1
|
Xie S, Li Y, Mai L, Gao X, Huang G, Sun W, Qiao L, Li B, Wang Y, Lin Z. A tumor-promotional molecular axis CircMAPKBP1/miR-17-3p/TGFβ2 activates autophagy pathway to drive tongue squamous cell carcinoma cisplatin chemoresistance. Cancer Lett 2024; 604:217230. [PMID: 39276917 DOI: 10.1016/j.canlet.2024.217230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024]
Abstract
Platinum-based chemotherapy is the first-line treatment for tongue squamous cell carcinoma (TSCC), but most patients rapidly develop resistance. Circular RNAs (circRNAs) are a class of critical regulators in the pathogenesis of several tumors, but their role in cisplatin resistance in TSCC has not been fully elucidated. Here we found that circMAPKBP1 was enriched in cisplatin resistant TSCC cells and was closely associated with enhanced autophagic activity. Functionally, silencing circMAPKBP1 significantly restored the chemosensitivity of cisplatin-resistant TSCC cells both in vitro and in vivo by suppressing autophagy. Mechanistically, circMAPKBP1 enhanced cisplatin sensitivity through the miR-17-3p/TGFβ2 axis by activating autophagy pathway. Data from clinical studies revealed that high expression of circMAPKBP1 and TGFβ2 was closely linked to a poor outcome in TSCC patients. We thus concluded that circMAPKBP1 is a tumor promoting factor and confers cisplatin sensitivity by activating the miR-17-3p/TGFβ2 axis-mediated autophagy. We propose that circMAPKBP1 may be a potential therapeutic target for TSCC.
Collapse
Affiliation(s)
- Shule Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yingru Li
- Department of General Surgery (hernia and Abdominal Wall), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lianxi Mai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiaolin Gao
- Stomatological Hospital of Haizhu District, Guangzhou, 510220, China
| | - Guoxin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Wenhao Sun
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney at Westmead Hospital, Westmead, NSW, 2145, Australia.
| | - Bowen Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Youyuan Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Zhaoyu Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
2
|
Xie Z, Wang Y, Chen T, Fan W, Wei L, Liu B, Situ X, Zhan Q, Fu T, Tian T, Li S, He Q, Zhou J, Wang H, Du J, Tseng HR, Lei Y, Tang KJ, Ke Z. Circulating tumor cells with increasing aneuploidy predict inferior prognosis and therapeutic resistance in small cell lung cancer. Drug Resist Updat 2024; 76:101117. [PMID: 38996549 DOI: 10.1016/j.drup.2024.101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
AIMS Treatment resistance commonly emerges in small cell lung cancer (SCLC), necessitating the development of novel and effective biomarkers to dynamically assess therapeutic efficacy. This study aims to evaluate the clinical utility of aneuploid circulating tumor cells (CTCs) for risk stratification and treatment response monitoring. METHODS A total of 126 SCLC patients (two cohorts) from two independent cancer centers were recruited as the study subjects. Blood samples were collected from these patients and aneuploid CTCs were detected. Aneuploid CTC count (ACC) and aneuploid CTC score (ACS), were used to predict progression-free survival (PFS) and overall survival (OS). The performance of the ACC and the ACS was evaluated by calculating the area under the receiver operating characteristic (ROC) curve (AUC). RESULTS Compared to ACC, ACS exhibited superior predictive power for PFS and OS in these 126 patients. Moreover, both univariate and multivariate analyses revealed that ACS was an independent prognostic factor. Dynamic ACS changes reflected treatment response, which is more precise than ACC changes. ACS can be used to assess chemotherapy resistance and is more sensitive than radiological examination (with a median lead time of 2.8 months; P < 0.001). When patients had high ACS levels (> 1.115) at baseline, the combination of immunotherapy and chemotherapy resulted in longer PFS (median PFS, 7.7 months; P = 0.007) and OS (median OS, 16.3 months; P = 0.033) than chemotherapy alone (median PFS, 4.9 months; median OS, 13.6 months). CONCLUSIONS ACS could be used as a biomarker for risk stratification, treatment response monitoring, and individualized therapeutic intervention in SCLC patients.
Collapse
Affiliation(s)
- Zhongpeng Xie
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yanxia Wang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Tingfei Chen
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Wei Fan
- Cyttel Biomedical Technology Co., Ltd, Taizhou 225300, China
| | - Lihong Wei
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Bixia Liu
- Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiaohua Situ
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qinru Zhan
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Tongze Fu
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Tian Tian
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Shuhua Li
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qiong He
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jianwen Zhou
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Huipin Wang
- Molecular Diagnostic Center, Zhongshan City People's Hospital, Zhongshan 528403, China
| | - Juan Du
- Molecular Diagnostic Center, Zhongshan City People's Hospital, Zhongshan 528403, China
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA.
| | - Yiyan Lei
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Ke-Jing Tang
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Zunfu Ke
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
3
|
Dong L, Liu C, Sun H, Wang M, Sun M, Zheng J, Yu X, Shi R, Wang B, Zhou Q, Chen Z, Xing B, Wang Y, Yao X, Mei M, Ren Y, Zhou X. Targeting STAT3 potentiates CDK4/6 inhibitors therapy in head and neck squamous cell carcinoma. Cancer Lett 2024; 593:216956. [PMID: 38735381 DOI: 10.1016/j.canlet.2024.216956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Anti-CDK4/6 therapy has been employed for the treatment for head and neck squamous cell carcinoma (HNSCC) with CDK4/6 hyperactivation, but the response rate is relatively low. In this study, we first showed that CDK4 and CDK6 was over-expressed and conferred poor prognosis in HNSCC. Moreover, in RB-positive HNSCC, STAT3 signaling was activated induced by CDK4/6 inhibition and STAT3 promotes RB deficiency by upregulation of MYC. Thirdly, the combination of Stattic and CDK4/6 inhibitor results in striking anti-tumor effect in vitro and in Cal27 derived animal models. Additionally, phospho-STAT3 level negatively correlates with RB expression and predicts poor prognosis in patients with HNSCC. Taken together, our findings suggest an unrecognized function of STAT3 confers to CDK4/6 inhibitors resistance and presenting a promising combination strategy for patients with HNSCC.
Collapse
Affiliation(s)
- Lin Dong
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Chao Liu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Haoyang Sun
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Mo Wang
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Mengyu Sun
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Jianwei Zheng
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaoxue Yu
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Rong Shi
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Bo Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Qianqian Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Zhiqiang Chen
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Bofan Xing
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Yu Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Xiaofeng Yao
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Mei Mei
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Yu Ren
- Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China; Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China.
| |
Collapse
|
4
|
Tran NH, Sais D, Tran N. Advances in human papillomavirus detection and molecular understanding in head and neck cancers: Implications for clinical management. J Med Virol 2024; 96:e29746. [PMID: 38884391 DOI: 10.1002/jmv.29746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/18/2024]
Abstract
Head and neck cancers (HNCs), primarily head and neck squamous cell carcinoma (HNSCC), are associated with high-risk human papillomavirus (HR HPV), notably HPV16 and HPV18. HPV status guides treatment and predicts outcomes, with distinct molecular pathways in HPV-driven HNSCC influencing survival rates. HNC incidence is rising globally, with regional variations reflecting diverse risk factors, including tobacco, alcohol, and HPV infection. Oropharyngeal cancers attributed to HPV have significantly increased, particularly in regions like the United States. The HPV16 genome, characterized by oncoproteins E6 and E7, disrupts crucial cell cycle regulators, including tumor protein p53 (TP53) and retinoblastoma (Rb), contributing to HNSCC pathogenesis. P16 immunohistochemistry (IHC) is a reliable surrogate marker for HPV16 positivity, while in situ hybridization and polymerase chain reaction (PCR) techniques, notably reverse transcription-quantitative PCR (RT-qPCR), offer sensitive HPV detection. Liquid-based RT-qPCR, especially in saliva, shows promise for noninvasive HPV detection, offering simplicity, cost-effectiveness, and patient compliance. These molecular advancements enhance diagnostic accuracy, guide treatment decisions, and improve patient outcomes in HNC management. In conclusion, advances in HPV detection and molecular understanding have significant clinical management implications. Integrating these advancements into routine practice could ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Ngoc Ha Tran
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
| | - Dayna Sais
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
| | - Nham Tran
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
5
|
Yarbrough WG, Schrank TP, Burtness BA, Issaeva N. De-Escalated Therapy and Early Treatment of Recurrences in HPV-Associated Head and Neck Cancer: The Potential for Biomarkers to Revolutionize Personalized Therapy. Viruses 2024; 16:536. [PMID: 38675879 PMCID: PMC11053602 DOI: 10.3390/v16040536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Human papillomavirus-associated (HPV+) head and neck squamous cell carcinoma (HNSCC) is the most common HPV-associated cancer in the United States, with a rapid increase in incidence over the last two decades. The burden of HPV+ HNSCC is likely to continue to rise, and given the long latency between infection and the development of HPV+ HNSCC, it is estimated that the effect of the HPV vaccine will not be reflected in HNSCC prevalence until 2060. Efforts have begun to decrease morbidity of standard therapies for this disease, and its improved characterization is being leveraged to identify and target molecular vulnerabilities. Companion biomarkers for new therapies will identify responsive tumors. A more basic understanding of two mechanisms of HPV carcinogenesis in the head and neck has identified subtypes of HPV+ HNSCC that correlate with different carcinogenic programs and that identify tumors with good or poor prognosis. Current development of biomarkers that reliably identify these two subtypes, as well as biomarkers that can detect recurrent disease at an earlier time, will have immediate clinical application.
Collapse
Affiliation(s)
- Wendell G. Yarbrough
- Department of Otolaryngology/Head and Neck Surgery, UNC School of Medicine, Chapel Hill, NC 27599, USA; (T.P.S.); (N.I.)
- Department of Pathology and Lab Medicine, UNC School of Medicine, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, Chapel Hill, NC 27599, USA
| | - Travis P. Schrank
- Department of Otolaryngology/Head and Neck Surgery, UNC School of Medicine, Chapel Hill, NC 27599, USA; (T.P.S.); (N.I.)
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, Chapel Hill, NC 27599, USA
| | - Barbara A. Burtness
- Department of Medicine, Medical Oncology, Yale School of Medicine, New Haven, CT 06510, USA;
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Natalia Issaeva
- Department of Otolaryngology/Head and Neck Surgery, UNC School of Medicine, Chapel Hill, NC 27599, USA; (T.P.S.); (N.I.)
- Department of Pathology and Lab Medicine, UNC School of Medicine, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Stucky A, Viet CT, Aouizerat BE, Ye Y, Doan C, Mundluru T, Sedhiazadeh P, Sinha UK, Chen X, Zhang X, Li SC, Cai J, Zhong JF. Single-Cell Molecular Profiling of Head and Neck Squamous Cell Carcinoma Reveals Five Dysregulated Signaling Pathways Associated With Circulating Tumor Cells. Cancer Control 2024; 31:10732748241251571. [PMID: 38869038 PMCID: PMC11179551 DOI: 10.1177/10732748241251571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 06/14/2024] Open
Abstract
OBJECTIVES To determine the dysregulated signaling pathways of head and neck squamous cell carcinoma associated with circulating tumor cells (CTCs) via single-cell molecular characterization. INTRODUCTION Head and neck squamous cell carcinoma (HNSCC) has a significant global burden and is a disease with poor survival. Despite trials exploring new treatment modalities to improve disease control rates, the 5 year survival rate remains low at only 60%. Most cancer malignancies are reported to progress to a fatal phase due to the metastatic activity derived from treatment-resistant cancer cells, regarded as one of the most significant obstacles to develope effective cancer treatment options. However, the molecular profiles of cancer cells have not been thoroughly studied. METHODS Here, we examined in-situ HNSCC tumors and pairwisely followed up with the downstream circulating tumor cells (CTCs)-based on the surrogate biomarkers to detect metastasis that is established in other cancers - not yet being fully adopted in HNSCC treatment algorithms. RESULTS Specifically, we revealed metastatic HNSCC patients have complex CTCs that could be defined through gene expression and mutational gene profiling derived from completed single-cell RNASeq (scRNASeq) that served to confirm molecular pathways inherent in these CTCs. To enhance the reliability of our findings, we cross-validated those molecular profiles with results from previously published studies. CONCLUSION Thus, we identified 5 dysregulated signaling pathways in CTCs to derive HNSCC biomarker panels for screening HNSCC in situ tumors.
Collapse
Affiliation(s)
- Andres Stucky
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Chi T Viet
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Loma Linda University, Loma Linda, CA, USA
| | - Bradley E Aouizerat
- Department of Oral and Maxillofacial Surgery, College of Dentistry, New York University, New York, NY, USA
- Bluestone Center for Clinical Research, College of Dentistry, New York University, New York, NY, USA
| | - Yi Ye
- Department of Oral and Maxillofacial Surgery, College of Dentistry, New York University, New York, NY, USA
- Bluestone Center for Clinical Research, College of Dentistry, New York University, New York, NY, USA
| | - Coleen Doan
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Loma Linda University, Loma Linda, CA, USA
| | - Tarun Mundluru
- Herman Ostrow School of Dentistry, Department of Periodontics and Diagnostic Sciences, University of Southern California, Los Angeles, CA, USA
| | - Parish Sedhiazadeh
- Herman Ostrow School of Dentistry, Department of Periodontics and Diagnostic Sciences, University of Southern California, Los Angeles, CA, USA
| | - Uttam K Sinha
- Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xuelian Chen
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Xi Zhang
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Shengwen Calvin Li
- Neuro-Oncology and Stem Cell Research Laboratory, Center for Neuroscience Research, CHOC Children's Research Institute, Children's Hospital of Orange County, Orange, CA, USA
- Department of Neurology, University of California-Irvine School of Medicine, Orange, CA, USA
| | - Jin Cai
- Department of Oral and Maxillofacial Surgery, Zhuhai People's Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, People's Republic of China
| | - Jiang F Zhong
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
7
|
Alix-Panabières C, Marchetti D, Lang JE. Liquid biopsy: from concept to clinical application. Sci Rep 2023; 13:21685. [PMID: 38066040 PMCID: PMC10709452 DOI: 10.1038/s41598-023-48501-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Affiliation(s)
- Catherine Alix-Panabières
- Laboratory of Rare Circulating Human Cells (LCCRH), University Medical Center of Montpellier, Montpellier, France.
- CREEC/CANECEV, MIVEGEC (CREES), Université de Montpellier, CNRS, IRD, Montpellier, France.
- European Liquid Biopsy Society (ELBS), Hamburg, Germany.
- Institut Universitaire de Recherche Clinique (IURC), 641, avenue du Doyen Gaston Giraud, 34093, Montpellier Cedex 5, France.
| | - Dario Marchetti
- Departments of Internal Medicine and Pathology, The University of New Mexico Health Sciences Center, UNM Comprehensive Cancer Center, MSC07 4025, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Julie E Lang
- Breast Surgery and Cancer Biology, Cleveland Clinic, 9500 Euclid Ave, A80, Cleveland, OH, 44195, USA
- Case Comprehensive Cancer Center, Cleveland Clinic, 9500 Euclid Ave, A80, Cleveland, OH, 44195, USA
| |
Collapse
|
8
|
Wang Y, Zhang L, Tan J, Zhang Z, Liu Y, Hu X, Lu B, Gao Y, Tong L, Liu Z, Zhang H, Lin PP, Li B, Gires O, Zhang T. Longitudinal detection of subcategorized CD44v6 + CTCs and circulating tumor endothelial cells (CTECs) enables novel clinical stratification and improves prognostic prediction of small cell lung cancer: A prospective, multi-center study. Cancer Lett 2023; 571:216337. [PMID: 37553013 DOI: 10.1016/j.canlet.2023.216337] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/10/2023]
Abstract
Current management of small cell lung cancer (SCLC) remains challenging. Effective biomarkers are needed to subdivide patients presenting distinct treatment response and clinical outcomes. An understanding of heterogeneous phenotypes of aneuploid CD31- circulating tumor cells (CTCs) and CD31+ circulating tumor endothelial cells (CTECs) may provide novel insights in the clinical management of SCLC. In the present translational and prospective study, increased cancer metastasis-related cell proliferation and motility, accompanied with up-regulated mesenchymal marker vimentin but down-regulated epithelial marker E-cadherin, were observed in both lentivirus infected SCLC and NSCLC cells overexpressing the stemness marker CD44v6. Aneuploid CTCs and CTECs expressing CD44v6 were longitudinally detected by SE-iFISH in 120 SCLC patients. Positive detection of baseline CD44v6+ CTCs and CD44v6+ CTECs was significantly associated with enhanced hepatic metastasis. Karyotype analysis revealed that chromosome 8 (Chr8) in CD44v6+ CTCs shifted from trisomy 8 towards multiploidy in post-therapeutic patients compared to pre-treatment subjects. Furthermore, the burden of baseline CD44v6+ CTCs (t0) or amid the therapy (t1-2), the ratio of baseline CD31+ CTEC/CD31- CTC (t0), and CTC-WBC clusters (t0) were correlated with treatment response and distant metastases, particularly brain metastasis, in subjects with limited disease (LD-SCLC) but not in those with extensive disease (ED-SCLC). Multivariate survival analysis validated that longitudinally detected CD44v6+/CD31- CTCs was an independent prognostic factor for inferior survival in SCLC patients. Our study provides evidence for the first time that comprehensive analyses of CTCs, CTECs, and their respective CD44v6+ subtypes enable clinical stratification and improve prognostic prediction of SCLC, particularly for potentially curable LD-SCLC.
Collapse
Affiliation(s)
- Ying Wang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic, Tumor Research Institute, Beijing, China
| | - Lina Zhang
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Jinjing Tan
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Zhiyun Zhang
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yanxia Liu
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xingsheng Hu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Baohua Lu
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic, Tumor Research Institute, Beijing, China
| | - Yuan Gao
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic, Tumor Research Institute, Beijing, China
| | - Li Tong
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic, Tumor Research Institute, Beijing, China
| | - Zan Liu
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic, Tumor Research Institute, Beijing, China
| | - Hongxia Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | | | - Baolan Li
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic, Tumor Research Institute, Beijing, China
| | - Olivier Gires
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU, Munich, Germany.
| | - Tongmei Zhang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic, Tumor Research Institute, Beijing, China.
| |
Collapse
|