Chenevix-Trench
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Locked Bag 2000, Brisbane, QLD, 4029, Australia
| | - Natalie D Ter Hoeve
- Department of Pathology, University Medical Center Utrecht Cancer Center, 3508 GA, Utrecht, the Netherlands
| | - Paul J van Diest
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Pathology, University Medical Center Utrecht Cancer Center, 3508 GA, Utrecht, the Netherlands
| | - Venu Raman
- Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Pathology, University Medical Center Utrecht Cancer Center, 3508 GA, Utrecht, the Netherlands; Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
5
|
Xing H, Gu X, Liu Y, Xu L, He Y, Xue C. NSUN2 regulates Wnt signaling pathway depending on the m5C RNA modification to promote the progression of hepatocellular carcinoma. Oncogene 2024; 43:3469-3482. [PMID: 39375506 DOI: 10.1038/s41388-024-03184-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
5-Methylcytosine (m5C) RNA modification is a highly abundant and important epigenetic modification in mammals. As an important RNA m5C methyltransferase, NOP2/Sun-domain family member 2 (NSUN2)-mediated m5C RNA modification plays an important role in the regulation of the biological functions in many cancers. However, little is known about the biological role of NSUN2 in hepatocellular carcinoma (HCC). In this study, we found that the expression of NSUN2 was significantly upregulated in HCC, and the HCC patients with higher expression of NSUN2 had a poorer prognosis than those with lower expression of NSUN2. NSUN2 could affect the tumor immune regulation of HCC in several ways. In vitro and in vivo experiments confirmed that NSUN2 knockdown significantly decreased the abilities of proliferation, colony formation, migration and invasion of HCC cells. The methylated RNA immunoprecipitation-sequencing (MeRIP-seq) showed NSUN2 knockdown significantly affected the abundance, distribution, and composition of m5C RNA modification in HCC cells. Functional enrichment analyses and in vitro experiments suggested that NSUN2 could promote the HCC cells to proliferate, migrate and invade by regulating Wnt signaling pathway. SARS2 were identified via the RNA immunoprecipitation-sequencing (RIP-Seq) and MeRIP-seq as downstream target of NSUN2, which may play an important role in tumor-promoting effect of NSUN2-mediated m5C RNA modification in HCC. In conclusion, NSUN2 promotes HCC progression by regulating Wnt signaling pathway and SARS2 in an m5C-dependent manner.
Collapse
Affiliation(s)
- Huiwu Xing
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Yingru Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lixia Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Chen Xue
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
6
|
Cai T, Dai J, Lin Y, Bai Z, Li J, Meng W. N-acetyltransferase 10 affects the proliferation of intrahepatic cholangiocarcinoma and M2-type polarization of macrophages by regulating C-C motif chemokine ligand 2. J Transl Med 2024; 22:875. [PMID: 39350174 PMCID: PMC11440763 DOI: 10.1186/s12967-024-05664-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND N-acetyltransferase 10 (NAT10) plays a crucial role in the occurrence and development of various tumors. However, the current regulatory mechanism of NAT10 in tumors is limited to its presence in tumor cells. Here, we aimed to reveal the role of NAT10 in intrahepatic cholangiocarcinoma (ICC) and investigate its effect on macrophage polarization in the tumor microenvironment (TME). METHODS The correlation between NAT10 and ICC clinicopathology was analyzed using tissue microarray (TMA), while the effect of NAT10 on ICC proliferation was verified in vitro and in vivo. Additionally, the downstream target of NAT10, C-C motif chemokine ligand 2 (CCL2), was identified by Oxford Nanopore Technologies full-length transcriptome sequencing, RNA immunoprecipitation-quantitative polymerase chain reaction, and coimmunoprecipitation experiments. It was confirmed by co-culture that ICC cells could polarize macrophages towards M2 type through the influence of NAT10 on CCL2 protein expression level. Through RNA-sequencing, molecular docking, and surface plasmon resonance (SPR) assays, it was confirmed that berberine (BBR) can specifically bind CCL2 to inhibit ICC development. RESULTS High expression level of NAT10 was associated with poor clinicopathological manifestations of ICC. In vitro, the knockdown of NAT10 inhibited the proliferative activity of ICC cells and tumor growth in vivo, while its overexpression promoted ICC proliferation. Mechanically, by binding to CCL2 messenger RNA, NAT10 increased CCL2 protein expression level in ICC and their extracellular matrix, thereby promoting the proliferation of ICC cells and M2-type polarization of macrophages. BBR can target CCL2, inhibit ICC proliferation, and reduce M2-type polarization of macrophages. CONCLUSIONS NAT10 promotes ICC proliferation and M2-type polarization of macrophages by up-regulating CCL2, whereas BBR inhibits ICC proliferation and M2-type polarization of macrophages by inhibiting CCL2.
Collapse
Affiliation(s)
- Teng Cai
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637600, China
| | - Jianye Dai
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yanyan Lin
- The Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Zhongtian Bai
- The Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
- Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, 730000, China.
| | - Jingdong Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637600, China.
| | - Wenbo Meng
- The Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
- Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, 730000, China.
| |
Collapse
|
7
|
Wu Z, Song Q, Liu M, Hu Y, Peng X, Zhang Z, Yao X, Peng Q. Deciphering the role of HLF in idiopathic orbital inflammation: integrative analysis via bioinformatics and machine learning techniques. Sci Rep 2024; 14:19346. [PMID: 39164324 PMCID: PMC11336107 DOI: 10.1038/s41598-024-68890-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 07/29/2024] [Indexed: 08/22/2024] Open
Abstract
Idiopathic orbital inflammation, formerly known as NSOI (nonspecific orbital inflammation), is characterized as a spectrum disorder distinguished by the polymorphic infiltration of lymphoid tissue, presenting a complex and poorly understood etiology. Recent advancements have shed light on the HLF (Human lactoferrin), proposing its critical involvement in the regulation of hematopoiesis and the maintenance of innate mucosal immunity. This revelation has generated significant interest in exploring HLF's utility as a biomarker for NSOI, despite the existing gaps in our understanding of its biosynthetic pathways and operational mechanisms. Intersecting multi-omic datasets-specifically, common differentially expressed genes between GSE58331 and GSE105149 from the Gene Expression Omnibus and immune-related gene compendiums from the ImmPort database-we employed sophisticated analytical methodologies, including Lasso regression and support vector machine-recursive feature elimination, to identify HLF. Gene set enrichment analysis and gene set variation analysis disclosed significant immune pathway enrichment within gene sets linked to HLF. The intricate relationship between HLF expression and immunological processes was further dissected through the utilization of CIBERSORT and ESTIMATE algorithms, which assess characteristics of the immune microenvironment, highlighting a noteworthy association between increased HLF expression and enhanced immune cell infiltration. The expression levels of HLF were corroborated using data from the GSE58331 dataset, reinforcing the validity of our findings. Analysis of 218 HLF-related differentially expressed genes revealed statistically significant discrepancies. Fifteen hub genes were distilled using LASSO and SVM-RFE algorithms. Biological functions connected with HLF, such as leukocyte migration, ossification, and the negative regulation of immune processes, were illuminated. Immune cell analysis depicted a positive correlation between HLF and various cells, including resting mast cells, activated NK cells, plasma cells, and CD8 T cells. Conversely, a negative association was observed with gamma delta T cells, naive B cells, M0 and M1 macrophages, and activated mast cells. Diagnostic assessments of HLF in distinguishing NSOI showed promising accuracy. Our investigation delineates HLF as intricately associated with NSOI, casting light on novel biomarkers for diagnosis and progression monitoring of this perplexing condition.
Collapse
Affiliation(s)
- Zixuan Wu
- Hunan University of Traditional Chinese Medicine, Changsha, 410208, Hunan, China
| | - Qiujie Song
- Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong, 257091, People's Republic of China
| | - Meiling Liu
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yi Hu
- Hunan University of Traditional Chinese Medicine, Changsha, 410208, Hunan, China
| | - Xin Peng
- Hunan University of Traditional Chinese Medicine, Changsha, 410208, Hunan, China
| | - Zheyuan Zhang
- Hunan University of Traditional Chinese Medicine, Changsha, 410208, Hunan, China
| | - Xiaolei Yao
- Department of Ophthalmology, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, 410007, Hunan, China.
| | - Qinghua Peng
- Hunan University of Traditional Chinese Medicine, Changsha, 410208, Hunan, China.
- Department of Ophthalmology, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, 410007, Hunan, China.
| |
Collapse
|
8
|
Liu HY, Sun XJ, Xiu SY, Zhang XY, Wang ZQ, Gu YL, Yi CX, Liu JY, Dai YS, Yuan X, Liao HP, Liu ZM, Pang XC, Li TC. Frizzled receptors (FZDs) in Wnt signaling: potential therapeutic targets for human cancers. Acta Pharmacol Sin 2024; 45:1556-1570. [PMID: 38632318 PMCID: PMC11272778 DOI: 10.1038/s41401-024-01270-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/24/2024] [Indexed: 04/19/2024]
Abstract
Frizzled receptors (FZDs) are key contributors intrinsic to the Wnt signaling pathway, activation of FZDs triggering the Wnt signaling cascade is frequently observed in human tumors and intimately associated with an aggressive carcinoma phenotype. It has been shown that the abnormal expression of FZD receptors contributes to the manifestation of malignant characteristics in human tumors such as enhanced cell proliferation, metastasis, chemotherapy resistance as well as the acquisition of cancer stemness. Given the essential roles of FZD receptors in the Wnt signaling in human tumors, this review aims to consolidate the prevailing knowledge on the specific status of FZD receptors (FZD1-10) and elucidate their respective functions in tumor progression. Furthermore, we delineate the structural basis for binding of FZD and its co-receptors to Wnt, and provide a better theoretical foundation for subsequent studies on related mechanisms. Finally, we describe the existing biological classes of small molecule-based FZD inhibitors in detail in the hope that they can provide useful assistance for design and development of novel drug candidates targeted FZDs.
Collapse
Affiliation(s)
- Hui-Yu Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xiao-Jiao Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Si-Yu Xiu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiang-Yu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhi-Qi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yan-Lun Gu
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Chu-Xiao Yi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jun-Yan Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Yu-Song Dai
- Department of Otorhinolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xia Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Hua-Peng Liao
- Yizhang County People's Hospital, Chenzhou, 424200, China
| | - Zhen-Ming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Xiao-Cong Pang
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China.
| | - Tian-Cheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing, 100034, China.
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100034, China.
| |
Collapse
|
9
|
Ye Z, Xiao M, Zhang Y, Zheng A, Zhang D, Chen J, Du F, Zhao Y, Wu X, Li M, Chen Y, Deng S, Shen J, Zhang X, Wen Q, Zhang J, Xiao Z. Identification of tumor stemness and immunity related prognostic factors and sensitive drugs in head and neck squamous cell carcinoma. Sci Rep 2024; 14:15962. [PMID: 38987626 PMCID: PMC11236973 DOI: 10.1038/s41598-024-66196-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
The presence of cancer stem cells (CSCs) contributes significantly to treatment resistance in various cancers, including head and neck squamous cell carcinoma (HNSCC). Despite this, the relationship between cancer stemness and immunity remains poorly understood. In this study, we aimed to identify potential immunotherapeutic targets and sensitive drugs for CSCs in HNSCC. Using data from public databases, we analyzed expression patterns and prognostic values in HNSCC. The stemness index was calculated using the single-sample gene set enrichment analysis (ssgsea) algorithm, and weighted gene co-expression network analysis (WGCNA) was employed to screen for key stemness-related modules. Consensus clustering was then used to group samples for further analysis, and prognosis-related key genes were identified through regression analysis. Our results showed that tumor samples from HNSCC exhibited higher stemness indices compared to normal samples. WGCNA identified a module highly correlated with stemness, comprising 187 genes, which were significantly enriched in protein digestion and absorption pathways. Furthermore, we identified sensitive drugs targeting prognostic genes associated with tumor stemness. Notably, two genes, HLF and CCL11, were found to be highly associated with both stemness and immunity. In conclusion, our study identifies a stemness-related gene signature and promising drug candidates for CSCs of HNSCC. Additionally, HLF and CCL11, which are associated with both stemness and immunity, represent potential targets for immunotherapy in HNSCC.
Collapse
Affiliation(s)
- Zhihua Ye
- Department of Medical Oncology Center, Zhongshan People's Hospital, Zhongshan, Guangdong, China
| | - Mintao Xiao
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yinping Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Anfu Zheng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Duoli Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jie Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Xinyi Zhang
- School of Data Science, The Chinese University of Hong Kong, Shenzhen, China
| | - Qinglian Wen
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junkai Zhang
- Department of Medical Oncology Center, Zhongshan People's Hospital, Zhongshan, Guangdong, China.
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China.
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China.
- Department of Pharmacology, School of Pharmacy, Sichuan College of Traditional Chinese Medicine, Mianyang, 621000, Sichuan, China.
- Gulin Traditional Chinese Medicine Hospital, Luzhou, China.
| |
Collapse
|
10
|
Wang X, Zhi M, Zhao W, Deng J. HNRNPA2B1 promotes oral squamous cell carcinogenesis via m 6A-dependent stabilization of FOXQ1 mRNA stability. IUBMB Life 2024; 76:437-450. [PMID: 38265150 DOI: 10.1002/iub.2808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
Oral squamous cell carcinoma (OSCC), as a common type of oral malignancy, has an unclear pathogenesis. N6 methyladenosine (m6A) is a reversible and dynamic process that participates in the modulation of cancer pathogenesis and development. As an m6A recognition protein (reader), heterogeneous nuclear ribonucleoproteins A2/B1 (HNRNPA2B1) show abnormally high expression in cancers. Forkhead box Q1 (FOXQ1), an oncogenic transcription factor, controls multiple biological processes (e.g., embryonic development, cell differentiation, and apoptosis, impacting the initiation and progression of cancers by mediating signaling pathways together with epithelial-mesenchymal transition). Through the Cancer Genome Atlas database screening along with clinical and laboratory experiments, in head and neck squamous cell carcinoma, we found a correlation between HNRNPA2B1 and FOXQ1 gene expression, with shared m6A motifs between HNRNPA2B1 and FOXQ1 mRNA sequences. Silencing or overexpression of HNRNPA2B1 in OSCC cells affected the malignant phenotypes of OSCC cells in vitro, and depletion of HNRNPA2B1 retarded tumor growth in vivo. HNRNPA2B1 could bind to m6A-modified FOXQ1 mRNA to enhance its mRNA stability, resulting in up-regulation of FOXQ1 protein expression. To conclude, HNRNPA2B1 was upregulated in OSCC and enhanced OSCC cell malignant phenotypes by stabilizing m6A-modified FOXQ1 mRNA, eventually aggravating the malignancy and tumorigenicity of OSCC. This study accelerates the recognition of the potency of m6A modification in OSCC and paves the path for OSCC's targeted diagnosis and therapy.
Collapse
Affiliation(s)
- Xi Wang
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin, PR China
| | - Min Zhi
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin, PR China
| | - Wei Zhao
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin, PR China
| | - Jiayin Deng
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin, PR China
| |
Collapse
|
11
|
Berggren KA, Schwartz RE, Kleiner RE, Ploss A. The impact of epitranscriptomic modifications on liver disease. Trends Endocrinol Metab 2024; 35:331-346. [PMID: 38212234 DOI: 10.1016/j.tem.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
RNA modifications have emerged as important mechanisms of gene regulation. Developmental, metabolic, and cell cycle regulatory processes are all affected by epitranscriptomic modifications, which control gene expression in a dynamic manner. The hepatic tissue is highly metabolically active and has an impressive ability to regenerate after injury. Cell proliferation, differentiation, and metabolism, which are all essential to the liver response to injury and regeneration, are regulated via RNA modification. Two such modifications, N6-methyladenosine (m6A)and 5-methylcytosine (m5C), have been identified as prognostic disease markers and potential therapeutic targets for liver diseases. Here, we describe progress in understanding the role of RNA modifications in liver biology and disease and discuss specific areas where unexpected results could lead to improved future understanding.
Collapse
Affiliation(s)
- Keith A Berggren
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ralph E Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
12
|
Bai X, Huang J, Jin Y, Chen J, Zhou S, Dong L, Han X, He X. M6A RNA methylation in biliary tract cancer: the function roles and potential therapeutic implications. Cell Death Discov 2024; 10:83. [PMID: 38365891 PMCID: PMC10873351 DOI: 10.1038/s41420-024-01849-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
Biliary tract cancers (BTCs) are relatively rare malignancies with a poor prognosis. For advanced BTCs, the efficacy of current chemotherapeutic approaches is limited. Consequently, there is an urgent need to deepen our understanding of the molecular mechanisms underlying BTC tumorigenesis and development for the exploration of effective targeted therapies. N6-methyladenosine (m6A), the most abundant RNA modifications in eukaryotes, is found usually dysregulated and involved in tumorigenesis, progression, and drug resistance in tumors. Numerous studies have confirmed that aberrant m6A regulators function as either oncogenes or tumor suppressors in BTCs by the reversible regulation of RNA metabolism, including splicing, export, degradation and translation. In this review, we summarized the current roles of the m6A regulators and their functional impacts on RNA fate in BTCs. The improved understanding of m6A modification in BTCs also provides a reasonable outlook for the exploration of new diagnostic strategies and efficient therapeutic targets.
Collapse
Affiliation(s)
- Xuesong Bai
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Jianhao Huang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Yiqun Jin
- Department of Ultrasound, Affiliated Hangzhou First People's Hospital, School Of Medicine, Westlake University, Hangzhou, China
| | - Jiemin Chen
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Shengnan Zhou
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Liangbo Dong
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Xianlin Han
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.
| | - Xiaodong He
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
13
|
Liu Z, Zhou L, Li D, Lu H, Liu L, Mao W, Yu X, Fan Y, Huang Q, Wang F, Wan Y. N6-methyladenosine methyltransferase METTL3 modulates the cell cycle of granulosa cells via CCND1 and AURKB in Haimen goats. FASEB J 2023; 37:e23273. [PMID: 37874265 DOI: 10.1096/fj.202301232r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/24/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
N6-methyladenosine (m6A) plays a crucial role in many bioprocesses across species, but its function in granulosa cells during oocyte maturation is not well understood in animals, especially domestic animals. We observed an increase in m6A methyltransferase-like 3 (METTL3) in granulosa cells during oocyte maturation in Haimen goats. Our results showed that knockdown of METTL3 disrupted the cell cycle in goat granulosa cells, leading to aggravated cell apoptosis and inhibition of cell proliferation and hormone secretion. Mechanistically, METTL3 may regulate the cell cycle in goat granulosa cells by mediating Aurora kinase B (AURKB) mRNA degradation in an m6A-YTH N6-methyladenosine RNA binding protein 2 (YTHDF2) manner and participating in AURKB transcription via the Cyclin D1 (CCND1)-Retinoblastoma protein (RB)-E2F transcription factor 1 (E2F1) pathway. Overall, our study highlights the essential role of METTL3 in granulosa cells during oocyte maturation in Haimen goats. These findings provide a theoretical basis and technical means for understanding how RNA methylation participates in oocyte maturation through granulosa cells.
Collapse
Affiliation(s)
- Zifei Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lei Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Dongxu Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Honghui Lu
- Animal Husbandry and Veterinary Station of Haimen District, Nantong, China
| | - Liang Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Weijia Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaoqing Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yixuan Fan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qunhao Huang
- Animal Husbandry and Veterinary Station of Haimen District, Nantong, China
| | - Feng Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yongjie Wan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
14
|
Wu C, Zheng C, Chen S, He Z, Hua H, Sun C, Yu C. FOXQ1 promotes pancreatic cancer cell proliferation, tumor stemness, invasion and metastasis through regulation of LDHA-mediated aerobic glycolysis. Cell Death Dis 2023; 14:699. [PMID: 37875474 PMCID: PMC10598070 DOI: 10.1038/s41419-023-06207-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/19/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023]
Abstract
Pancreatic cancer (PC), a gastrointestinal tract malignant tumor, has a poor prognosis due to early metastasis and limited response to chemotherapy. Therefore, identifying novel therapeutic approaches for PC is critical. Epithelial-mesenchymal transition (EMT) is known as the vital progress in PC development, we constructed the EMT-related prognosis model to screen out that FOXQ1 probably involving in the EMT regulation. FOXQ1 has been linked to the malignant process in a number of cancers. However, its function in PC is unknown. In our work, the expression of FOXQ1 was elevated in PC tissues, and a high level of FOXQ1 in PC was linked to patients' poor prognosis. FOXQ1 overexpression promoted aerobic glycolysis and enhanced PC cell proliferation, tumor stemness, invasion, and metastasis. Whereas, FOXQ1 silencing showed the reverse effect. Furthermore, mechanistic studies indicated that FOXQ1 promotes LDHA transcription, and thus modulates aerobic glycolysis to enhance PC cell proliferation, tumor stemness, invasion, and metastasis by increasing LDHA expression. Therefore, these novel data suggest that FOXQ1 may be a possible therapeutic target in PC.
Collapse
Affiliation(s)
- Changhao Wu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, 550001, Guiyang, China
- College of Clinical Medicine, Guizhou Medical University, 550001, Guiyang, China
- Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, 550001, Guiyang, China
- Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, 550001, Guiyang, China
- Guizhou Provincial Clinical Medical Research Center of Hepatobiliary Surgery, 550004, Guiyang, Guizhou, China
| | - Chenglong Zheng
- Department of Hepatobiliary Surgery, Shenzhen Key Laboratory, Shenzhen University General Hospital, 518000, Shenzhen, China
| | - Shiyu Chen
- Department of Hepatic-Biliary-Pancreatic Surgery, South China Hospital, Medical School, Shenzhen University, 518116, Shenzhen, China
| | - Zhiwei He
- Department of Hepatobiliary Surgery, Shenzhen Key Laboratory, Shenzhen University General Hospital, 518000, Shenzhen, China
| | - Hao Hua
- College of Clinical Medicine, Guizhou Medical University, 550001, Guiyang, China
- Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, 550001, Guiyang, China
- Guizhou Provincial Clinical Medical Research Center of Hepatobiliary Surgery, 550004, Guiyang, Guizhou, China
| | - Chengyi Sun
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, 550001, Guiyang, China
- College of Clinical Medicine, Guizhou Medical University, 550001, Guiyang, China
- Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, 550001, Guiyang, China
- Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, 550001, Guiyang, China
- Guizhou Provincial Clinical Medical Research Center of Hepatobiliary Surgery, 550004, Guiyang, Guizhou, China
| | - Chao Yu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, 550001, Guiyang, China.
- College of Clinical Medicine, Guizhou Medical University, 550001, Guiyang, China.
- Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, 550001, Guiyang, China.
- Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, 550001, Guiyang, China.
- Guizhou Provincial Clinical Medical Research Center of Hepatobiliary Surgery, 550004, Guiyang, Guizhou, China.
| |
Collapse
|
15
|
Han T, Chen T, Chen L, Li K, Xiang D, Dou L, Li H, Gu Y. HLF promotes ovarian cancer progression and chemoresistance via regulating Hippo signaling pathway. Cell Death Dis 2023; 14:606. [PMID: 37709768 PMCID: PMC10502110 DOI: 10.1038/s41419-023-06076-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/05/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023]
Abstract
Hepatic leukemia factor (HLF) is aberrantly expressed in human malignancies. However, the role of HLF in the regulation of ovarian cancer (OC) remains unknown. Herein, we reported that HLF expression was upregulated in OC tissues and ovarian cancer stem cells (CSCs). Functional studies have revealed that HLF regulates OC cell stemness, proliferation, and metastasis. Mechanistically, HLF transcriptionally activated Yes-associated protein 1 (YAP1) expression and subsequently modulated the Hippo signaling pathway. Moreover, we found that miR-520e directly targeted HLF 3'-UTR in OC cells. miR-520e expression was negatively correlated with HLF and YAP1 expression in OC tissues. The combined immunohistochemical (IHC) panels exhibited a better prognostic value for OC patients than any of these components alone. Importantly, the HLF/YAP1 axis determines the response of OC cells to carboplatin treatment and HLF depletion or the YAP1 inhibitor verteporfin abrogated carboplatin resistance. Analysis of patient-derived xenografts (PDXs) further suggested that HLF might predict carboplatin benefits in OC patients. In conclusion, these findings suggest a crucial role of the miR-520e/HLF/YAP1 axis in OC progression and chemoresistance, suggesting potential therapeutic targets for OC.
Collapse
Affiliation(s)
- Tao Han
- Department of Oncology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Tingsong Chen
- Department of Cancer Intervention, Seventh People's Hospital of Shanghai University of TCM, Shanghai, 200001, China
| | - Lujun Chen
- Department of Oncology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
- Postgraduate College, China Medical University, Shenyang, 110001, China
| | - Kerui Li
- Department of Oncology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Daimin Xiang
- Clinical Cancer Institute, Center for Translational Medicine, Naval Military Medical University, Shanghai, 200433, China
- Department of hepatobiliary surgery, East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Lei Dou
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
| | - Hengyu Li
- Department of Breast and Thyroid Surgery, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, China.
| | - Yubei Gu
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|